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Abstract

Phospholipid membranes are thought to be one of the main inducers of hemozoin formation in Plasmodia and other blood-
feeding parasites. The ‘‘membrane surrounding hemozoin’’ has been observed in infected cells but has not been observed
in in vitro experiments. This study focused on observing the association of phospholipid membranes and synthetic b-
hematin, which is chemically identical to hemozoin, and on a further exploration into the mechanism of phospholipid
membrane-induced b-hematin formation. Our results showed that b-hematin formation was induced by phospholipids in
the fluid phase but not in the gel phase. The ability of phospholipids to induce b-hematin formation was inversely
correlated with gel-to-liquid phase transition temperatures, suggesting an essential insertion of heme into the hydrocarbon
chains of the phospholipid membrane to form b-hematin. For this study, a cryogenic transmission electron microscope was
used to achieve the first direct observation of the formation of a monolayer of phospholipid membrane surrounding b-
hematin.
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Background

Malaria is one of the most common diseases in tropical

countries. Each year, there are an estimated 225 million new

malaria infections and almost a million deaths due to malaria

world-wide [1]. Spreading resistance to current quinoline antima-

larials and artemisinine has made malaria a major global problem

[2]. Since a vaccine for malaria is not available, it is essential to

study the molecular, biochemical, and immunological aspects of

malarial parasites to develop vaccines and new antimalarial drugs.

Host protein digestion has two aspects: to obtain amino acids

and to regulate osmotic pressure. This hemoglobin digestion takes

place in the parasites’ food vacuoles and is carried out by multiple

proteases including four aspartic versions [3]: three cysteine

proteases [4] and a zinc metalloprotease (falsilysin) [5]. These

proteases digest hemoglobin into small fragments consisting of

about 20 different amino acids and free ferrous protoporphyrin IX

(Fe(II)PPIX), which is rapidly oxidized to Fe(III)PPIX (heme).

Heme is the deep red, oxygen-carrying, non-protein, ferrous

component of hemoglobin in which the iron is Fe(II) (ferrous iron)

and also called reduced hematin. Iron(III), ferriprotoporphyrin IX,

(Fe(III)PPIX) is known to be present in solution as hematin (H2O/

OH-Fe(III)PPIX). The free heme is oxidatively active and toxic to

both the host cell and the malarial parasite, however free heme is

rapidly oxidized to hematin and sequestered into hemozoin

(malarial pigment). Due to the absence of heme oxygenase, the

parasite is unable to cleave heme into an open-chain tetrapyrrole,

which is necessary for cellular excretion [6]. To protect itself, the

malarial parasite detoxifies free heme via neutralization with a

histidine-rich protein 2 [7,8], degradation with reduced glutathi-

one [9,10,11], or crystallization into hemozoin which is a water-

insoluble malarial pigment that is not lethal to biological cells

[7,12]. However, at least 95% of free heme in P. falciparum is

reportedly converted to hemozoin [13,14]. Hemozoin is known to

be structurally and chemically identical to in vitro synthetic b-
hematin (BH), which is a crystal of the heme (Fe(III)PPIX) dimer

of the hematin Fe (III) PPIX dimer [15,16,17]. It has been used for

parasite concentration and detection [18,19,20,21,22]. It is also

suggested that the blocking of BH formation is an ideal target for

antimalarial screening [23,24,25,26]; thus, it is important to

understand the mechanism of BH formation.

Several factors such as histidine-rich protein [7,8], elevated

temperature [27], lipids [28,29], pre-formed BH [25], alcohols

[30], detergent [31], and malarial heme detoxification protein [32]

are reportedly responsible for heme crystallization. Among these

factors, lipid droplets and phospholipid membranes are proposed

as the main inducers of hemozoin formation in Plasmodia and other

blood-feeding parasites including Schistosoma and Rhodnius
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[33,34,35,36,37,38,39,40,41]. The mechanism of BH formation

induced by neutral lipid droplets both in vivo and in vitro has been

well documented [34,35,36,37,38]. The ‘‘membrane surrounding

hemozoin’’ has been found in the in vivo ultrastructure [39,41,42],

but it has not been observed in in vitro experiments. In the present

study, we aimed to observe the association of phospholipid

membranes and BH crystals, and to further explore the

mechanism of phospholipid membrane-induced BH formation.

