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Abstract

Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of

oligopeptides are crucial for the growth of Porphyromonas species, anaerobic

asaccharolytic gram negative rods that utilize amino acids as energy sources.

Porphyromonas endodontalis is a causative agent of periapical lesions with acute

symptoms and Asp/Glu-specific DPP11 has been solely characterized in this

organism. In this study, we identified and characterized two P. endodontalis DPPs,

DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-

amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the

Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417,

W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-

Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis

strains. MER236725 and MER278904 are P. endodontalis proteins belong to the

S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited

enzymatic properties including substrate specificity, and salt- and pH-dependence

similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure

(194 mM21?sec21) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold

higher as compared to the P. gingivalis entity (10.5 mM21?sec21). In addition, P.

endodontalis DPP5 mRNA and protein contents were increased several fold as

compared with those in P. gingivalis. Recombinant MER278904 preferentially

hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P.

gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular
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mass of 818 amino acids, a 105-kDa band was immunologically detected,

indicating that P. endodontalis DPP7 is an exceptionally large molecule in the

DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was

conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-

hydrolysis was achieved by qualitative and quantitative potentiation of the DPP5

molecule.

Introduction

Previous studies have reported a high prevalence of Porphyromonas endodontalis, a

gram-negative black-pigmented anaerobe, in infected root canals with acute

symptoms [1–3] as well as specimens obtained from orofacial odontogenic

infections [4], though most of the pathogenic factors of this organism have yet to

be elucidated. Porphyromonas species are asaccharolytic, and utilize amino acids as

energy and carbon sources [5]. Amino acids are mainly incorporated as di- and

tri-peptides through membrane transporters [6–8]. Since P. endodontalis seems to

have no potent endopeptidase activity [2, 9], dipeptidyl-peptidases (DPPs) that

liberate dipeptides from the N-terminus of oligopeptides can be crucial for the

entire metabolism of this bacterium. In addition, previous studies have reported

that the end metabolites of amino acids, e.g., propionate and butyrate, in

Porphyromonas species facilitate dental plaque development [10], and exert

cytotoxicity to pulp [11] and inflamed gingival fibroblasts [12]. Therefore, DPPs

are also considered to be key enzymes involved in pathogenicity related to these

bacteria.

It is important to address the extracellular oligopeptides-degradation system as

a mechanism to elucidate how asaccharolytic organisms survive under an

oligotrophic environment, such as in a root canal. Along this line, a comparison of

peptidases of P. endodontalis with those of P. gingivalis, a causative agent of

aggressive forms of adult periodontitis, is of interest. A number of studies have

investigated P. gingivalis peptidases and shown that P. gingivalis prominently

produces trypsin-like cysteine endopeptidases, i.e., Arg- and Lys-specific

gingipains [13–15], in contrast to the absence of such peptidases in P.

endodontalis.

All four DPPs known to be expressed in P. gingivalis belong to either S9- or

S46-family peptidase [16–21]. Although both family peptidases are serine

peptidases and form an active triad composed of His Asp and Ser, the topology

and positions of the three residues are completely distinct from each other, i.e.,

Ser542, Asp627, and His659 in S9-family P. gingivalis DPP5 and His89, Asp225 [21],

and Ser648 in S46-family P. gingivalis DPP7 [19].

DPPs generally attack oligopeptides without N-terminal modification and

sequentially liberate dipeptides from the N-terminus. The penultimate P1-

position residue from the N-terminus is critical for the recognition by DPPs,

DPP5 and DPP7 in Porphyromonas endodontalis
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although the N-terminal P2-position residue additionally affects the activity [20].

Among them, DPP4 solely liberates the glycylprolyl dipeptide among DPPs

[16, 17]. Furthermore, hydrophobic amino acid-specific DPP7 of the S46 family

has also been characterized [19, 20]. We recently identified the third and fourth P.

gingivalis DPPs, DPP11 and DPP5 [18, 21]. The former is a novel S46-family

enzyme that specifically cleaves a peptide bond of penultimate Asp and Glu [21],

while the latter belongs to the S9 family and is specific for the P1-position Ala and

hydrophobic amino acids [18]. Although DPP5 was initially discovered in fungi,

such as Aspergillus fumigatus [22] and Microsporum canis [23], the finding of P.

gingivalis DPP5 expanded its distribution from fungi to eubacteria and archea, as

well as higher plants and animals [18]. Since these four DPPs exhibit distinguished

P1 and P2 preferences for each other, they are able to cover most combinations of

the dipeptide repertoire [18, 20].

