1	${ m CD8}^+$ T cells specific for a malaria cytoplasmic antigen form clusters around
2	infected hepatocytes and are protective at the liver stage of infection
3	Running title: CD8 ⁺ T cell recognition of cytoplasmic malaria antigen
4	
5	Kazumi Kimura ¹ , Daisuke Kimura ¹ , Yoshifumi Matsushima ¹ ,
6	Mana Miyakoda ¹ , Kiri Honma ¹ , Masao Yuda ³ , Katsuyuki Yui ^{1,2,#}
7	¹ Division of Immunology, Department of Molecular Microbiology and Immunology,
8	Nagasaki University, Graduate School of Biomedical Sciences, 1-12-4, Sakamoto,
9	Nagasaki, 852-8523 Japan; ² Global COE programs, Nagasaki University, 1-12-4,
10	Sakamoto, Nagasaki, 852-8523 Japan; ³ Department of Medical Zoology, School of
11	Medicine, Mie University, 2-174, Edobashi, Tsu, 514-8507 Japan
12	
13	#Corresponding author: Katsuyuki Yui, Division of Immunology, Department of
14	Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences,
15	Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
16	TEL: +81-95-819-7070; FAX: +81-95-819-7073; E-mail: katsu@nagasaki-u.ac.jp

18 ABSTRACT

19 Following Anopheles mosquito-mediated introduction into a human host, Plasmodium 20 parasites infect hepatocytes and undergo intensive replication. Accumulating evidence 21 indicates that CD8⁺ T cells induced by immunization with attenuated Plasmodium 22 sporozoites can confer sterile immunity at the liver stage of infection; however, the 23 mechanisms underlying this protection are not clearly understood. To address this, we 24 generated recombinant Plasmodium berghei ANKA expressing a fusion protein of an 25 ovalbumin epitope and green fluorescent protein in the cytoplasm of the parasite. We 26 have shown that the ovalbumin epitope is presented by infected liver cells in a transporter 27 associated with antigen processing-dependent manner and becomes a target of specific 28 CD8⁺ T cells (OT-I cells), leading to protection at the liver stage of *Plasmodium* infection. 29 We visualized the interaction between OT-I cells and infected hepatocytes by intravital 30 imaging using two-photon microscopy. OT-I cells formed clusters around infected 31 hepatocytes, leading to the elimination of the intra-hepatic parasites and subsequent 32 formation of large clusters of OT-I cells in the liver. Interferon- γ expressed in CD8⁺ T 33 cells was dispensable for this protective response. Additionally, we found that polyclonal

34	ovalbumin-specific memory $CD8^+$ T cells induced by <i>de novo</i> immunization were able to
35	confer sterile protection, although the threshold frequency of the protection was relatively
36	high. These studies revealed a novel mechanism of specific CD8^+ T cell-mediated
37	protective immunity, and demonstrated that proteins expressed in the cytoplasm of
38	Plasmodium parasites can become targets of specific CD8 ⁺ T cells during liver-stage
39	infection.

41 **INTRODUCTION**

Plasmodium sporozoites are transmitted by the bites of *Anopheles* mosquitoes under the 42 43 skin and are transported via the bloodstream to the liver, where they infect hepatocytes. 44 Immunization with irradiated sporozoites can induce sterile protection at pre-erythrocytic stages of infection in both mice and humans (1-3). Similarly, sterile protective immunity 45 46 is induced by *Plasmodium* parasites that have been genetically attenuated by a gene 47 deletion and which arrest at the hepatic stage (4, 5). Recent studies have shown that the 48 infection of mice under chloroquine shield induces a protective immune response at the hepatic stage of infection (6). Immunization by these methods induces multiple different 49 mechanisms of protection involving $CD8^+$ T cells, $CD4^+$ T cells, B cells, and NK cells (7, 50 51 8). Among the major effector cells are $CD8^+$ T cells, which recognize malaria antigen in 52 association with major histocompatibility complex (MHC) class I during liver-stage 53 infection (9)

Targets for protective immunity against malaria were identified using antibodies obtained
from mice immunized with irradiated sporozoites, including circumsporozoite protein

