主塔に設置された TMD を考慮した女神大橋の動的応答解析

Dynamic response analysis of the Megami cable-stayed Bridge with TMD in the main tower

○有馬 義人^{*} 北原 雄一^{**} 高橋 和雄^{***} 中村 聖三^{****}
Yoshito ARIMA Yuichi KITAHARA Kazuo TAKAHASHI Shozo NAKAMURA

ABSTRACT Vibration control equipment consisting of tuned mass damper (TMD) that restrain vortex excited vibration of the main tower is installed in the Megami cable-stayed bridge. To confirm the effectiveness of this equipment, an experiment was conducted in which the main tower was subjected to artificial vibration while the damping equipment was turned off and then again while it was turned on. This paper examines the effectiveness of the TMD through dynamic response analysis using a three-dimensional FEM model of the cable-stayed bridge including the TMD. Moreover, the validity of the model is verified by comparing the experimental results with the analysis's. The result also verified the TMD's damping effectiveness.

Keywords:長大斜張橋,制振装置,人力加振力,減衰定数,動的応答解析

Long-span cable-stayed bridge, Vibration control equipment, Human excitation, Damping constant, Dynamic response analysis

1. はじめに

近年、明石海峡大橋や多々羅大橋に代表される ような長大橋において問題となることの1 つに 耐風問題がある。1940年、わずか4ヶ月で秒速 19mという設計風速より遥かに低い風速で、フラ ッターが発生し落橋したタコマナロウズ橋の事 故は、構造物における耐風安定性の重要さを示す 事例として今日でも良く知られている¹¹。わが国 においても、1962年完成の若戸大橋の設計時に 風による振動現象、不安定現象が初めて具体的に 検討された。この40数年の間に、長大橋の耐風 性能を検証するための風洞施設が数多く建設さ れ、精力的な橋梁に関する耐風工学の研究開発が 行われ、莫大な数の風洞実験が行われてきた²⁾。 女神大橋は日本国内で中央径間長 6 位となる 長大斜張橋である。上述した通り女神大橋のよう に可撓性に富んだ長大斜張橋においては、耐風安 定性は重要な課題であり、特に架設地点周囲の地 形の影響を受けることが懸念された³⁾。このため、 地形模型試験による風環境の把握を行うととも に、完成系および架設系の橋梁本体の振動特性を 把握したうえで、耐風安定性の検討が行われてき た。完成系風洞試験として、主桁に関しては基本 断面に対して部分模型試験が行われた結果、風速 100m/s 以下でフラッターは発生せず、若干の渦

*工学士	東京工業大学大学院 大学院生	(〒226-8502	横浜市緑区長津田町 4259) 準会員(学生)
**工学士	長崎県土木部道路建設課 技師	(〒850-8570	長崎市江戸町 2-13)
***工博	長崎大学工学部社会開発工学科 教授	(〒852-8521	長崎市文教町1番14号)第2種正会員
****博(工)	長崎大学工学部社会開発工学科 准教授	(〒852-8521	長崎市文教町1番14号)第2種正会員

Journal of Constructional Steel Vol.15 (November 2007)

励振が発生するのみであったため、フェアリング 形状変化および主桁下面の検査者レール間隔の 調整により空力的な対策が行われた。主塔に対し ては、3次元弾性体模型試験の結果、面内、面外 ともに風速 30m/s 付近でギャロッピング振動が 発生することが明らかとなった。空力対策として 整流板を設置したところ、ギャロッピングは発生 せず、主塔の上段水平梁上部の振動である面内2 次の渦励振のみが残る結果となったため、この振 動に対しては制振装置(TMD)が設置された³⁾。 女神大橋の完成に伴い、女神大橋の主塔頂部で人 力加振実験および常時微動計測が実施され、主塔の 振動特性(固有振動数、減衰定数および振動モード) を実測することによってTMDの制振効果の確認が 行われた。この結果、固有振動数の実験値と計測値 が一致することによって有限要素法による斜張橋 のモデル化の妥当性および TMD の作動時に TMD による減衰の増加が確認された⁴⁾。さらに、著者ら は、女神大橋架設時の0306号台風による主塔の動 的挙動について、減衰効果の確認を行っている。