In P. endodontalis, the DPP11 gene was cloned, and the biochemical and

enzymatic properties were well characterized [21]. In addition, the hydrolytic

activity of Gly-Pro-p-nitroanilide [24] and an 88-kDa angiotensin degrading

endopeptidase [25] have been reported, though these precise characteristics and

amino acid sequences have to be elucidated. Based on the genomic shotgun

assembly sequence of P. endodontalis ATCC 35406 [26], the MEROPS peptidase

database now lists 57 putative and known peptidases [27]. In accordance with

phylogenetic analysis indicating that every bacterial species of the phylum

Bacteroidetes possesses each gene of DPP7 and DPP11 [20], P. endodontalis

possesses the gene of DPP11 and another encoding MER278904, possibly DPP7,

though it is only designated as an unassigned peptidase of the S46 family. This

ambiguity is mainly due to an eccentrically large open reading frame of

MER278904 encoding 818 amino acid residues as compared to the average

717¡24 residues (mean¡S.D., n5264) of the S46 family members. In addition,

four S9 peptidase family genes encoding MER192286 (DPP4), MER236725,

MER237803, and MER326507 are enrolled in the database.

In the present study, cell-associated DPP activities in P. endodontalis were

determined, and compared with those of laboratory and clinical strains of P.

gingivalis. In agreement with a previous study [9], P. endodontalis predominantly

hydrolyzed Lys-Ala-MCA among the dipeptidyl substrates tested and the activity

was markedly higher than that of P. gingivalis. We also identified and

characterized P. endodontalis DPP5 and DPP7 by expressing the unassigned genes,

and demonstrated that hydrolyzing of Lys-Ala-MCA is mediated by DPP5

(PeDPP5/MER236725) and P. endodontalis DPP7 (PeDPP7/MER278904) is

expressed as an exceptionally large molecule. Biochemical properties of both DPPs

were highly distinct from their respective P. gingivalis entities.

DPP5 and DPP7 in Porphyromonas endodontalis
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Materials and Methods

Bacterial strains and culture conditions

P. endodontalis ATCC 35406 and P. gingivalis ATCC 33277 and ATCC 49417 were

obtained from American Type Culture Collection. P. gingivalis strains 16-1,

HW24D1, HG1690, W83, W50, and HNA99 were preserved in our laboratories. P.

gingivalis KDP136 is a disruptant of all three-gingipain genes in ATCC 33277 [28].

Bacterial cells were grown in an anaerobic condition (80% N2, 10% CO2, 10% H2)

at 36 C̊ using anaerobic bacteria culture medium (Eiken Chemical, Tokyo, Japan)

until the early stationary phase. Then, aliquots were inoculated onto enriched

Tryptic Soy agar (Nissui, Tokyo, Japan) plates supplemented with 0.5% brain-

heart infusion broth (BBL, Sparks, MD), 5 mg/mL hemin (Nacalai Tesque, Kyoto,

Japan), and 0.5 mg/mL menadione (Sigma-Aldrich, St. Louis, MO) covered with a

sterilized dialysis membrane (6-kDa cut-off) for easy harvest of the bacterial

fraction free from broth components [29, 30]. After two days, bacterial cells were

suspended in ice-cold phosphate-buffered saline, pH 7.4 (PBS), and centrifuged at

10,0006g for 10 minutes at 4 C̊. Cell pellets were washed once with PBS, and

then the resultant pellet was re-suspended in PBS adjusted to an absorbance at

600 nm of 2.0 and used for the experiments.

Expression and purification of recombinant DPPs.

