
A Revised Inference for Correlated Topic Model

Tomonari Masada1 and Atsuhiro Takasu2

1 Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki, 852-8521 Japan,
masada@nagasaki-u.ac.jp

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430
Japan,

takasu@nii.ac.jp

Abstract. In this paper, we provide a revised inference for correlated
topic model (CTM) [3]. CTM is proposed by Blei et al. for modeling
correlations among latent topics more expressively than latent Dirichlet
allocation (LDA) [2] and has been attracting attention of researchers.
However, we have found that the variational inference of the original
paper is unstable due to almost-singularity of the covariance matrix when
the number of topics is large. This means that we may be reluctant to
use CTM for analyzing a large document set, which may cover a rich
diversity of topics. Therefore, we revise the inference and improve its
quality. First, we modify the formula for updating the covariance matrix
in a manner that enables us to recover the original inference by adjusting
a parameter. Second, we regularize posterior parameters for reducing a
side effect caused by the formula modification. While our method is based
on a heuristic intuition, an experiment conducted on large document sets
showed that it worked effectively in terms of perplexity.
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1 Introduction

Topic modeling is one of the dominant trends of recent data mining research.
This approach uses latent variables for modeling topical diversity in document
data and represents the data in a lower-dimensional “topic” space. This line of
thinking reminds us that multilayer undirected graphical models also extract a
lower-dimensional data representation. In fact, neural network researchers also
propose a topic model, e.g. by using restricted Boltzmann machines [12] or by a
hybridization [13], where we can find an affinity between both approaches.

However, many topic models, including latent Dirichlet allocation (LDA)
proposed by the inaugural paper of Blei et al. [2], do not consider correlations
among latent topics explicitly. It is natural to assume that latent topics interwo-
ven into a semantic content of each document are correlated to some extent. For
example, articles on worldwide energy consumption may often mention geopolit-
ical conflicts among countries. Therefore, Blei et al. [3] have proposed correlated
topic model (CTM) to offer an established way to model correlations among la-
tent topics. While we know that recent sophisticated approaches can also model
topic correlations [11, 4], we here concentrate on CTM.



In CTM, per-document topic distributions are obtained from a corpus-wide
logistic normal distribution, where a covariance matrix Σ models correlations
among latent topics. More precisely, we draw a K-dimensional vector md for
document d from a Gaussian distribution N (µ,Σ), where K is the number of
topics, and obtain a topic distribution θd as θdk = exp(mdk)/

∑
k′ exp(mdk′).

This construction makes CTM more expressive than LDA.
In the variational inference for CTM proposed in the original paper [3], the

covariance matrix Σ is estimated by maximizing the variational lower bound of
the log evidence. Further,Σ needs to be inverted in every iteration. Therefore,Σ
should be kept less singular all through the iterations of the inference. However,
our preliminary experiment conducted on large document sets has shown that
the inference often gets unstable due to the fact that Σ is almost singular. When
we apply CTM to a large data set, we would like to set the number of topics to
a large value, say 300. Under that situation, the original inference gives a result
disastrous in terms of perplexity [2]. Therefore, we have revised the inference.
Through trying several heuristic methods for making the covariance matrix less
singular, we have found an effective one, which is given in this paper.

However, after revising the inference, we have found another problem. It is
known that variational inference for topic models is likely to give worse perplexity
than inference by sampling [1], though it is not known whether there are any
efficient sampling methods for CTM like collapsed Gibbs sampling (CGS) for
LDA [6]. Therefore, for achieving as good perplexity as possible, we can take the
following strategy: run CGS for LDA first and then run the variational inference
for CTM. Fortunately, we can initialize the parameters of CTM based on a result
of CGS for LDA. Therefore, we can start the variational inference for CTM
with the parameter values giving a good perplexity. However, a preliminary
experiment has shown that our revised inference is likely to make the initial
perplexity, which is achieved by CGS for LDA, worse as the inference proceeds.
Therefore, we regularize some of the variational posterior parameters so that
they are kept close to their initial values inherited from CGS for LDA.

