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Abstract 16 

   Surfactants are good candidates as selectors in mixed-mode reversed-phase liquid 17 

chromatography (RPLC)/hydrophilic interaction liquid chromatography (HILIC) because they 18 

contain both a hydrophobic and a hydrophilic moiety.  Surfactin, a cyclic heptapeptide, is an 19 

efficient biosurfactant produced by Bacillus subtilis that comprises seven amino acids and a 20 

β-hydroxyl fatty acid.  A surfactin-modified silica (SMS) stationary phase was prepared by amide 21 

bond formation between amino groups on aminopropyl silica and the carboxylic acid groups of 22 

L-Glu and L-Asp residues in surfactin.  The resulting SMS stationary phase was characterized in 23 

both RPLC and HILIC mode using different mobile phases.  The SMS column was found to 24 

separate analytes in both modes.  The retention of polar solutes exhibited “U-shaped” curves, 25 

depending on the acetonitrile content.  “U-shaped” curves are an indicator of RPLC/HILIC 26 

mixed-mode retention behavior.  The presence of hydrophobic and hydrophilic moieties in 27 

surfactin provides unique properties that allow the SMS column to be used for both RPLC and 28 

HILIC separations, simply by changing the mobile phase composition. 29 

30 
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1  Introduction 31 

   Reversed-phase liquid chromatography (RPLC) is widely used to retain and separate 32 

hydrophobic and moderately hydrophobic compounds; however, it often cannot be used to separate 33 

polar compounds due to lack of retention on the column.  Normal phase liquid chromatography is 34 

another choice, but non-polar mobile phases are poor solvents for polar compounds.  Recently, 35 

hydrophilic interaction chromatography (HILIC), where a bare silica or polar group (amine, amide, 36 

cyano, diol)-bonded silica stationary phase and a hydro-organic mobile phase are used, has become 37 

a valuable alternative for the separation of polar compounds.  Separation in HILIC mode is 38 

believed to result from the partitioning of analytes between a water-rich layer on the surface of the 39 

hydrophilic stationary phase and the hydro-organic mobile phase, and from the interaction based on 40 

hydrogen bonds between the analytes and the functional group on the stationary phase [1]. 41 

Mixed-mode chromatographic separation based on more than one retention mechanism would 42 

likely provide better separation than single mode separation.  This new concept is gaining attention, 43 

and several mixed-mode separation materials have been reported.  Most mixed-mode separation 44 

methods combine RP and anion- or cation-exchange.  However, the column-packing materials 45 

available for RPLC and HILIC mixed-mode separations are limited, although the combination of 46 

these two chromatographic approaches may expand their applicability [2-6].  Several researchers 47 

have used materials possessing a long alkyl chain (hydrophobic moiety) and an ionizable group 48 

(hydrophilic moiety) for RPLC/HILIC mixed-mode separation [3].  However, ionized groups can 49 

electrostatically interact with ionized analytes, resulting in a severe peak tailing.  In contrast, Wu et 50 

al. synthesized nonionic polar stationary phases with hydroxyl and sulfoxide groups, and reported 51 

that some of these stationary phases were effective for RPLC and HILIC mode separations [4]. 52 
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   Surfactants are good candidates as selectors for RPLC/HILIC mixed-mode separation because 53 

they consist of both a hydrophobic and hydrophilic moiety.  Lin et al. prepared a 54 

hydrophobic/strong cation-exchange monolithic column by copolymerization of 3-sulfopropyl 55 

methacrylate and pentaerythritol triacrylate [7].  Gu et al. prepared a methacrylate-derived 56 

surfactant-bound monolithic column by copolymerization of 11-acrylaminoundecanoic acid and 57 

ethylene dimethacrylate.  They evaluated its potential in the RP separation of three model proteins 58 