57	(CSP), which was extensively investigated (10, 11). CSP is expressed on the surface of
58	sporozoites and liver-stage malaria parasites and is the most advanced target antigen of
59	liver-stage vaccine development. The major liver-stage effector cells specific for CSP are
60	$CD8^+$ T cells, as shown by the depletion of $CD8^+$ T cells with the antibody abrogating
61	protection and by the resistance to subsequent challenge infection conferred by cloned
62	specific T cells. Further studies using CSP-transgenic mice indicated that additional
63	protective antigens are present, although CSP is the major antigen that can induce
64	protection against pre-erythrocytic forms of malaria in BALB/c mice (12). Additional
65	candidate antigens at the liver stage of infection include sporozoite surface protein 2
66	(SSP), which was identified using an antibody produced by BALB/c mice after
67	immunization with irradiated sporozoites, and which induces protection that is mediated
68	by CD8 ⁺ T cells, CD4 ⁺ T cells, and antibodies (13-15). Protective immunity via
69	immunization is much more difficult to establish in C57BL/6 (B6) mice than in BALB/c
70	mice, partly because the H-2 ^b -restricted cytotoxic T lymphocyte (CTL) epitope is not
71	present in CSP (16). However, protection is induced in B6 mice by immunization with
72	attenuated <i>Plasmodium</i> parasites or infection under a chloroquine shield. This protective

immunity is also mediated by CD8⁺ T cells, whose target antigen is not CSP. These latter
studies suggest the existence of unknown target antigens recognized by CD8⁺ T cells in
infected hepatocytes, in addition to CSP and SSP2.

76

77 Research efforts are in progress to identify novel malaria antigen targets expressed at the 78 liver stage. Genome-wide expression profiling studies have indicated that many malaria 79 proteins are expressed during liver-stage infection (17, 18). However, the criteria that 80 would frame the search for target malaria antigens have not yet been established. Several 81 studies have suggested that the localization of antigen within microbial pathogens is 82 important for the generation of specific T cells and the resulting protection. It is generally 83 thought that secreted antigens are more accessible to antigen presentation pathways and 84 induce strong T cell immune responses (19). For example, intracellular bacteria such as 85 Mycobacterium tuberculosis remain in the phagosome, where they survive and replicate. The secreted form of the antigens expressed in these bacteria can be presented via the 86 87 MHC I pathway, through a process that appears to be facilitated by an increase in 88 permeability of the endosomal membrane by the microbe (20, 21). In an infection model

89	using recombinant Trypanosoma cruzi expressing an ovalbumin (OVA) epitope, it was
90	shown that host cells were able to present OVA via the MHC I pathway when the antigen
91	was produced in secretory form, but not the cytoplasmic or transmembrane form (22). It
92	has also been proposed that CSP is released from the surface of sporozoites directly into
93	the cytoplasm of host hepatocytes, where it binds to RNA-associated host cell targets (23,
94	24). Furthermore, CSP is released from the surface of sporozoites when they travel
95	through hepatocytes before reaching the final infected hepatocyte, and appears to be
96	presented by these traversed hepatocytes to specific T cells (25). Therefore, the search
97	for candidate malaria antigens for liver-stage infection is generally focused on molecules
98	expressed on the surface of parasites. However, it is not clear whether intracytoplasmic
99	molecules are able to become targets of the protective immune responses during
100	liver-stage infection.
101	

In this study, we generated recombinant parasites that exhibited cytoplasmic expression
of an OVA epitope presented by MHC I. We examined whether this epitope was

104 presented by infected hepatocytes and whether it became a target of specific OT-I $CD8^+ T$

105	cells leading to protection at the liver stage of infection. We also examined the
106	mechanisms underlying the presentation of this antigen and visualized the interaction of
107	OT-I cells with infected hepatocytes by intravital imaging using two-photon microscopy
108	(TPM). The results of these experiments suggest that $CD8^+$ T cells can recognize
109	cytoplasmic malaria antigens, form clusters around infected hepatocytes, and protect

110 against parasites.