In sum, our method consists of the following two features: 1) Keep the covari-
ance matrix less singular; and 2) Keep the values of some posterior parameters
close to their values initialized based on a result of CGS for LDA. With respect
to the former, we modify the update formula of the covariance matrix by taking
an approach similar to shrinkage estimation. With respect to the latter, we add
a regularization term so that the parameter values do not deviate significantly
from their initial values. The rest of the paper is organized as follows. Section 2
describes the details of the original variational inference for CTM. Section 3
presents our proposal. Section 4 contains the results of an experiment conducted
over large document sets. Section 5 concludes the paper with discussions.

2 Correlated Topic Models

With correlated topic model (CTM) [3], we can explicitly model correlations
among latent topics. The variety of correlations that can be modeled in CTM is



richer than that in LDA, because Dirichlet prior distribution used in LDA is not
that powerful in modeling correlations among drawn multinomial probabilities.
To make the paper self-contained, we describe CTM in detail. In the following,
we denote the number of topics, different words, and documents by K, W , and
D, respectively, and identify each entity with its index number.

As in latent Dirichlet allocation (LDA) [2], we represent each document d as
a mixture of K latent topics by using a multinomial distribution Multi(θd) de-
fined over topics, also in CTM. The multinomial parameters θd = (θd1, . . . , θdK)
satisfy

∑
k θdk = 1, where θdk is a probability that topic k is expressed by a word

token in document d. Topic k is in turn represented by a multinomial distribu-
tion Multi(ϕk) defined over words. The parameters ϕk = (ϕk1, . . . , ϕkW ) satisfy∑

w ϕkw = 1, where ϕkw is a probability that a token of word w expresses topic
k. Both in LDA and in CTM, we assume that ϕks are drawn from a corpus-
wide Dirichlet prior distribution Dir(β), where β = (β1, . . . , βW ) is a set of
its hyperparameters. However, with respect to per-document topic multinomial
distributions Multi(θd), LDA and CTM show a difference.

In LDA, per-document topic distributions are drawn from a corpus-wide
Dirichlet distribution Dir(α). However, Dirichlet distribution can only model a
restricted variety of correlations among topics. Therefore, CTM adopts logistic-
normal distribution as the prior for θds. We below describe CTM generatively.

1. For each topic k ∈ {1, . . . ,K}, draw parameters ϕk = (ϕk1, . . . , ϕkW ) of a
multinomial distribution Multi(ϕk) defined over words {1, . . . ,W} from the
corpus-wide Dirichlet prior distribution Dir(β).

2. For each document d ∈ {1, . . . , D},
(a) Draw a K-dimensional vector md = (md1, . . . ,mdK) from the corpus-

wide K-dimensional Gaussian distribution N (µ,Σ).

(b) Obtain a topic distribution θd = (θd1, . . . , θdK) as θdk = exp(mdk)∑
k′ exp(mdk′ )

.

(c) Let nd be the length (i.e., the number of word tokens) of document d.
For the ith word token in document d, where i ∈ {1, . . . , nd},
i. Draw a topic from the topic multinomial distribution Multi(θd). Let

the drawn topic be the value of a latent variable zdi, which gives the
topic to which the ith word token in document d is assigned.

ii. Draw a word from the word multinomial distribution Multi(ϕzdi
).

Let the drawn word be the value of an observed variable xdi, which
gives the word appearing as the ith word token of document d.