Materials and Methods

Materials
Hemin chloride (heme) was purchased from Sigma. L-a-

Phosphatidylcholine dilauroyl (dilauroyl-PC), L-a-phosphatidyl-
choline dimyristoyl (dimyristoyl-PC), L-a-phosphatidylcholine
dipalmitoyl (dipalmitoyl-PC), L-a-phosphatidylcholine distearoyl

(distearoyl-PC), L-a-phosphatidylcholine dioleoyl (dioleoyl-PC), L-
a-phosphatidylserine dipalmitoyl (dipalmitoyl-PS), L-a-phosphati-
dylethanolamine dimyristoyl (dimyristoyl-PE), L-a-phosphatidyl-
ethanolamine dipalmitoyl (dipalmitoyl-PE), dimethyl sulfoxide,

and chloroform were provided by Wako Pure Chemicals (Osaka,

Japan). The remaining reagents were also acquired from Wako

Pure Chemicals.

Preparation of Lipid Vesicles
Phospholipids were dissolved in 1 ml chloroform at a concen-

tration of 2 mM. Then they were sprayed and dried on the walls of

1.5 ml micro-tubes under a nitrogen gas flush to create a thin

layer, which was then suspended in 1 ml of distilled water. The

lipid suspension (2 mM) was sonicated for 10 s and used for BH

formation assay, as previously described [43], and for cryo-TEM

observation.

Assay of BH Formation Initiated by Phospholipids
Stock heme solution (10 mM) was prepared using hemin

chloride in dimethyl sulfoxide as described previously [10]. Heme

(100 mM) was incubated with various concentrations of phospho-

lipids in 1 ml of 50 mM acetate buffer at pH 4.8. For

quantification of BH, after incubating at 37uC for 16 h, the

sample was centrifuged for 5 min at 7,0006g, and the supernatant

was discarded. The obtained BH was purified and quantified as

previously described [44,45]. Values obtained from triplicate

assays were plotted, and the EC20 values (M), along with the

concentration of lipids required for crystallizing 20% of the heme,

were calculated graphically. The characteristics of BH were

confirmed by infrared spectroscopy with expected infrared spectra

peaks at 1210 and 1664 cm21, confirming the presence of BH.

For cryo-TEM observation, the heme (100 mM) in the acetate

buffer (0.5 M) and that in the phospholipid suspension (0.5 mM)

was mixed and incubated at 37uC for 6 h. Then, 2.5 ml of the BH
precipitate that had formed in the bottom of the tube was used.

Physical and Chemical Properties of Phospholipids
The gel-to-fluid phase of the transition temperature of

phospholipids (Tm) was derived from a procedure established by

Cevc et al. [46]. The molecular weight was recorded from the

supplier (Wako Pure Chemicals). Other physical properties of the

phospholipids, including total net charge, number of anion charge,

octanol-water partition coefficient (logP), distribution coefficient

(logD at pH 5.5), hydrogen bond acceptors, hydrogen bond

donors, freely rotating bonds, polar surface area, and polarizability

were retrieved from ChemSpider (www.chemspider.com), as

predicted by Advanced Chemistry Development (ACD/Labora-

tories) software.

Cryo-transmission Electron Microscopy (cryo-TEM)
The analysis was performed as described previously [47,48].

Briefly, samples (2.5 mL) were applied to glow-discharged micro-

grids supported by 5-nm-thick carbon films (JEOL, Tokyo, Japan).

After removing excess samples with pre-water-soaked filter paper,

the samples were quickly frozen by liquid ethane cooled by liquid

Nitrogen (EM CPC, LEICA Microsystems, Vienna). The grid was

then transferred into a JEOL cryo-electron microscope

(JEM3000SFF) and kept at 4.2 K and observed at 300 kV.

Statistical Analysis
Data analysis was performed using the SPSS Version 14. The

Pearson correlation was analyzed to evaluate the relationship

between the abilities of phospholipids to induce BH formation and

their physical properties. Differences in BH formation induced by

lipids were analyzed for statistical significance using the nonpara-

metric Mann–Whitney U test. Values were considered significant

at p,0.05.

Results

BH Formation Induced by Phospholipids
The abilities of various phospholipids to induce BH formation

in vitro at 37uC are shown in Fig. 1. BH formation was induced by

phospholipids in a biphasic dose-dependent manner. Two

phosphatidylcholines, dilauroyl-PC and dioleoyl-PC, were cata-

lyzed by BH formation at low molar concentrations and converted

a maximum of 70–80% of the heme into BH, indicating a

relatively high efficiency. Dimyristoyl-PC converted a maximum

of 30–40% of the heme into BH at a slightly higher concentration

of the inducer. The concentration that is required to convert 20%

of heme into BH (EC20 values) for these phospholipids varied from

5 to 12 mM (Table 1). We also observed that the maximal yield of

BH in the presence of lipids was negatively correlated with the

EC20 values (Fig. 1). In contrast, dipalmitoyl-PC, distearoyl-PC,

dimyristoyl-PE, dipalmitoyl-PE, and dipalmitoyl-PS could not

induce BH formation under our experimental conditions.