111 MATERIALS AND METHODS

Parasites

113	Recombinant P. berghei ANKA (PbA) expressing class II and class I OVA epitopes fused
114	to the N- and C-terminus of a <i>P. yoelii</i> hsp70 fragment (PbA-hsOVA), respectively, and <i>P</i> .
115	berghei ANKA expressing OVA class I epitope fused to the C-terminus of green
116	fluorescent protein (GFP) (PbA-gfpOVA) were constructed as previously described (26)
117	(Fig. 1A). PbA-hsOVA expresses a recombinant fusion protein containing the N-terminal
118	sequence (aa 1-5) of P. berghei hsp70, an OVA323-339 MHC II epitope, a truncated
119	sequence (aa 201–398) of P. yoelii hsp70, and an OVA257-264 MHC I epitope.
120	PbA-gfpOVA express a protein containing an OVA257-264 MHC I epitope fused to the
121	C-terminus of GFP. After transfection, mice were infected and were maintained under the
122	presence of the anti-malaria drug pyrimethamin. PbA-gfpOVA were enriched by sorting
123	of GFP-positive erythrocytes using FACSAria (BD Biosciences, San Jose, CA). The
124	stable transfectant was cloned by limiting dilution in mice and was maintained by
125	alternating passage between Anopheles stephensi and BALB/c mice. Sporozoites were
126	prepared from salivary glands of A. stephensi after 18-24 days of infection with

127 PbA-hsOVA or PbA-gfpOVA.

129	Animals
130	OT-I and OT-II transgenic mice expressing the T cell receptor (TCR) specific for
131	OVA257-264/ K ^b and OVA323-339/IA ^b , respectively, were provided by Dr. H. Kosaka
132	(Osaka University, Osaka, Japan) (27, 28). TAP ^{-/-} mice (B6 background) were provided
133	by Dr. H. Watanabe (Ryukyu University, Okinawa, Japan) (29). B6.SJL and OT-I or
134	OT-II mice were interbred, and the offspring were intercrossed to obtain CD45.1 $^+$ OT-I or
135	OT-II mice. DsRed transgenic, IFN- $\gamma^{-/-}$ and perforin ^{-/-} mice were purchased from The
136	Jackson Laboratory (Bar Harbor, ME). DsRed transgenic mice and OT-I mice were
137	crossed to produce DsRed/OT-I mice. OT-I and IFN- $\gamma^{-/-}$ or perforin ^{-/-} mice were bred to
138	produce IFN- $\gamma^{-/-}$ OT-I mice, perforin ^{-/-} OT-I mice, and IFN- $\gamma^{-/-}$ perforin ^{-/-} OT-I mice. B6
139	and BALB/c mice were purchased from SLC (Shizuoka, Japan). Mice were maintained
140	in the Laboratory Animal Center for Animal Research at Nagasaki University and were
141	used at the age of 8–14 wks. To generate bone marrow chimeras, B6 or TAP ^{-/-} mice were
142	lethally irradiated (900 rad) and received bone marrow cells (1.0×10^7 ; prepared from

143	TAP ^{-/-} or B6 mice) intravenously on the following day. Mice were left for at least two
144	months before infection to allow for reconstitution of the lymphoid system. The animal
145	experiments reported herein were approved by the Institutional Animal Care and Use
146	Committee of Nagasaki University and were conducted according to the guidelines for
147	Animal Experimentation at Nagasaki University.
148	
149	Adoptive transfer and PbA infection
150	To prepare activated OT-I cells, pooled cells from the spleen and inguinal lymph nodes of
151	OT-I mice were prepared and cultured in the presence of $OVA_{257-264}$ peptide (2 µg/ml) for
152	3 days. OT-II cells were purified from spleen and inguinal lymph node cells of OT-II
153	mice using anti-CD4 IMag (BD Biosciences). Dendritic cells were prepared from B6
154	splenocytes using CD11c-microbeads and AutoMACS (Myltenyi Biotec, Bergisch
155	Gladbach, Germany). OT-II (6×10^6 /ml) and dendritic cells (1×10^5 /ml) were
156	co-cultured in the presence of OVA ₃₂₃₋₃₃₉ peptide (3 μ g/ml) for 5 days. Mice received
157	OT-I (1–100 × 10 ⁵) or OT-II (3 × 10 ⁷) cells through the tail vein, and were challenged
158	with 300–500 infectious sporozoites 2 days later. The proportion of OT-I (CD45.1) cells