引き続き本研究では、斜張橋、TMD および人力 加振力について有限要素法を用いて一体化したモ デルにより、固有振動解析および人力加振時の動的 応答解析から解析的にTMDの制振効果を検証する ものである。また、実験値と解析値を比較すること によりモデル化の妥当性を検証する。設計時におけ るTMDの検討は多く見られるが、設置後の効果の TMDの効果の評価は少ない。本研究のような有限

	表-1 橋梁主要諸元
坏 E	1289m
間及	(主橋梁 880m+取付高架橋 409m)
主橋梁	中央径間 480m+ 側径間 200m
幅 員	28.3m
主桁形式	偏平六角形鋼床版箱桁
橋梁形式	3径間連続鋼斜張橋
桁下高	65m
主塔形式	H型鋼製主塔
主塔高さ	170m
ケーブル	マルチファン形式
形式	(2 面吊 13 段)

要素法を用いた橋梁とTMDの一体解析や計測結 果が蓄積されることが、今後振動対策で必要である。

2. 解析対象橋梁および実験概要

2.1 解析対象橋梁

女神大橋は長崎港口に位置し、長崎市南部・西 部を最短距離で結ぶことで市内中心部の慢性化 した交通混雑を緩和し、地域全体の産業・経済・ 文化の活性化を図る目的で建設され、平成17年 12月11日に開通した³⁾。

また、本橋は国内6番目の支間長となる長大鋼 斜張橋であり、架設地点に位置する長崎港には大 型船舶が航行することにより、桁下高は国内斜張 橋で最も高い 65mとなっている。図-1、図-2 に女神大橋側面図、主塔正面図をそれぞれ示す。 本橋の主要諸元を表-1に示す。

さらに、主塔は H 型で頂部が片持ち梁になっ ている。図-2に示した主塔断面図からわかるよ うに、女神大橋の主塔は頂部に近づくにつれて小 さな断面になっている。A 型に比べると、塔頂部 が変形しやすい形となっている。そのため、この ような柔構造の主塔を持つ長大斜張橋において は、耐風安定性は重要な課題となる。

2.2 制振対象モードおよびTMDの仕様

完成系の女神大橋主塔には TMD が 2P 主塔お よび3P主塔にN塔頂部、S塔頂部付近に各1基、 計4基設置されている。TMDの詳細図を図-3に 示す。TMDの諸元を表-2に示す。設計段階の風 洞実験から振動制御するための必要トータル減 衰が求められ、対応する能力をもつTMDが選定 され、設置されている³⁾。完成系で制振対象とな るモードは主塔面内 2 次 (2P、3P) モードであ る。実験対象となる主塔は 3P 主塔である⁴⁾。こ こに、3P 主塔の制振対象諸元を表-3に、TMD を作動させる主塔の対象モードを図-4に記載す る。図-4より、面内方向に振動し面外方向には 振動していないことがわかる。

表-2 TMD の諸元

TMD 名	TMD-C1				
タイプ	振り子型				
台 数	基/塔	2			
装置重量	tf/基	6			
重鐘重量	tf/基	3			
固有振動数	Hz	0.9			
減衰定数		0.35			

表-3 3P 主塔の制振対象諸元				
項目	諸元			
振動数 (Hz)	0.923			
対象モード次数	15			
必要トータル減衰 δ	0.026			

(b) 正面図(単位:mm)

図-3 TMD 詳細図

Journal of Constructional Steel Vol.15 (November 2007)

図-4 制振対象モード

2.3 実験概要

TMD の非作動時と作動時の2ケースの振動実 験が行われ、減衰の大きさを比較することで TMD の制振効果が確認された。主塔の振動を計 測する加速度計を主塔頂部に配置し、橋軸直角方 向加速度を計測し、加振実験が行われた。加速度 計配置図を図-5に示す。加振実験は TMD の非 作動時、作動時にそれぞれ3回ずつ行われた。加 振方法は人力加振で、3P 主塔頂部で実施された。 加振人員は30人で塔の加振方法は、加振人員が 同じ動きができるように相互に肩を組み、オシレ ータに表示される波形に合わせて上半身を橋軸 直角方向に繰り返し移動させ加振を行った。オシ レータはあらかじめ完成系で行われた FEM によ る主塔の解析値の固有振動数である 0.923Hz に 合わせた。TMD の非作動時、作動時ともに同じ 条件で加振を行った。加振は主塔の応答が一定に なるまで行い、加振停止前から計測を開始し、加 振停止後の主塔の自由減衰波形を計測した。