Figure 1. BH formation induced by various concentrations of
phospholipids at 37uC. The ordinate shows the amount of BH
produced by incubation with various concentrations of phospholipids
for 16 h, as expressed as the percentage of heme converted to BH.
Values represent the mean 6 SD (n = 3). The results were reproducible.
Circle; dioleoyl-PC, triangle; dilauroyl-PC, square; dimyristoyl-PC.
doi:10.1371/journal.pone.0070025.g001
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Effects of Physical and Chemical Properties of
Phospholipids on BH Formation
To further understand the mechanism of phospholipid-mediat-

ed BH formation, Pearson correlation analysis between the

abilities of phospholipids to induce BH and their physical

properties was performed. All phospholipids were tested at the

same temperature (37uC). Our results showed that the ability of

phospholipids to induce BH formation was inversely correlated

with the gel-to-fluid phase transition temperature (Tm) of

phospholipids (Table 1, p.0.05). Moreover, only phospholipids

with a Tm that was lower than the experimental temperature

(37uC) could induce BH formation. Phospholipids such as dioleoyl-

PC with a lower Tm were more effective in inducing BH formation

than phospholipids such as dilauroyl-PC, which had a higher Tm.

In contrast, other physical properties of phospholipids were not

significantly associated with the ability of phospholipids to induce

BH formation: molecular weight, total net charge, number of

anion charge, octanol-water partition coefficient (logP), distribu-

tion coefficient at pH 5.5, hydrogen bond acceptors, hydrogen

bond donors, freely rotating bonds, polar surface area, and

polarizability (Table 1, p.0.05).

Effect of Reaction Temperature on Phospholipid-
mediated BH Formation
To further clarify the relationship between the phase transition

temperature of phospholipids and their abilities to induce BH, we

performed a BH formation assay at temperatures ranging from

below to above the Tm of a particular phospholipid. Since BH

formation spontaneously occurs with no inducer at high temper-

ature [49], distearoyl-PC, dipalmitoyl-PE, and dipalmitoyl-PS

could not be tested in this experiment because of their high Tm

values. We further confirmed that spontaneous BH formation was

not observed at 50uC in the absence of phospholipids. The results

shown in Fig. 2 indicate that all tested phospholipids could induce

BH formation at a temperature higher than the Tm of a particular

phospholipid in the liquid phase. On the other hand, no BH was

formed with a reaction temperature below the Tm of a particular

phospholipid in the solid phase. Furthermore, the maximal yield of

BH was positively correlated with the reaction temperature. These

results suggested that the ability of phospholipid vesicles to induce

BH formation was correlated with their membrane fluidity.

Cryo-TEM Analysis
To examine whether the BH-inducing ability of phospholipid

vesicles was related to structure, observations by cryo-TEM were

performed. The dioleoyl-PC liposome was mostly observed as

spherical vesicles with a bilayer membrane (Fig. 3A), while a few

multilamellar liposomes were also observed by cryo-TEM (Fig. 3B).

However, dipalmitoyl-PC liposome was also observed, but the

large liposome (diameter .100 nm) was irregular and angular,

probably indicating less fluidity compared with dioleoyl-PC

liposome (Figs. 3C and D).

The formation of BH catalyzed by dioleoyl-PC liposome was

also observed using cryo-TEM. The cryo-TEM images of BH

showed morphologies that were almost identical (Fig. 4). The BH

appeared as variable-sized crystals with long thin shapes, smooth

surfaces and tapered ends. These morphological characteristics

were similar to those seen in previous reports of BH both in vivo

and in vitro [50,51], which further confirmed the BH formation.

The dioleoyl-PC liposome was not observed around the BH, but a

monolayer membrane-like structure that surrounded the BH was

observed, and is indicated by arrows in Figs. 4B and 4D. With

longer irradiation from an electron beam, this membrane-like
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structure was burned and developed a white color, as observed

under cryo-TEM. Given the fact that only the dioleoyl-PC in the

mixture had the potential to form a monolayer structure, this

observation strongly suggests that the membrane-like structure was

formed by a phospholipid.