159	in the total CD8 ⁺ T cell population was determined by staining peripheral blood
160	lymphocytes (PBLs) with APC-anti-CD8 and PECy7-anti-CD45.1 mAbs. For the
161	experiments involving <i>de novo</i> priming of CD8 ⁺ T cells (Fig. 6) and parasite burden in the
162	liver (Fig. 3), mice were challenged with 1,000 and 5,000 sporozoites, respectively. Mice
163	were monitored for parasitemia daily (starting 4 days after infection) by microscopic
164	examination of standard blood films. Parasite burden was determined by real-time PCR
165	using liver RNA and is expressed as a ratio of the cDNA of <i>Plasmodium</i> 18S rRNA to
166	cDNA of mouse G3PDH, as described previously (30).
167	
168	Confocal and two-photon microscopy
169	PbA-gfpOVA sporozoites were obtained from the salivary glands of infected A. stephensi

170 mosquitoes. To prepare PbA-infected hepatocytes, HepG2 cells (1×10^4) were cultured

171 in HepG2 medium (500 µL; DMEM containing 10% fetal calf serum, 1%

172 penicillin/streptomycin, and 1% non-essential amino acids) using Fluorodish (World

- 173 Precision Instruments, Sarasota, FL) for 3 days as described previously (31).
- 174 PbA-gfpOVA sporozoites (1×10^4) were added to the culture and incubated for 3 h,

175	followed by the addition of invasion medium (500 μ L; HepG2 medium supplemented
176	with 3 mg/ml of glucose). The medium was replaced 12 h later, and the culture was
177	maintained for a total of 24 h in the invasion medium, after which cells were stained.
178	PbA-gfpOVA-infected red blood cells (RBCs) were collected from the tail vein of the
179	infected mice. Sporozoites, infected HepG2 cells, and RBCs were incubated in the
180	presence of Bodipy-TR-C ₅ -ceratide (5 μ M, Invitrogen, Carlsbad, CA) for 15 min at
181	37°C, washed 3 times with PBS, and stained with DRAQ5 (1.25 $\mu M,$ Biostatus,
182	Leicestershire, UK) for 30 min at 37°C. Images were acquired with an inverted TCS SP5
183	MP confocal microscope with a 63× glycerol immersion lens (Leica Microsystems,
184	Wetzlar, Germany).

For intravital imaging, spleen cells and lymph node cells from DsRed/OT-I mice were cultured in the presence of OVA257-264 for 3 days. Activated DsRed/OT-I cells $(3-10 \times 10^6)$ were adoptively transferred into B6 mice. Two days later, the mice were infected (or not infected, for controls) with PbA-gfpOVA sporozoites (1×10^4) . At 40–48 h post-infection, mice were anesthetized with isoflurane. The abdomen was then shaved

191	and a midline incision was made through the dermis and peritoneum and the liver was
192	carefully exteriorized. Mice were placed on a platform with a centrally located hole,
193	where a cover glass was attached. An O-ring with a 9.8 mm inner diameter was placed on
194	the cover glass to prevent movement of the liver during imaging. Images were acquired
195	with an inverted TCS SP5 TPM microscope equipped with an OPO laser (Leica
196	Microsystems) and with a 25×0.95 NA water immersion objective. During observation
197	with fluorescence microscopy (DMI6000B, Leica Microsystems), the numbers of GFP^+
198	infected hepatocytes and OT-I clusters were determined by counting manually within the
199	field inside the O-ring (~75 mm^2). The number of OT-I cells in each cluster was
200	determined using Imaris software (Bitplane, Zurich, Switzerland) after acquiring a 3
201	dimensional image of each cluster with TPM.
202	
203	Generation of OVA-specific memory CD8 ⁺ T cells
204	Specific memory CD8 ⁺ T cells were induced in mice as described previously (32) with

205 slight modifications. B6 mice were immunized intravenously with bone marrow-derived