Based on this description, we obtain the full joint distribution of CTM as follows:

p(x,z,ϕ,m|β,µ,Σ) = p(ϕ|β)p(m|µ,Σ)p(z|m)p(x|ϕ,z)

=
∏
k

Γ (
∑

w βw)∏
w Γ (βw)

ϕβw−1
kw ·

∏
d

1

(2π)K/2|Σ|1/2
exp

{
− 1

2
(md − µ)TΣ−1(md − µ)

}
·
∏
d

∏
i

exp(mdzdi)∑
k exp(mdk)

ϕzdixdi
. (1)



The variational inference proposed in the original paper [3] approximates the
posterior p(z,ϕ,m|x,β,µ,Σ) by a factorized variational posterior q(z)q(ϕ)q(m).
Consequently, a lower bound of the log evidence ln p(x|β,µ,Σ) is obtained by
applying Jensen’s inequality as follows:

ln p(x|β,µ,Σ) ≥
∫ ∑

z

q(z)q(m) ln p(z|m)dm+

∫
q(ϕ) ln p(ϕ|β)dϕ

+

∫ ∑
z

q(z)q(ϕ) ln p(x|ϕ, z)dϕ+

∫
q(m) ln p(m|µ,Σ)dm

−
∑
z

q(z) ln q(z)−
∫

q(ϕ) ln q(ϕ)dϕ−
∫

q(m) ln q(m)dm .

(2)

We denote the right hand side of Eq. (2) by L, which needs to be maximized.
With respect to each variational posterior distribution, we assume the followings.

– q(z) is factorized as
∏

d

∏
i γdizdi , where γdik is an approximated probability

that the ith word token in document d expresses topic k.
– q(ϕ) is factorized as

∏
k q(ϕk|ζk), where q(ϕk|ζk) is the density of an ap-

proximated Dirichlet posterior whose parameters are ζk = (ζk1, . . . , ζkW ).
– q(m) is factorized as

∏
d

∏
k q(mdk|rdk, sdk), where q(mdk|rdk, sdk) is a den-

sity of a univariate Gaussian distribution whose mean and standard deviation
parameters are rdk and sdk, respectively.

The variational parameters γdiks, ζkws, and νds can be updated by a closed

formula: γdik ∝ exp(rdk) ·
expΨ(ζkxdi

)

expΨ(
∑

w ζkw) ; ζkw = βw +
∑

d

∑
i

∑
k γdik; and νd =∑

k exp(rdk + s2dk/2), where νds are the parameters introduced to make the in-
ference tractable. Details of the derivation are referred to the original paper [3].

However, the parameters rdks and sdks cannot be updated by any closed
formulas. In this paper, we use L-BFGS [10, 7] for maximizing the relevant terms
in L and update these parameters. The target functions are given below.

L(rdk) = ndkrdk − nd

νd
exp(rdk + s2dk/2)

+
1

2
r2dk(Σ

−1)kk − rdk
∑
k′

(rdk′ − µk′)(Σ−1)kk′ (3)

L(sdk) = −nd

νd
exp(rdk + s2dk/2)−

1

2
s2dk(Σ

−1)kk + ln sdk (4)

Since the parameters rd1, . . . , rdK and sd1, . . . , sdK for a fixed d are dependent
on each other, we update them not separately but in concert by using L-BFGS.

The mean parameter µ of theK-dimensional Gaussian distributionN (µ,Σ),
which models the correlation among latent topics, can be updated as µ =
1
D

∑
d rd. The covariance matrix Σ can be updated as

Σ =
1

D

∑
d

Sd +
1

D

∑
d

(rd − µ)(rd − µ)T , (5)



where Sd is a K×K diagonal matrix whose kth diagonal entry is s2dk. However,
Eq. (5) is likely to give an almost singular matrix when K is large. This is a
serious problem, because we need the inverse of Σ in Eqs. (3) and (4). When we
apply CTM to a large document set, we would like to set the number of topics
K to a large number, say 300. This type of situation is likely to make Σ almost
singular and thus to make the entire inference unstable. Therefore, we propose
a revised inference for CTM.

3 A revised inference for CTM

Our proposal aims to achieve a stable inference for CTM by making the covari-
ance matrix Σ far from singular. The proposal has the following two features:

– We modify the update formula Eq. (5) in a manner that we can recover the
original inference by adjusting a parameter called interpolation parameter.