[8].  However, to our knowledge, an RPLC/HILIC mixed-mode stationary phase immobilized with 59 

surfactant has yet to be reported. 60 

   Surfactin is an efficient biosurfactant produced by Bacillus subtilis [9].  It is a cyclic 61 

heptapeptide consisting of seven amino acids and a β-hydroxyl fatty acid.  Compared with 62 

chemical surfactants, surfactin has some unique advantages such as lower toxicity, biodegradability, 63 

and effectiveness at extreme temperature or pH values [10].  Surfactin is also known for its 64 

antiviral, antitumor and hemolytic activities [11-13]. 65 

   In the present study, a surfactin-modified silica (SMS) stationary phase (Fig. 1) was prepared by 66 

amide bond formation between the amino groups on aminopropyl silica (APS) and the carboxylic 67 

acid groups of L-Glu and L-Asp residues in surfactin.  An SMS-packed column was characterized 68 

in both RPLC and HILIC mode using different mobile phase compositions. 69 

 70 

2  Materials and methods 71 

2.1  Chemicals 72 

   APS (particle size, 5 µm; pore size, 120 Å) was a kind gift from Daiso Chemical (Osaka, Japan).  73 

Surfactin, HPLC grade of acetonitrile (ACN), tris(hydroxymethyl)aminomethane (Tris), 74 
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hydrochloric acid, ammonium acetate, acetic acid, benzene, naphthalene, toluene, phenol, aniline, 75 

4,5-dimethyl-1,2-phenylenediamine, uracil, thymidine, cytosine, uridine, adenosine, pyridoxine, 76 

thymine, 1-methylxanthine, 1,7-dimethylxanthine, 1,3,7-trimethylxanthine (caffeine) and 77 

1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) were obtained from Wako 78 

Pure Chemicals (Osaka, Japan).  N,N-Dimethylformamide (DMF) was from Nacalai Tesque 79 

(Kyoto, Japan).  N,N-dimethyl-4-aminopyridine (DMAP) was purchased from Merck KGaA 80 

(Darmstadt, Germany).  Propylbenzene and butylbenzene were from Tokyo Chemical Industry 81 

(Tokyo, Japan).  Dichloromethane (DCM), ethanol, sodium perchlorate, perchloric acid, 82 

ethylbenzene and adenine were from Kishida Chemicals (Osaka, Japan).  Riboflavin was obtained 83 

from Sigma (St. Louis, MO, USA). 84 

 85 

2.2  Preparation of SMS stationary phase 86 

   SMS was obtained by a single-step reaction as follows: surfactin (1.54 g), EDC (1.12 g) and 87 

DMAP (0.036 g) were added to a suspension of APS (0.77 mmol/g, 0.22 g) in DMF (145 mL) and 88 

the mixture was shaken at 30 °C for 15 h.  After the reaction, SMS was filtered and washed with 89 

DMF.  Elemental analysis: C 5.00%; H 0.67%; N 1.08% for APS; C 13.24%, H 1.76%, N 2.94% 90 

for SMS.  The modification ratio of surfactin on APS was estimated from the value of nitrogen by 91 

elemental analysis as follows: 29.4 (mg/g) / 14x8 = 0.26 (mmol/g).  Surfactin involves 7 nitrogen 92 

atoms and aminopropyl group on APS involves 1 nitrogen atom. 93 

 94 

2.3  Chromatography 95 

   A slurry of SMS in the mixture of glycerine and methanol (1/5, v/v) was prepared with 96 
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ultrasonication (1 min) and was pumped into an HPLC column (150 mm x 1.5 mm I.D.) at 35 MPa 97 

using an HPLC pump, methanol (flushing solvent) and stainless-steel reservoir (75 x 6 mm I.D.).  98 

During packing, the pressure decreased because glycerine was flushed out from the packed column.  99 