206 dendritic cells (2.5×10^5) pulsed with OVA₂₅₇₋₂₆₄ peptide (1 mM). Seven to 9 days later,

207	these mice were boosted by infection with Listeria monocytogenes expressing OVA
208	(LM-OVA; $1-10 \times 10^6$ CFU) (33). After 2 months, PBLs from these mice were stained
209	with FITC-anti-CD8 mAb and PE-OVA ₂₅₇₋₂₆₄ /H-2K ^b tetramer (MBL, Nagoya, Japan),
210	and the proportion of OVA-specific CD8 ⁺ T cells was determined using FACS Canto II
211	(BD Biosciences).
212	
213	Statistical Analysis
213 214	Statistical Analysis Data are expressed as means ± standard deviation (SD). Statistical analysis was
213214215	Statistical Analysis Data are expressed as means \pm standard deviation (SD). Statistical analysis was performed using the Mann-Whitney U test for the comparison of two experimental
213214215216	Statistical Analysis Data are expressed as means \pm standard deviation (SD). Statistical analysis was performed using the Mann-Whitney U test for the comparison of two experimental groups, and the data were analyzed using GraphPad Prism software. Differences with a p
 213 214 215 216 217 	Statistical AnalysisData are expressed as means \pm standard deviation (SD). Statistical analysis wasperformed using the Mann-Whitney U test for the comparison of two experimentalgroups, and the data were analyzed using GraphPad Prism software. Differences with a p value of < 0.05 were considered significant.

219 **RESULTS**

220 Cytoplasmic expression of OVA-GFP fusion proteins in recombinant PbA

221 To investigate the mechanisms of protection against liver-stage malaria, we generated 222 two recombinant PbA constructs (Fig. 1A). The first construct expresses a fusion protein 223 of the OVA257-264 epitope fused to the C-terminus of GFP (PbA-gfpOVA); the second 224 expresses a fusion protein of the OVA323-339 MHC II epitope, a portion of P. yoelii hsp70, 225 and the OVA257-264 MHC I epitope (PbA-hsOVA). The sequence of P. yoelii hsp70 was 226 used because an antigen fused to this portion of hsp70 was shown to promote priming of 227 specific T cell responses (34, 35). Since the fusion protein constructs did not contain a 228 signal sequence, its expression was expected to be limited to the cytoplasm of the parasite. 229 To confirm the localization of the expressed protein, confocal microscopy was used to 230 examine the expression of the fusion protein in sporozoites and infected cells after 231 staining with membrane marker bodipy-TR-C5-ceramide and nuclear marker DRAQ5 232 (36) (Fig. 1B). The GFP-fused protein was localized in the cytoplasm of PbA-gfpOVA 233 sporozoites. At 24 h post-infection with sporozoites, GFP protein was detected within the 234 parasitophorous membrane of the infected HepG2 cells, but was not observed in the host

235 cytoplasm. We also examined the expression of GFP in the infected RBCs, and observed

that GFP was also localized within the parasitophorous membrane in these cells.

237

238	OT-I cell-mediated protection against liver-stage infection with PbA
239	We examined whether CD8 ⁺ T cells from OT-I mice are protective against liver-stage
240	infection with PbA-hsOVA and PbA-gfpOVA. OT-I cells were activated prior to transfer,
241	since previous studies indicated that the activation of specific CD8 ⁺ T cells was required
242	for protection against sporozoite infection at the liver stage (37). B6 mice were
243	inoculated with different doses of preactivated OT-I cells and then infected with
244	PbA-hsOVA or wild-type PbA sporozoites, and the levels of parasitemia were monitored
245	daily (Fig. 2A). Transferred OT-I cells were identified as CD45.1 ⁺ CD8 ^{low} T cells (38).
246	Mice that received 1×10^7 OT-I cells were completely protected from challenge infection
247	with PbA-hsOVA but not with PbA, indicating that the protective effect was specific to
248	the OVA-expressing parasites. We also observed that the protection was OT-I dose
249	dependent, and that mice receiving less than 1×10^6 OT-I cells developed parasitemia
250	(Fig. 2A). OT-I cells constituted 42.1% and 3.4% of the CD8 ⁺ T cell population in PBL