– We initialize the parameters of CTM by using a result of collapsed Gibbs
sampling (CGS) for LDA and regularize some parameters lest they deviate
substantially from their initial values. The strength of regularization can be
adjusted by a parameter called regularization parameter.

3.1 Covariance matrix update

First, we discuss a revised update of Σ. We focus on the K×K matrix appearing
as the second term of the right hand side of Eq. (5), i.e., T̂ = 1

D

∑
d(rd−µ)(rd−

µ)T . We can view T̂ as the maximum likelihood estimator of the covariance
matrix T of a Gaussian distribution N (µ,T ), from which r1, . . . , rD are drawn.
Chen et al. [5] give the following matrix as a “naive but most well-conditioned

estimate” for T : F̂ = Tr(T̂ )
K I, where Tr(·) is the trace of a matrix and I is the

identity matrix. F̂ is a diagonal matrix whose diagonal entries are all equal to the
average of the diagonal elements of T̂ . Our approach uses F̂ in place of the first

term of the right hand side of Eq. (5) and update Σ as Σ = Tr(T̂ )
K I+T̂ . Further,

we obtain a linear interpolation of this equation and Eq. (5) by introducing an
interpolation parameter π as follows:

Σ =
{
(1− π) · 1

D

∑
d

Sd + π · Tr(T̂ )

K
I
}
+

1

D

∑
d

(rd − µ)(rd − µ)T . (6)

When π = 0, we can recover the original inference. It can be said that we use
F̂ to conduct a shrinkage operation on the average of the covariance matrices
S1, . . . ,SD of the variational Gaussian posteriors q(md|rd,Sd), d = 1, . . . , D.

3.2 Variational mean regularization

Second, we discuss a regularization of parameters. We update the variational
means, i.e., rdks, in a regularized manner, because rdks are likely to deviate from
their initial values when we use Eq. (6), in place of Eq. (5), for updating Σ.



Table 1. Document set specifications.

# docs # words # training tokens (# test tokens)

CORA3 36,183 8,542 2,127,005 (235,566)
MOVREV4 27,859 18,616 8,145,228 (905,427)
TDT45 96,246 15,153 15,070,250 (1,674,304)
NSF6 128,181 19,066 12,284,568 (1,366,399)

MEDLINE7 2,495,210 134,615 225,844,065 (25,097,215)

The probability of topic k in document d is calculated as exp(mdk)∑
k′ exp(mdk′ )

, and

rdk is of the same dimension with mdk. Therefore, based on a result of CGS
for LDA, we can initialize rdk as follows: rdk = log(ndk + αk), where ndk is the
number of the word tokens in document d that are assigned to topic k. αk is a
Dirichlet hyperparameter corresponding to topic k and is updated by Minka’s
method [8, 1] in our experiment. To keep rdks close to their initial values, we add
a regularization term to the right hand side of Eq. (3) as follows:

Lreg(rdk) = ndkrdk − nd

νd
exp(rdk + s2dk/2)

+
1

2
r2dk(Σ

−1)kk − rdk
∑
k′

(rdk′ − µk′)(Σ−1)kk′

− πρ
{
rdk − log(ndk + αk)

}2
. (7)

We call ρ regularization parameter, which determines the strength of the
regularization and takes a non-negative value. We maximize Lreg(rdk) in Eq. (7)
in place of L(rdk) in Eq. (3). Note that ρ is multiplied by the interpolation
parameter π. Therefore, even when ρ > 0, the inference is reduced to the original
one as long as π = 0. When ρ takes a large positive value, rdks are kept close to
their initial values. This means that we keep staying close to the result of CGS
for LDA. When we applied this regularization to our revised inference in our
experiment, we always set ρ to 1.0, because other settings gave no interesting
differences. Therefore, we have only one parameter π to be adjusted by hand.