3. 解析概要

- 3.1 解析モデル
- 3.1.1橋梁モデル

斜張橋の解析モデルとして3次元 FEM モデル

図-5 加速度計配置図

図-6 女神大橋の FEM モデル

表−4	FEM モデルにおけ	る節点および部材数
-----	------------	-----------

部材名	節点数	
主 桁	131	
主塔	(100+26)×2=252	
ケーブル定着点 (主桁)	56×2=112	
TMD 固定点	2×2=4	
TMD 重鐘	2×2=4	
端支点	5×2=10	
支持ケーブル	0	
合計	513	

部材数	要素名	部材数
主桁	はり要素	130
主桁とケーブル 定着点の連結	はり要素	112
主塔	はり要素	92×2=184
主塔とケーブル の連結	はり要素	26×2=52
支持ケーブル	弦要素	$52 \times 2 = 104$
TMD	バネ、粘性要素	2×2=4
合語	586	

図-7 TMD のモデル化

を作成し、汎用ソフト TDAPIIIを用いて動的応答 解析を行う。主桁は、橋軸方向に 130 に分割しそ れぞれをはり要素で連結する。主塔および橋脚は、 3 次元を考慮した節点を設け、それぞれをはり要 素で結合しモデル化を行う。ケーブルについては 初期軸力のみが作用するトラス部材としてモデ ル化を行う。

境界条件としては、主桁端部の鉛直方向および 橋軸直角成分、回転成分を拘束し、他の自由度は 拘束しないものとする。また、上部構造の応答特 性を把握するために基礎は剛と仮定し、橋脚基部 は全自由度を固定し、地盤の影響を考えない。主 塔とケーブル端部は主桁の橋軸直角方向で剛の はり要素によって結ばれる。図-6 に女神大橋全 橋のFEMモデルを示す。表-4に節点数および部 材数を示す。

3.1.2 TMDのモデル化

TMD は質量、バネ、ダッシュポットの3 要素か らなる1自由度系であり、構造物に同調させるこ とで制振効果を得ることができる。TMD は1自 由度系構造物であり、図-7のように質点の変位 を基準にして、バネおよびダッシュポットを等価 な1自由度系にモデル化する。主塔の TMD 設置 地点に節点重量 29.4kN (TMD 固定部装置重量) をもつ節点を新たに設け、その点より橋軸直角方 向に TMD の重鐘質量 Md をもった節点をさらに 設ける。2 つの節点は TMD のバネ定数 $k \cdot$ 減衰 係数 cをもつバネ・粘性要素で結ばれている。ま

表	-5 TMDの諸	行
Md (t)	k (kN/m)	c (kN∙s/m)
0.306	95.933	11.875

た、TMD の節点は橋軸直角方向のみの自由度を もつものとする。**表**-5に TMD の諸元を示す。 これらの諸元は以下のようにして求める。また、 このバネ係数 k および減衰係数 c は図-7 に示す 1 自由度系における換算係数である。また、TMD の固有振動数 f_d および減衰定数 h_d は、設計にお ける値である f_d =0.9Hz、 h_d =0.35 を用いた。 $k = m\omega^2 = M_d \times (2\pi f_d)^2 = 95.933(kN/m)$ (1) $c = 2h_d \sqrt{mk} = 11.875(kN \cdot s/m)$ (2) ここに、 $M_d = W/9.8$: 重鐘質量(t)

W:重鐘重量(kN)

3.1.3 人力加振力のモデル化

2.