251	from mice receiving 1×10^7 and 1×10^6 OT-I cells, respectively, indicating that high
252	levels of OT-I cells were required for sterile protection at the liver stage of infection.
253	Similarly, sterile protection was observed when mice receiving OT-I cells were infected
254	with PbA-gfpOVA sporozoites (Fig. 2B). We also examined whether $CD4^+$ T cells from
255	OT-II mice were protective against the liver-stage infection with PbA-hsOVA (Fig 2C).
256	Although parasitemia appeared 5 days after infection in both mice transferred and not
257	transferred with OT-II, the levels of parasitemia were lower in the OT-II-transferred mice,
258	suggesting that OT-II cells have protective roles against infection with PbA-hsOVA.
259	However, sterile immunity was never achieved at the liver stage by inoculation with
260	OT-II cells, although the proportion of OT-II cells in the CD4 ⁺ T cell population was as
261	high as 43.8%.

To confirm that the observed decrease in parasitemia was due to the inhibition of parasite growth at the liver stage, parasite burden in the liver was examined by real-time PCR of parasite ribosomal RNA (Fig. 3A). OT-I cells were found to significantly inhibit the parasite burden in the liver of mice infected with PbA-hsOVA (90.1% reduction), but not

267	with PbA, indicating that the protection was specific to the OVA-expressing PbA. We
268	next wanted to examine whether the OVA antigen-presenting pathway utilizes the
269	classical MHC class I pathway. To this end, B6 and TAP ^{-/-} mice were inoculated with
270	OT-I cells, infected with PbA-hsOVA, and examined for parasite burden in the liver. OT-I
271	cells significantly inhibited the parasite burden in B6 mice (99.8% reduction), but not in
272	TAP ^{-/-} mice after challenge infection with PbA-hsOVA sporozoites, indicating that the
273	antigen presentation pathway did utilize the classical TAP-dependent pathway (Fig. 3B).
274	Furthermore, we generated bone marrow chimeras between B6 and TAP-/- mice to
275	examine whether TAP expressed in hematopoietic cells or hepatocytes is critical for the
276	protection. After inoculation with OT-I and infection with PbA-hsOVA, the parasite
277	burden in the liver was significantly reduced in bone marrow chimeras when B6 mice
278	were used as recipients. The reductions were 98.2% in the $B6 \rightarrow B6$ chimera compared
279	to B6 \rightarrow TAP ^{-/-} , and 98.1% in the TAP ^{-/-} \rightarrow B6 chimera compared to TAP ^{-/-} \rightarrow TAP ^{-/-} ,
280	indicating that TAP expression in the radioresistant host is critical for the protection
281	against challenge infection with PbA-hsOVA (Fig. 3C). These results strongly suggest
282	that hepatocytes infected with PbA-hsOVA sporozoites process and present the OVA

283 epitope via the classical MHC class I pathway, which is consistent with a previous study
284 using *P. berghei* expressing a mutant CS protein containing an OVA epitope (39).

285

286 In vivo imaging of the interaction between OT-I cells and infected hepatocytes After observing the protective effect of OT-I cells, we aimed to directly visualize the 287 288 interaction of infected hepatocytes with the effector OT-I cells using TPM. For this 289 purpose, mice were inoculated (or not inoculated, for controls) with pre-activated 290 DsRed/OT-I cells and infected with PbA-gfpOVA sporozoites. Two days later, the livers 291 of the infected mice were surgically exposed and imaging was performed. In mice infected with PbA-gfpOVA sporozoites, GFP⁺ cells were clearly visible after 24 h and the 292 293 quantity of GFP continued to increase for 24–48 h after infection (data not shown). We 294 observed a defined surface area (75 mm²) of the liver using TPM at 40–48 h after sporozoite infection. When a low dose (3×10^6) of OT-I cells was inoculated into the 295 mice, we observed numerous OT-I clusters formed around GFP⁺ cells (Fig. 4A). The 296 297 number of OT-I cells in each of these clusters was relatively small (mean 34.2, range 298 10-71) (Fig. 4D GFP+). Using time-lapse imaging, we were able to observe the