Consequently, π = 0.0 means that we use the original inference for CTM and,
at the same time, do not regularize rdks. Further, π = 1.0 means that we use the
revised inference for CTM in its full capacity and, at the same time, regularize
rdks with strength 1.0. However, we needed to directly apply the regularization
to the original inference in our experiment for comparison. Therefore, in this
case, we set ρ to 1.0 after eliminating π from Eq. (7).

3 http://people.cs.umass.edu/~mccallum/data.html
4 http://www.cs.cornell.edu/people/pabo/movie-review-data/polarity_html.

zip
5 http://projects.ldc.upenn.edu/TDT4/
6 http://archive.ics.uci.edu/ml/datasets/NSF+Research+Award+Abstracts+

1990-2003
7 This is the set of the abstracts extracted from the XML files whose names range
from medline12n0600.xml to medline12n0699.xml.



Fig. 1. Comparing the revised inference with the original one on CORA document set.

4 Comparison experiment

We compared our revised inference with the original one on the document sets in
Table 1. For each document set, we conducted a series of appropriate preprocess-
ings, e.g. changing text case to lower case, stemming, removing high and low fre-
quency words, etc. The evaluation measure is test perplexity [2], which represents

predictive power of topic models and is defined as exp(−
∑

d

∑
i log

∑
k λdkζkxdi

Ntest
),

where Ntest is the number of the word tokens used for calculating perplexity,
called test word tokens. λdk is defined as

∑nd

i=1 γdik. We randomly select 90%
word tokens from every document for running inference and use the rest for
calculating test perplexity. Note that smaller perplexity is better.

Fig. 1 gives test perplexities of the revised and the original inferences con-
ducted on CORA document set under various settings. The horizontal axis rep-
resents number of iterations, and the vertical axis represents perplexity. For each
setting, we repeated inference 10 times and calculated a mean and a standard
deviation of the corresponding 10 perplexities. The mean and the standard de-
viation, which is depicted by the error bar, are given at every iteration.

First, we clarify when the original inference gave a better perplexity. The top
left panel of Fig. 1 presents the result obtained when the number of topics was
30, a fairly small number, and we ran only 10 iterations of CGS for LDA before
initiating the revised or the original inference for CTM. The number of iterations
of the inference for CTM was set to 1,000, because CGS for LDA iterates only
10 times and could not reduce perplexity enough. The interpolation parameter
π was set to 1.0 for the revised inference and to 0.0 for the original inference.



Since 10 iterations of CGS for LDA led to a perplexity nearly equal to 1,320,
both of the line graphs, each corresponding to the revised inference (green solid
line) and the original one (red dashed line), start from the perplexity of around
1,320. Obviously, the original inference is significantly better. It can be said that
the original inference works without any modification when we set the number
of topics to be relatively small and start the variational inference for CTM after
a small number of iterations of CGS for LDA.

Second, we increased the number of iterations of CGS for LDA. The top right
panel of Fig. 1 gives the result when we ran 1,000 iterations of CGS for LDA
and then ran 200 iterations of the revised or the original inference for CTM.
π was set to 1.0 for the revised inference and to 0.0 for the original inference.
1,000 iterations of CGS reduced perplexity to around 780. In this manner, CGS
for LDA reduced perplexity significantly before we initiated the inference for
CTM. Consequently, both of the revised and the original inferences could not
improve the perplexity achieved by CGS for LDA,8 though they behave a little
differently. However, it is clear that the original inference gave almost the same
perplexity with the revised inference, and thus that the revised inference could
show no advantage also in this case.