人力加振のモデル化は、体重移動による人間の重 心の変化が及ぼす主塔への慣性力として考える。 また、一定周期による加振は正弦波 $(y = \alpha \sin \omega t)$ として扱うことができるため、人 力加振による加振力は次式で表される。

$$my = -m\alpha \omega^{2} \sin \omega t$$
 (3)
ここに、 $m : 加振人員の質量、 \alpha : 重心変位の振幅、 $\omega (= 2 \pi f) : 加振円振動数、f : 加振振動数$$

この正弦波は FEM による解析値の振動数

0.923Hz(周期 1.08(s))で頂部を加振させ、30 周期 後に加振を停止した。加振実験は、加振人員が肩 を組んで行い、肩の水平変位の振幅が 25cm 程度 になるように練習して実施した。加振人員の平均 身長は 174 cmであり、これによる重心変位の比率 と、加振実験のビデオ撮影映像を確認して、重心 変位の振幅は 16 cmを用いることとする。平均体 重は 0.588kN で、30 人分の体重は 1.176kN なの で、加振力の最大値は 9.7kN となる。

3.2 解析手法

構造物の動的応答解析には、解析方法は直接 積分法を用いる。直接積分法には、NewmarkB法 (β=0.25)を用いる。入力波および積分ステップ 条件を表-6に示す。減衰は、Rayleigh 減衰を用 いた。今回、30次までの固有振動解析を行い、 橋軸直角方向への有効質量が大きく、主塔の応 答を考慮するために主塔が卓越した 2 つのモー ドを Rayleigh 減衰として与えた。主塔の卓越モ ードを表-7に示す。減衰定数は通常、地震波に おける解析の場合は0.02~0.03を用いる^のが、本 解析では風による振動対策として TMD が設置 されており、この TMD の制振効果を確認するた め減衰定数 h₁、h₂は人力加振によって得られた 主塔の減衰定数である 0.003 を与える ⁴⁾。なお、 本例では減衰定数が実験で得られていることか ら、振動形解析法によって、2自由度系として の解析も可能であるが、主塔の固有振動数が表-7のように近接しているので、Rayleigh 減衰を用 いた直接積分法を用いた。

4. 解析結果

4.1 固有振動特性

橋梁全体系のみの FEM モデルと TMD 固定部 装置重量を考慮した FEM モデルの2ケースで固 有振動解析を行った。2ケースにおける FEM モ デルでの制振対象モードの固有振動特性を図-8に示す。TMD 固定部の重量増加に伴い、制振

			周期(の)		1.08
入力波				30	
<i>X</i> /J <i>i</i> X		同别级		07	
			9.7		
					0.02
		「分入	アッフ奴		16380
		表-7	主塔卓越モー	ード	
次数	固有振 (Hz	動数 ₂)	有効質量 (橋軸直角方向)	-7	ード特性
	0.9	17	4660	2P•3	3P主塔 面外
14	survey and the second				
	0.92	20	119.5	3F	'主塔 面外
15			ging the given of the second	and the second second	
	(a) 襟潟	155 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	^{次モード} 有振動数:0.925Hz か (b) TMD固定		15次モード 置有仮動数 : 0.920Hz 置考慮

表-6 入力波およびステップ条件

図-8 制振対象モード

モードは固有振動数 0.925Hz から 0.920Hz となり、 わずかに減少した。解析では TMD 固定部装置重 量を考慮した FEM モデルの固有振動解析の結果 を用いる。固有振動解析の結果を表-7 に示す。 本解析における女神大橋の FEM モデルで得られ た主塔の橋軸直角方向の固有振動数は 0.925Hz、 TMD 固定点の質量を考慮した時に 0.920Hz とな り、FEM による実験対象モデルにおける解析値 0.923Hz および実験値 0.927Hz と一致した。この ことにより、斜張橋全体系の解析モデルの妥当 性が明らかにされた。

4.2 主塔の動的応答特性

TMD の作動状況を確認するために、TMD 固定 部と TMD 重錘質点変位を図-9に示している。 本 TMD の減衰定数が大きいために、両者に位相 差が見受けられる。TMD の減衰係数 c を 0 とし た場合の変位応答を図-10 に示す。TMD の重錘 は固定部と逆位相で振動していることが確認で きる。減衰係数が 0 の場合、TMD の重錘の変位 が大きい結果となっている。

TMD 作動時、非作動時における人力加振実験 による 3P 主塔頂部の加速度応答および TMD 作 動時での TMD のダンパーの相対変位の計測波形 と直接積分法における解析波形を図-11 に示す。

解析波形にはうなりが見られ、計測波形には明 確なうなりが見受けられない。これは、解析と計 測の初期条件の相違によるものであると推定さ れる。解析では、初期条件として初変位と初速度 をともに0にしている。