P. endodontalis genomic DNA was used as a template for PCR cloning, as

previously reported [21]. A DNA fragment encoding Lys2-Lys691 of putative

PeDPP5 (MER236725) was amplified with a pair of primers (59-

GACTAAGGATCCAAAAGAACTATCCTCAGCCTC-39 and

59GCATCAGGATCCTTTTTTGAGCCAACGGTCCAG-39) carrying BamHI sites

(underlined). A DNA fragment encoding the N-terminal part (Leu3-Lys710) of

putative PeDPP7 (MER278904 encoding Met1-Lys818) was amplified by PCR

using a set of primers (59-AAATTCCCATGGAGCTAAAAAGAATCT-39 and 59-

CGCGTTCCATGGCCTTTACGAGGTTGAGTT-39) carrying BglII sites (under-

lined). After digestion with either BamHI or BglII, the fragments were cloned into

the BamHI site of pQE60 (Qiagen, Valencia, CA). Expression plasmids for P.

gingivalis DPP5 (PgDPP5), DPP7 (PgDPP7), and DPP11 (PgDPP11), as well as

that of P. endodontalis DPP11 (PeDPP11) were previously reported [18, 20, 21].

DPPs were expressed in E. coli XL-1 Blue cultured in Luria-Bertani broth

supplemented with 75 mg/mL of ampicillin by induction with 0.2 mM isopropyl-

thiogalactopyranoside at 30 C̊ for 4 hours. Recombinant proteins were purified by

Talon affinity chromatography as previously reported [21].

Measurement of peptidase activity

Peptidase activity was measured as previously reported [18, 21]. Briefly, the

reaction was started by addition of a cellular fraction (5 mL) or DPPs (50 ng) to

200 mL of a reaction mixture composed of 50 mM sodium phosphate (pH 7.0),

5 mM EDTA, and 20 mM dipeptidyl MCA. Leu-Asp-MCA was synthesized by

DPP5 and DPP7 in Porphyromonas endodontalis
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Thermo Fisher Scientific (Ulm, Germany), and other substrates were purchased

from Peptide Inst. (Osaka, Japan) and Bachem (Dubendorf, Switzerland). NaCl

(0.1 M) was added for measurement of the activity of DPP5. After 30 minutes at

37 C̊, fluorescence intensity was measured with excitation at 380 nm and emission

at 460 nm. In some experiments, pH values varied from 5 to 8.5 and NaCl

concentrations from 0 to 1.6 M. To determine the enzymatic parameters,

recombinant proteins (5 ng) were incubated with various concentrations of

dipeptidyl MCA (0.5–160 mM) and the parameters were calculated by fitting a

nonlinear regression curve to the Michaelis-Menten equation using the GraphPad

Prism software program (San Diego, CA).

Immunoblotting of DPP5 and DPP7

Rabbit anti-PgDPP7 antiserum was prepared as previously reported [21].

Recombinant DPPs or cell lysate whole proteins were separated on SDS-PAGE,

then subjected to Coomassie brilliant blue (CBB) staining. Alternatively, separated

proteins were transferred to polyvinylidene difluoride membranes (Merck

Millipore, Darmstadt, Germany), and subjected to immunoblotting with anti-

PgDPP5 [16] or anti-PgDPP7 serum. Protein bands were incubated with alkaline

phosphatase-conjugated anti-rabbit IgG (Promega, Madison, WI), and visualized

with 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium. To detect

PeDPP7, blotted membranes were incubated with anti-PgDPP7 serum, then with

a peroxidase-conjugated anti-rabbit IgG antibody (Promega), and the color was

finally developed with 4-chloro-1-naphthol to avoid development of a nonspecific

100-kDa band.