Then, the packed HPLC column was flushed with methanol at 1.0 mL/min for 30 min; at 0.5 100 

mL/min for 30 min; finally, at 0.2 mL/min overnight. 101 

   The HPLC system included a Shimadzu LC-20AD pump, SPD-20A UV detector and CR-8A 102 

recorder (Kyoto, Japan).  Flow rate was set at 0.2 mL/min with UV detection at 260 nm.  All 103 

aqueous solutions were made with the water that was deionized and distilled using WG 203 104 

(Yamato Scientific, Tokyo, Japan) and then passed through a water purification system (Puric-Z, 105 

Organo, Tokyo, Japan). 106 

   The column efficiency N was calculated from the number of theoretical plates per meter: 107 

N = 5.55 x (tr / w0.5)2 108 

where tr is retention time of analytes; w0.5 and peak width at half height.  A measure of the 109 

symmetry of a peak, given by the following equation: 110 

S = W0.05/2f 111 

where S is symmetry factor, W0.05 is the peak width at 5% height and f is the distance from peak 112 

front to apex point at 5% height. 113 

 114 

 115 

3. Results and discussion 116 

3.1 Retention properties in RPLC mode 117 

   The influence of ACN content in the mobile phase on the retention of hydrophobic compounds 118 
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was studied by varying the percentage of ACN from 30% to 70%.  Fig. 2 depicts the plots of log k 119 

and the percentage of ACN.  The retention of test compounds decreased as the content of ACN 120 

increased.  A linear relationship between log k and ACN content was obtained, typical of the 121 

RPLC mode in which the retention of hydrophobic compounds is dominated by hydrophobic 122 

interactions.  Fig. 2 also shows that the retention of test compounds increased with their increasing 123 

hydrophobicity.  The retention factors of test compounds on SMS stationary phase were one-third 124 

of those on RP C8 stationary phase (data not shown), but were stronger than the hydrophobic 125 

retention on bare silica, conventional diol and long alkyl hydroxyl group-bonded stationary phases 126 

[3, 4]. 127 

 128 

3.2 Retention properties in HILIC mode 129 

   HILIC separation commonly employs a hydro-organic mobile phase with an organic content 130 

above 60%.  The effect of ACN content in the mobile phase on the retention of polar compounds 131 

(nucleic acids, nucleosides, vitamins and xanthines) was investigated (Fig. 3).  The retention 132 

factors increased, either drastically or slightly, when the ACN content increased from 90% to 98%, 133 

which is typical of HILIC retention behavior.  Hence, SMS stationary phase acts as an HILIC 134 

phase at high ACN content.  A representative chromatogram is shown in Fig. 4.  For the 13 tested 135 

polar compounds, the column efficiency ranged from 2300 to 11000 (N/m) and the symmetry 136 

factors ranged from 1.0 to 2.1.  Furthermore, retention times and elution orders of tested 137 

compounds on SMS column were compared with those on silica gel column.  Retention factors for 138 

10 analytes on SMS column was larger than those on silica gel column, especially retention factors 139 

for uridine, thiamine and rivoflavin were more than 4-fold larger (data not shown).  The elution 140 
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orders were fully different from each column. 141 

 142 

3.3 RPLC/HILIC mixed-mode 143 

   RPLC/HILIC mixed-mode retention behavior was investigated with a set of moderately polar 144 

and polar compounds.  As shown in Fig. 5, SMS stationary phase provided a “U-curve” retention 145 

profile, an indicator of RPLC/HILIC mixed-mode retention behavior [2, 5].  The retention time of 146 

the test compounds decreased with an increase in ACN content at low and intermediate contents, 147 

according to the RPLC mode.  However, the retention times increased as the ACN content 148 

increased from 80% to 95%, indicating that retention was governed by hydrophilic interactions 149 

between the stationary phase and the compounds.  An ACN content of about 50% affords the 150 

weakest retention and is the boundary between the two retention modes.  This feature may provide 151 

greater flexibility in real sample analyses compared to conventional RPLC and HILIC columns. 152 