Third, we increased the number of topics to 300. The bottom panel of Fig. 1
gives the corresponding result, where we ran 1,000 iterations of CGS for LDA and
ran 200 iterations of the revised or the original inference for CTM. This panel
contains five line graphs, each corresponding to the following cases: 1) π = 1.0
(green solid line), 2) π = 0.5 (blue dotted line), 3) π = 0.1 (magenta dash-dot
line), 4) the original inference (red dashed line), and 5) the original inference
with regularization (black pixel marker). The regularization parameter ρ was
set to 1.0 for the revised inferences. We also applied our regularization to the
original inference by setting πρ = 1.0 in Eq. (7) and, at the same time, by setting
π = 0.0 in Eq. (6). As this panel shows, the perplexities for the cases π = 1.0
and π = 0.5 gave almost the same perplexity, which is a little better than that
achieved by CGS for LDA. However, the case π = 0.1 and the original inference
gave significantly worse perplexities than those two cases. Further, even when
we apply the regularization to the original inference, the improvement was not
remarkable.9 That is, our regularization did not work for the original inference.
At the same time, this result also shows that the regularization with πρ = 1.0
is not so strong to forcibly keep rdks almost the same with their initial values.

In sum, the original inference for CTM works if we set the number of topics
to be fairly small. However, note that the bottom panel in Fig. 1 contains the
best perplexity among the three panels in this figure. Therefore, it is better to
choose the revised inference when we would like to make topic models fully show
their predictive power. In contrast, if we are under a situation where perplexity
hardly matters for some reasons, the original inference may find relevance.

8 Needless to say, if we do not conduct the inference for CTM, we just have a result
of CGS for LDA and cannot consider correlations among topics.

9 When we conduct the revised inference without regularization, we consistently ob-
served worse perplexities, though we do not present the corresponding results here.



Fig. 2. Comparing the revised inference with the original one on MOVREV (top left),
TDT4 (top roght), NSF (bottom left), and MEDLINE (bottom right) document sets.

We obtained similar results also for the other document sets in Table 1.
Fig. 2 contains all results. As in case of the bottom panel of Fig. 1, we ran
1,000 iterations of CGS for LDA and then started 200 iterations of the revised
or the original inference for CTM. For MOVREV and TDT4 document sets, we
tested the following four settings: π = 1.0, 0.5, 0.1, and 0.0. The regularization
is applied only to the revised inference with ρ = 1.0 in Eq. (7). As the top left
panel shows, for MOVREV document set, the three settings π = 1.0, 0.5, and
0.1 gave almost the same perplexity, which is slightly better than the perplexity
achieved by CGS for LDA. In contrast, the original inference led to a far larger
perplexity. For TDT4, we obtained almost the same perplexity when π = 1.0
and 0.5, and the two other cases resulted in worse perplexities, as the top left
panel depicts. The bottom left and the bottom right panels present the results
for NSF and MEDLINE document sets, respectively. For these relatively large
document sets, we only provide the results for the two extreme cases, i.e., the
case π = 1.0 and the original inference. Obviously, the revised inference achieved
a better perplexity by a large margin.

In the end, we add comments on implementation. With respect to matrix
inversion, we used dgetrf () and dgetri () in CLAPACK. As a byproduct of
dgetrf (), we can calculate the determinant of the covariance matrix. When we
ran the original inference, the absolute value of the determinant went to a value



close to zero in case the number of topics was relatively large. Consequently,
L, i.e., the lower bound of the log evidence, decreased by a large amount in
earlier iterations, though L needed to be maximized. While we knew that there
was an implementation by the authors of the original paper [3], it consumed
main memory by a considerable factor when compared with our implementation
and thus could not load any document sets in a reasonable time. Therefore, we
evaluated the original inference by setting π to 0.0 in our own implementation.

5 Conclusion

In this paper, we provide a revised inference for CTM. We modify diagonal
elements of the covariance matrix lest it be almost singular and regularize vari-
ational mean parameters lest they deviate from their initial values. However, as
long as the model is described by using a K × K covariance matrix, it seems
difficult to completely avoid the problem of matrix singularity, because K needs
to be larger for a topic analysis over larger document sets. Therefore, recent
proposals [11, 4] may find their relevance. However, CTM has an advantage in
its simplicity and efficiency of inference. We tried to make such CTM to be uti-
lized in a wider range of situations. An important future work is to compare our
revised inference with the original one in terms of other evaluation measures [9].
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