Quantification of mRNA levels

Total RNA was isolated using Isogen reagent (Nippon Gene, Tokyo, Japan). DNA

contaminating the preparation was digested with DNase I (Nippon Gene) for

15 minutes at 37 C̊. cDNA was prepared from DNA-free RNA (1 mg) with

superscript III reverse transcriptase (Life Technology, Grand Island, NY) in a

reaction mixture (20 mL) containing 1.3 mM dNTPs and 50 ng of random

primers (Takara Bio, Shiga, Japan). The expression levels of DPP5 mRNA were

quantitated by qPCR as previously reported [31]. The following primers were

used: for PeDPP5, 59-CCAACCGACCTCTACCGCAT-39 and 59-

CGCAACGAATGTCTCCCAGC-39; for PgDPP5, 59-

CATTCTTGCTTCACAGGCTATGG-39 and 59-TGCATTCTGCGGTTGGAGT-39;

for P. endodontalis 16S ribosome RNA, 59-AGGAGACGAGGTATGCGGAA-39

and 59-TCGTGCTTCAGTGTCAGACG-39; and for P. gingivalis 16S ribosome

RNA, 59-GAGGGACAAAGGGCAGCTAC-39 and 59-

TGCGCGATTACTAGCGAATCC-39. The reaction was started at 94 C̊ for

10 minutes followed by 40 cycles consisting of denaturation at 94 C̊ for

30 seconds, annealing at 60 C̊ for 30 seconds, and extension at 72 C̊ for 1 minute.

pGEM T-easy plasmids (Promega) carrying 110- and 114-bp parts of P.

DPP5 and DPP7 in Porphyromonas endodontalis
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endodontalis and P. gingivalis 16S ribosome RNA, respectively, were constructed

by TA cloning with the respective PCR fragments. These plasmids and the DPP5

expression plasmids were used to standardize and calculate the copy numbers of

PeDPP5 and PgDPP5 mRNA.

Inhibition enzyme-linked immunosorbent assay (ELISA)

An inhibition ELISA was performed to determine the concentration of DPP5 in

whole lysates. Briefly, standard curves were obtained with recombinant PeDPP5

or PgDPP5(1 ng–3 mg) in 50 mg of total proteins adjusted with bovine serum

albumin in PBS. The reactivity of anti-PgDPP5 antibody against PeDPP5 was

12.1% of that against PgDPP5. P. endodontalis or P. gingivalis cell suspensions

corresponding to 50 mg of proteins was separately incubated in 96-well plates.

After blockage with blocking buffer [0.17 M H3BO3, pH 8.5, 0.12 M NaCl, 0.05%

(v/v) Tween20, 1 mM EDTA, 0.25% (w/v) bovine serum albumin, 0.05% (w/v)

NaN3], the wells were processed with anti-PgDPP5 (1,000-fold dilution) and

peroxidase-conjugated anti-rabbit IgG (2 mg/mL) antibodies, each for 30 minutes

at 37 C̊. Absorbance at 655 nm was measured after color development at 37 C̊ for

30 minutes with SureBlue TMB Microwell Peroxidase Substrate (1-Component)

(Kirkegaard and Perry Lab., Gaitherburg, MD).

Results

Peptidase activities and dipeptide production profiles in P.
endodontalis and P. gingivalis

Hydrolysis of benzyloxycarbonyl (Z)-His-Glu-Lys-MCA that was characteristic of

Lys-gingipain (Kgp) and t-butyloxycarbonyl (Boc)-Phe-Ser-Arg-MCA of Arg-

gingipain (Rgp) was commonly demonstrated in the eight strains of P. gingivalis

(ATCC 33277, 16-1, HW24D1, HG1690, ATCC 49417, W83, W50, HNA99),

though some variations of these activities were observed. Strains HNA99,

HG1690, ATCC 49417, and 16-1 showed relatively high activities for both

gingipains, while strain W50 showed the lowest level of hydrolysis (Fig. 1). The

absence of gingipain-like activities was obvious in P. endodontalis ATCC 35406, in

agreement with previous reports [2, 9]. The DPP activities of these Porphyromonas

strains were examined using four different fluorescent synthetic dipeptidyl

substrates, Gly-Pro-, Lys-Ala-, Met-Leu-, and Leu-Asp-MCA, which are specific

or preferential substrates of DPP4, DPP5, DPP7, and DPP11, respectively [18].

They were hydrolyzed within a few variations of efficiency by the P. gingivalis

strains (Fig. 1). Interestingly, the hydrolyzing activities for Leu-Asp-, Gly-Pro-,

and Met-Leu-MCA were higher in P. endodontalis than those respective ones for

all of the P. gingivalis strains, with the hydrolysis of Lys-Ala-MCA in particular the

most prominent in P. endodontalis.