   Caffeine, 1,7-dimethylxanthine and 1-methylxanthine are purine derivatives with different 153 

numbers of methyl groups.  Despite their methylated sites, they retain a degree of polarity.  This 154 

makes them suitable for separation by HILIC, although their separation is commonly performed by 155 

RPLC [4, 14].  Their separation in RPLC mode (5% ACN) caused these analytes to be eluted in 156 

the order of their hydrophobicity; thus, caffeine showed the strongest retention (data not shown).  157 

These compounds could not be well resolved in RPLC mode.  On the other hand, by changing the 158 

stationary phase, the elution order could be reversed, and good separation was obtained in HILIC 159 

mode (95% ACN).  This suggests that the SMS column can be used for both RPLC and HILIC 160 

separation modes simply by changing the mobile phase composition. 161 

 162 
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3.4 Comparison between SMS and APS 163 

   In order to illustrate the impact of surfactin modification to APS, the retention factors and the 164 

elution orders of test compounds on APS-packed column were studied in both RPLC and HILIC 165 

modes.  In RPLC mode, hydrophobic compounds (benzene, naphthalene and alkylbenzenes) were 166 

hardly retained on APS column even though mobile phase with high water content (50%) was used.  167 

In HILIC mode, among 12 test polar compounds (nucleic acids, nucleosides, vitamins and 168 

xanthines), the elution orders of 4 early eluting (caffeine, 4,5-dimethyl-1,2-phenylenediamine, 169 

thymine and uracil) on APS were same as SMS and their retention factors on APS were almost 170 

same as SMS.  However, the elution orders of the other compounds were clearly different between 171 

SMS and APS.  Furthermore, the retention factors of thymine, uridine and pyridoxine on SMS 172 

were 27%, 56%, 26% smaller than those on APS, while the retention factors of adenosine, thiamine, 173 

adenine and riboflavin on SMS were 1.1-, 6.3-, 1.5- and 2.1-fold larger than those on APS.  Based 174 

on these observations, the modification of surfactin to APS was found to contribute to the 175 

characteristic mixed-mode retention behavior. 176 

 177 

Conclusion 178 

   This is the first report to use a biosurfactant for modifying a silica stationary phase.  SMS 179 

stationary phase was synthesized and characterized in RP and HILIC mode, and shown to function 180 

in both modes.  The retention of polar solutes depended on the ACN content and exhibited 181 

“U-shaped” curves, an indicator of RPLC/HILIC mixed-mode retention behavior.  The SMS 182 

column may be useful for both RP and HILIC mode separations, providing flexibility for real 183 

sample analyses.184 
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Figure captions 225 

 226 

Fig. 1  Surfactin-modified silica stationary phase. 227 

 228 

Fig. 2  Effect of ACN content in the mobile phase on log k.  Conditions: mobile phase, Tris-HCl 229 

buffer (pH 7.0)/ACN; flow rate, 0.2 ml/min; detection wavelength, 260 nm; injection volume, 5 µl. 230 

 231 

Fig. 3  Effect of ACN content in the mobile phase on the retention factors.  Conditions are the 232 

same as those given in Fig. 2. 233 

 234 

Fig. 4  Separation of test compounds.  Conditions: mobile phase, Tris-HCl buffer/ACN=5/95 235 

(v/v %). Other conditions are the same as those given in Fig. 3.  Peaks (retention time, min): 1, 236 

aniline (1.43 min); 2, caffeine (1.52 min); 3, thymidine (2.23 min); 4, uridine (3.09 min); 5, 237 

thiamine (3.84 min); 6, adenine (6.30 min); 7, riboflavin (6.39 min); 8, cytosine (8.64 min). 238 

 239 

Fig. 5  Effect of ACN content in the mobile phase on retention times.  Conditions: mobile phase, 240 

5 mM ammonium acetate (pH 5.0)-ACN. Other conditions are the same as Fig. 4. 241 
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