Discussion

Numerous studies have suggested that neutral lipid droplets are

the main templates for hemozoin formation [34,35,36,37,38]. For

many years, phospholipid membranes have also been proposed as

the site of hemozoin formation in malaria [39,40]. Recently,

Kapishnikov et al. used cryogenic soft X-ray tomography to

demonstrate the hemozoin formation templates on the inner layer

of a digestive vacuole [41]. However, very few studies have

investigated BH formation induced by phospholipid membranes in

an in vitro experiment [40,52]. As far as could be ascertained, the

present study is the first to observe a membrane surrounding BH

that was induced by phospholipid vesicles (Fig. 4), which was a

structure that was similar to that observed in vivo by Hempelmann

et al. [39]. The advantage of cryo-TEM was that it allowed the

direct observation of phospholipid membranes and BH formation

with no fixation or dehydration of the sample on the grid. In

addition, cryo-TEM was suitable for the detection of phospholipid

membranes because the phosphorus groups have a low perme-

ability to the electron beam. Moreover, the association of polar

lipids with malarial hemozoin observed by the thin layer

chromatography also supports our results [53].

The differences in morphology between dioleoyl-PC and

dipalmitoyl-PC vesicles, as observed by cryo-TEM, suggested that

a smooth regular shape of vesicles is required for the site of a BH

template. The differences in morphology between dioleoyl-PC and

dipalmitoyl-PC vesicles were probably due to their different

physical properties, in particular the different states – fluid or gel –

caused by the differences in Tm values. Moreover, since the

hydrophobic interactions between their inducers and heme have

been proposed as an important force in the creation of a precursor

heme dimer [38,45,54,55], it was interesting to explore the

correlation between the physical properties of phospholipids and

their ability to induce BH. Our results demonstrated that

phospholipids could induce BH formation only in the fluid phase,

and could not do so in the gel phase. Recently, Hoang et al.

showed that a blending of five neutral lipids lower the melting

temperature of lipid droplets compared to the homogeneous

samples and the blending of five neutral lipids produced more

hemozoin compared to that of homogeneous lipids, further

supporting the role of lipid fluidity in the hemozoin formation.

Evidence showed that an increase in membrane fluidity results

in the membrane insertion of heme [56], which is positively

correlated with an increase in the BH induction of phospholipids

(Fig. 2). These observations suggest that the mechanism of BH

formation involves the acyl chains of the phospholipid membranes.

Figure 2. Effect of reaction temperature on phospholipid-mediated BH formation. Dipalmitoyl-PC (A), dimyristoyl-PE (B), dimyristoyl-PC
(C), and dioleoyl-PC (D) were used to induce BH formation at various temperatures, and the reaction was dependent on the phase transition
temperature of phospholipids. Tm values are 42uC for dipalmitoyl-PC (A), 48uC for dimyristoyl-PE (B), 23uC for dimyristoyl-PC (C), and 222uC for
dioleoyl-PC (D). It is noted that BH was not formed at 50uC in the absence of phospholipids. Values represent the mean 6 SD (n = 3).
doi:10.1371/journal.pone.0070025.g002
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Furthermore, free heme can be quickly and easily inserted into

phospholipid vesicles as monomeric heme at a ratio of 1 heme per

4–5 phospholipid molecules in the fluid phase [57,58]. Taken

together, these observations suggest that the free heme inserts its

vinyl groups deeply into the hydrophobic acyl chains of

phospholipids while the charged propionate groups are exposed

to the aqueous solution. The hydrophobic environment of acyl

chains helps to form monomeric heme, which favors the formation

of a BH dimer. However, other mechanism cannot be excluded,

and further studies are needed to clarify this issue.

A biphasic dose-dependent manner of BH formation induced by

phospholipids was also observed in the assay induced by a

detergent [31], probably due to the over dilution of the heme

molecules in the high number of vesicles. Further studies are

required to clarify this mechanism.

Conclusions
Our results showed that the abilities of phospholipids to induce

BH is inversely correlated with the phase transition temperatures,

suggesting a required insertion of heme into the hydrophobic acyl

chains of a phospholipid membrane in order to form BH. Finally,

a monolayer of membrane surrounding BH was observed using

cryo-TEM.
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Figure 3. Cryo-TEM images of lipid liposomes prepared in water at 37uC. Liposome of dioleoyl-PC (A and B) or dipalmitoyl-PC (C and D)
prepared in water by ultrasonication was observed by cryo-TEM. Scale bars are 50 nm in Figs. A and B and 100 nm in Figs. C and D.
doi:10.1371/journal.pone.0070025.g003
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