Although both DPP4 and DPP7 can hydrolyze Lys-Ala-MCA [20, 32], we

recently reported that DPP5 dominantly hydrolyzes this substrate in P. gingivalis

DPP5 and DPP7 in Porphyromonas endodontalis
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[18]. A comparison of amino acid sequences of listed S9 peptidase family genes of

P. endodontalis strongly suggested that MER236725 is an orthologue of PgDPP5

(61.4% identity, PGN_0756), and the other two (MER237803, MER326507) are

prolyl tripeptidyl-peptidase A [33] (48.1%, PGN_1149), and Ala-DPP [34]

(43.8%, PGN_1694), respectively. Therefore, it is now commonly expected that

the most predominant Lys-Ala-MCA hydrolyzing activity in P. endodontalis is also

mediated by DPP5, thus the putative DPP5 gene of the microorganism was

searched for, as shown in the following section.

Identification and characterization of putative PeDPP5

(MER236725)

MER236725, referred to as putative P. endodontalis DPP5 (PeDPP5), shows the

conserved catalytic triad of Ser579, Asp634, and His666 (Fig. 2). A full-length form

of MER236725 expressed in E. coli migrated as 70- and 72-kDa doublets (Fig. 3).

The N-terminal sequence of the 70-kDa molecule was M37MTPEMLLTM45 and

that of the 72-kDa molecule was V12SLAIPVYAA21. Immunoblotting analysis

demonstrated that MER236725 cross-reacted with the anti-PgDPP5 antibody. In

bacterial whole cell lysates, expression of a 70-kDa entity was demonstrated in

accord with the deduced molecular mass of 74,374, while P. gingivalis DPP5 was

observed as a single 68-kDa species in KDP136. No band was shown in ATCC

33277. The enzymatic activity of MER236725 toward Lys-Ala-MCA was maximal

in the presence of 0.1 M NaCl at pH 6.7 (Fig. 3B and C). These salt and pH

dependencies were apparently similar to those of PgDPP5. Moreover, the

substrate repertoire of MER236725 was comparable to that of PgDPP5, though

the activity of MER236725 was much higher than that of PgDPP5 (Fig. 3D).

Taken together, these findings identified MER236725 as PeDPP5. Furthermore,

Fig. 1. Cell-associated peptidase activity profiles of P. endodontalis and eight strains of P. gingivalis. (A) Aliquots (5 mL) of bacterial cell suspensions
(A60052.0) of P. gingivalis strains and P. endodontalis ATCC 35406 were incubated in a reaction mixture containing 20 mM Boc-Phe-Ser-Arg- or Z-His-Glu-
Lys-MCA. (B) DPP activities toward Gly-Pro-, Lys-Ala-, Met-Leu-, and Leu-Asp-MCA were measured. Activity values are shown as the mean¡S.D. (n53).

doi:10.1371/journal.pone.0114221.g001

DPP5 and DPP7 in Porphyromonas endodontalis
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DPP5 actually accounted for most of the hydrolysis of Lys-Ala-MCA in P.

endodontalis, since the pH and salt dependencies of the activity were

indistinguishable between the bacterial cells and recombinant PeDPP5 (Fig. 3B,

C).

Determination of the enzymatic parameters of PeDPP5 for four major

substrates revealed that it possessed the smallest Km and highest kcat values for

Lys-Ala-MCA, resulting in the maximal kcat/Km value of 194 mM21?sec21

(Table 1) which was 18.5-fold higher than that of PgDPP5 (10.5 mM21?sec21).