図-11から、TMD 作動時に TMD 非作動時より も最大加速度応答値も小さく、早く減衰する。

計測波形と解析波形の比較を行う。図-11から、 計測波形で人力加振による主塔の最大加速度応 答は TMD 作動時、非作動時ともに 40gal ほどに なっている。これと解析波形を比較すると、解析 波形においても最大応答は約 40gal を示しており、 ほぼ一致する (表-8参照)。これにより、人力加 振における加振力は適切にモデル化することが できたと考えられる。

TMD による減衰効果を確かめるために、TMD 作動時の主塔頂部における加速度応答解析波形 より減衰定数を求める。減衰定数を求める範囲は 図-11 に示している破線で囲まれた解析対象範 囲である。加振終了後の自由振動で最もTMDの ダンパー変位の衰退の大きいうなりがない区間 を解析対象範囲と定めた。TMD 非作動時におけ る減衰定数は加振後の自由振動を解析対象範囲 とした。計測波形から求めた減衰定数と解析波形 から求めた減衰定数(表-8参照)を比較すると、

場合の変位応答

表−8 実験値と解析値の比較

	実験値	解析值
固有振動数(Hz)	0.927	0.920
最大加速度応答值(gal)	42	43
減衰定数(TMD 非作動時)	0.004	0.003
減衰定数(TMD 作動時)	0.008	0.015

TMD 非作動時では、解析値は 0.003 となり計測 値での 0.004 と近い値になった。TMD 作動時で は、解析値で 0.015 となり、計測値の 0.008 より も大きい値となった。TMD と主塔の 2 自由度系 の振動であるために、両者の振動のやりとりがあ る。このために、1 自由度系と同じ取り扱いがで きないことから両者に差があると考えられる。な お、計測値は減衰係数に換算すると、0.05 となり 表-3 に示した必要減衰 0.026 を満足している。

5. まとめ

本論文では、女神大橋の斜張橋本橋、人力加振 力および TMD のモデル化を行い、3 次元 FEM を 用いて動的応答解析を行った。TMD の制振効果 を評価するとともに、解析によって得られた固有 振動数、加速度応答値および減衰定数と実験値を 比較することでモデル化の妥当性を明らかにし た。本論文によって得られた結果を以下に示す。 (1)固有値振動解析の結果、制振対象モードの固

- 有振動数は 0.920Hz となり実験値と一致した。 これより斜張橋主塔のモデル化の妥当性を確 認できた。
- (2)解析による最大加速度応答値は約 40gal とな り、計測値と一致した。これにより、人力加振 力のモデル化の妥当性を確認できた。
- (3)TMD をモデル化した主塔の応答解析から TMD の効果を検証できたが、解析値の減衰効 果が大きくなる特性をもつことを示した。

本研究より、斜張橋および人力加振力は適切にモ デル化を行うことができたが、解析による TMD の減衰効果が実験値よりも大きくなった。これは、 TMD の立ち上がり時間が解析では評価されてい ないことや設置後初めて TMD が作動したために 支点部などがペンキなどでピンになっていなか ったことから、TMDの重錘の振動が小さかった ことも考えられる。本解析の力学モデルは TMD と主塔の2自由度系の振動であるために、両者の 振動エネルギーのやりとりがある。このために、 1自由度系と同じ取り扱いができないことも考 えられる。TMD の減衰効果の評価については今 後も計測や解析を重ねる予定でいる。

【参考文献】

Richard Scott:タコマ橋の航跡,三恵社,2005.
 土木学会:橋梁の耐風設計-基準と最近の進歩-、土木学会,2003.

3)中瀬和敏,有吉正敏,北原雄一,甲斐富岳,今 金真一,上田浩之,針谷清久·女神大橋上部工の 施工,橋梁と基礎, Vol.39, pp.5-14, 2005.12. 4)日吉直久,呉慶雄,高橋和雄,北原雄一,中村

聖三:女神大橋主塔の振動実験による振動特性の 把握と固有振動数の解析値との比較,土木学会第 61回年次学術講演会概要集第1部門,pp.931-932,2006.

- 5)宇佐美勉、日本鋼構造協会:鋼橋の耐震・制震 設計ガイドライン,技報堂出版,2006.
- 6)日本道路協会:道路橋示方書・同解説 V耐 震設計編, 1996.