The superiority of PeDPP5 to PgDPP5 was also observed with Met-Leu- and Ser-

Tyr-MCA, and the kcat/Km values of Gly-Phe-MCA were comparable (Table 1,

Fig. 3).

mRNA and protein levels of DPP5

We also quantitated DPP5 mRNA and protein levels in P. endodontalis and P.

gingivalis. Quantitative RT-PCR revealed a significantly higher level of PeDPP5

mRNA (1.9- and 4.4-fold) as compared to those in P. gingivalis ATCC 33277 and

KDP136, respectively (Fig. 4). An inhibition ELISA using anti-PgDPP5 antiserum

also revealed that the DPP5 protein contents in P. endodontalis and P. gingivalis

ATCC 33277 and KDP136 were 51.8, 12.0, and 20.9 ng/mg of total proteins,

Fig. 2. Alignment of amino acid sequences of P. endodontalis MER236725 and P. gingivalis DPP5. The amino acid sequences of putative P.
endodontalis DPP5 (PeDPP5, MER236725) and P. gingivalis DPP5 (PgDPP5, PGN_0756/MER034615) were aligned by Genetyx. Hyphens represent gaps
introduced for maximal matching. Common amino acids are marked by asterisks. Three amino acids essential for serine proteases are written in red letters.
Arrows indicate the N-terminal amino acid sequences determined with recombinant proteins.

doi:10.1371/journal.pone.0114221.g002

DPP5 and DPP7 in Porphyromonas endodontalis
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respectively, suggesting that the content was 2–5-fold higher in P. endodontalis

than in P. gingivalis.

Fig. 3. Biochemical analysis of putative PeDPP5 (MER236725). (A) Recombinant proteins (0.3 mg) of PgDPP5 (lane 1), putative PeDPP5 (lane 2), and
aliquots (5 mL) of bacterial cell suspensions of P. gingivalis ATCC 33277 (lane 3), KDP136 (lane 4), and P. endodontalis (lanes 5 and 5C) were separated on
SDS-PAGE gels, then stained with CB or subjected to immunoblotting (WB). The 100-kDa bands in lanes 5 and 5C were non-specifically observed with the
alkaline phosphatase-conjugated second antibody. Lane M, molecular-weight markers. (B) NaCl-concentration dependence and (C) pH dependence of the
hydrolyzing activity toward Lys-Ala-MCA of PgDPP5, putative PeDPP5 (MER236725), and P. endodontalis cells were determined. (D) The peptidase
activities of recombinant PgDPP5 and PeDPP5 were determined using various dipeptidyl MCAs. Values are shown as the mean¡S.D. (n53).

doi:10.1371/journal.pone.0114221.g003

Table 1. Enzymatic parameters of PeDPP5 and PgDPP5.

Species MCA substrate kcat (sec
21) Km (mM) kcat/Km (mM21sec21)

P. endodontalis Lys-Ala- 21213¡932 110¡7 194

Met-Leu- 5175¡193 196¡11 26.4

Ser-Tyr- 3468¡87 257¡9 13.5

Gly-Phe- 10378¡1635 993¡176 10.5

P. gingivalis Lys-Ala- 1948¡165 185¡21 10.5

Met-Leu- 5562¡701 701¡104 7.93

Ser-Tyr- 1329¡100 296¡31 4.49

Gly-Phe- 5638¡403 396¡51 13.0

Averages and standard errors were calculated from four independent measurements.

doi:10.1371/journal.pone.0114221.t001

DPP5 and DPP7 in Porphyromonas endodontalis

PLOS ONE | DOI:10.1371/journal.pone.0114221 December 10, 2014 9 / 15



Expression and characterization of putative PeDPP7 (MER278904)

Another unassigned S46-family peptidase of P. endodontalis, MER278904, consists

of the N-terminal region (Met1-Val709), which showed an amino acid sequence

similarity to the S46 family members as well as the C-terminal extra unrelated

sequence (Lys710-Lys818) (Fig. 5). The N-terminal region showed the highest

identity to PgDPP7 (65.3%), indicating that MER278904 represents PeDPP7, in

which the catalytic triad composed of His87, Asp223, and Ser645 was conserved.

A C-terminal truncated form (Met1-Lys710) equivalent to the full-length form

of PgDPP7 was successfully expressed, whereas the full-length form was not

expressed due to an unknown reason. PeDPP7 Met1-Lys710 was yielded as a single

band of 70 kDa (Fig. 6). Moreover, in accord with the calculated molecular mass

of the full length of PeDPP7 Met1-Lys818 (Mr591,084), a 105-kDa large molecular

mass species was detected in whole cell lysates. Under identical conditions, native

PgDPP7 was scarcely detected in ATCC 33277, while a 70-kDa band was observed

in KDP136 but not in ATCC 33277. PeDPP7 (MER278904) most efficiently

cleaved Met-Leu-MCA (Fig. 6) and slowly hydrolyzed Leu-Gln-, Lys-Ala-, Leu-

Arg-, and Ala-Asn-MCA. Therefore, the overall specificity mimicked that of

PgDPP7, though the activity was substantially lower than that of PgDPP7. Our

results showed that MER278904 represents PeDPP7.

Discussion

The present findings demonstrated that the unassigned P. endodontalis S9-family

member MER236725 is DPP5 and another unassigned S46-family member,

Fig. 4. DPP5 mRNA and protein levels. (A) Relative amounts of DPP5 mRNA in P. gingivalis ATCC 33277,
KDP136, and P. endodontalis were measured by qPCR. Values are shown as the mean¡S.D. (n53).
*p,0.05; **p,0.01. (B) Inhibition ELISA was performed with recombinant PgDPP5 (white circles) and
PeDPP5 (blue circles), as described in Materials and Methods. The amounts of DPP5 in P. gingivalis ATCC
33277, KDP136, and P. endodontalis whole cell lysates were determined to be 12.0¡3.0, 20.9¡3.5, and
51.8¡12.8 ng/mg total proteins, respectively (mean¡S.D., n53).

doi:10.1371/journal.pone.0114221.g004
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Fig. 5. Alignment of amino acid sequences of P. endodontalis MER278904 and P. gingivalis DPP7. The amino acid sequences of putative P.
endodontalis DPP7 (PeDPP7, MER278904) and P. gingivalis DPP7 (PgDPP7, PGN_1479/MER014366) were aligned by Genetyx. Hyphens represent gaps
introduced for maximal matching. Common amino acids are marked by asterisks. Three amino acids essential for serine proteases are written in red letters.

doi:10.1371/journal.pone.0114221.g005

Fig. 6. Biochemical analysis of putative PeDPP7 (MER278904). (A) Recombinant PgDPP7 (lane 1), putative PeDPP7 (Leu3-Lys710, lane 2), PgDPP11
(lane 3), and PeDPP11 (lane 4) (0.3 mg), and aliquots (5 mL) of cell suspensions of P. gingivalis ATCC 33277 (lane 5), KDP136 (lane 6), and P. endodontalis
ATCC 35406 (lane 7) were separated on SDS-PAGE gels, then stained with CBB or subjected to immunoblotting (WB) against anti-PgDPP7 antiserum (300-
fold dilution). Peroxidase conjugated anti-rabbit IgG (3,000-fold dilution) was used as the second antibody. Lane M, molecular-weight markers. (B) The
hydrolyzing activities (mean¡S.D., n53) of putative PeDPP7 (MER278904) and PgDPP7 were determined using dipeptidyl MCA.

doi:10.1371/journal.pone.0114221.g006
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MER278904, represents DPP7. Hence, P. endodontalis as well as P. gingivalis

expresses four DPP molecules, i.e., DPP4 (MER192286), DPP5 (MER236725),

DPP7 (MER278904), and DPP11 (MER290751, AB610284). The four DPP

activities, especially DPP5 and DPP11, were remarkably increased in P.

endodontalis cells as compared to the eight P. gingivalis strains investigated.

Rgp and Kgp activities were varied among the P. gingivalis strains, while they

exhibited less variable DPP activities, indicating that there was no strong

correlation between DPP and gingipain activities in P. gingivalis. On the other

hand, the predominant DPP activities in P. endodontalis seemed to compensate

for the gingipain activity deficit. The dominant hydrolysis of Leu-Asp-MCA

mediated by DPP11 was reasonably explained in a previous study by the 4-fold

higher kcat/Km value for P. endodontalis DPP11 as compared to that of the P.

gingivalis entity [21].

We previously reported that among the various dipeptidyl-MCAs tested, Lys-

Ala-MCA was most predominantly hydrolyzed in P. endodontalis and that the

activity was significantly higher than that of P. gingivalis ATCC 33277 [9, 21]. The

present findings clearly demonstrated that the Lys-Ala-MCA-hydrolyzing activity

of P. endodontalis is predominantly mediated by DPP5. PeDPP5 consists of 691

amino acids with a preference for Ala and hydrophobic amino acids at the P1

position. PeDPP5 is the second entity with expression shown in prokaryotes. Since

the PeDPP5 activity was prominent, this enzyme may be involved in its

pathogenesis, as also suggested in a study of Aspergillus DPP5 [22]. The elevation

of Lys-Ala-MCA hydrolysis in P. endodontalis was mainly attributed to the 19-fold

difference in kcat/Km values as the intrinsic enzymatic properties of the two DPP5

molecules. Multiple-fold increases in PeDPP5 gene expression seemed to

additionally contribute to the marked elevation. Since an orthologue is not

apparently present in humans, DPP5 molecules in pathogenic microorganisms

may become a target for antimicrobial agents. Thus, a study of the 3D-structure

would be of interest to elucidate the reaction mechanism and also develop

antibiotics.

Cell-associated PeDPP7 was detected as an eccentrically large form at 105 kDa

and thus suspected to consist of around 818 amino acids, composed of the N-

terminal domain and the C-terminal 109-amino acid sequence being rich in Lys

(28 residues) and Cys (13 residues). The C-terminal sequence shows no similarity

with any others, and seems to be dispensable for the proteolytic activity, since

recombinant PeDPP7 (Met1-Lys710) exhibited the activity and the appropriate

substrate specificity. This part might be accidentally tagged as a result of a T-to-G

mutation from the stop codon (TGA) into Gly711 (GGA) in the PeDPP7 gene.

Similarly, a glutamic acid-specific V8 protease, GluV8, belonging to the S46 family

was found to be tagged with the C-terminal 48 amino acid residues, which have

been shown to be non-essential for the activity [35, 36]. The characteristic GluV8

tag is 12 repeats of the triplet Pro-Asp/Asn-Asn [37]. With the characteristics of

the abundant amino acid residues in mind, these C-terminal sequences might be

related to the stability and solubility of the peptidases.
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An infected root canal has a heterogeneous etiology, with greater than 3

bacterial species generally detected [38–43]. A number of studies have reported

the prevalence of P. endodontalis, as the bacterium was found in 40 of 80 (50%)

primary endodontic infection sites [44], 14 of 50 (28%) roots with untreated

necrotic pulp [41], and 4 of 24 (18%) specimens obtained from cases of

preoperative pain and/or swelling, along with Fusobacterium nucleatum (4/4),

Peptostreptococcus micros (3/4), Bacteroides forsythus, Treponema denticola, and

Streptpcoccus spp. (2/4), and P. gingivalis, Prevotella nigrescens, and Enterococcus

(1/4) [39]. Recent analysis using pyrosequencing demonstrated that there is a

significantly high bacterial diversity (13 phyla, 67 genera) in acute and chronic

dental root canal infections, though bacterial richness was not completely revealed

in those two types of infections [42]. Therefore, after taking the nutritionally

limited condition of the root canal into account, the formation of a bacterial

community with other bacterial species may be beneficial for P. endodontalis to

gain a foothold in this limited niche. Based on results obtained up to this point,

the promoted DPP activities seem to mostly contribute to survival of the

bacterium.

In conclusion, this study identified and characterized P. endodontalis DPP5 and

DPP7 as playing key roles together with DPP4 and DPP11 in degradation of

extracellular oligopeptides. The four enhanced DPP activities were demonstrated

in P. endodontalis and, in particular, the remarkable Lys-Ala-MCA-hydrolysis seen

was attributed to qualitative and quantitative potentiation of the DPP5 molecule.

These findings suggest that high levels of P. endodontalis DPP activities

compensate for the complete deficit of gingipain-like endopeptidases and enables

the bacterium to adapt to the undernourished environment of the root canal.
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