299	disappearance of GFP ⁺ cells while in contact with OT-I cells, suggesting that the OT-I
300	cells are directly involved in the elimination of intra-hepatic parasites (Fig. 4A right,
301	supplementary Fig. 1). When the number of inoculated OT-I cells was increased to the
302	dose sufficient for sterile protection (1×10^7), fewer GFP ⁺ cells remained in the liver (Fig.
303	4B, C left panel), and the number of OT-I clusters increased (Fig. 4B, C right panel). The
304	number of OT-I clusters in the liver of the OT-I-inoculated, PbA-infected mice was
305	similar to the number of GFP ⁺ cells in the PbA-infected mice without OT-I-inoculation,
306	suggesting that the clusters were formed following elimination of infected hepatocytes by
307	O1-I cells (compare the left and right panels of Fig. 4E). Additionally, we determined that the number of OT L cells in clusters containing CED^+ cells (mean 28.4, range 14.48).
308	was much lower than in clusters that did not contain GEP ⁺ cells (mean 293.8, range 15-
310	-1.415) in mice inoculated with 1×10^7 OT-I cells (Fig 4D). The OT-I clusters were
311	barely detectable in OT-I-inoculated mice without PbA infection and, if present, were
312	formed by small numbers of OT-I cells (Fig. 4E right panel, F).

314 Effector function of OT-I cells

315	The clustering of OT-I cells around infected hepatocytes suggests that the effector
316	mechanisms of CD8 ⁺ T cells in liver-stage malaria might be different from the classical
317	CTL killing mechanisms. Thus, we evaluated the effector function of $CD8^+$ T cells
318	during protection at the liver stage of infection with PbA-hsOVA or PbA-gfpOVA. CD8 ⁺
319	T cells were prepared from OT-I, IFN- $\gamma^{-/-}$ OT-I, perforin ^{-/-} OT-I, or IFN- $\gamma^{-/-}$ perforin ^{-/-} OT-I
320	mice, activated in vitro, and transferred into B6 mice, which were infected with
321	sporozoites of PbA-hsOVA or PbA-gfpOVA and examined for parasitemia (Fig. 5). After
322	infection with PbA-hsOVA, no parasitemia was detected in mice receiving IFN- $\gamma^{-/-}$ OT-I,
323	perforin ^{-/-} OT-I, or IFN- $\gamma^{-/-}$ perforin ^{-/-} OT-I cells, indicating that the expression of IFN- γ
324	and perforin in CD8 ⁺ T cells was dispensable for the protection against liver-stage
325	infection (Fig. 5A). When the mice were infected with PbA-gfpOVA, a delayed onset of
326	parasitemia was detected in 2/5 infected mice receiving transferred IFN- $\gamma^{-/-}$ performin-/-
327	OT-I cells, and 1/5 mice receiving perforin ^{-/-} OT-I cells (Fig 5B). These results suggest
328	that IFN- γ and perforin are partially involved in the protective effects of OT-I cells,
329	although these molecules are not essential for protection. The difference in the results of
330	infection with PbA-hsOVA and PbA-gfpOVA may be due to the differences in the

efficiency of antigen presentation; the OVA epitope may be more efficiently presented to
OT-I cells for PbA-hsOVA infection than for PbA-gfpOVA infection.

333

Finally, we examined whether OVA-specific polyclonal memory CD8⁺ T cells were 334 335 protective against infection with PbA-hsOVA sporozoites following a previously 336 described protocol (40). Mice were primed with OVA257-264-pulsed dendritic cells and 337 boosted with LM-OVA infection. Two months later, we examined the proportion of OVA-specific CD8⁺ T cells in PBL by staining with OVA/K^{b} tetramer. These mice were 338 339 infected with PbA-hsOVA sporozoites, and the levels of parasitemia in peripheral blood 340 were determined 8 days after infection (Fig. 6). Comparison of the number of 341 tetramer-positive cells with the occurrence of parasitemia showed that mice bearing 342 OVA-specific CD8⁺ T cells at levels more than 9.31% of total CD8⁺ T cells were 343 completely protected from the sporozoite challenge, while those bearing specific $CD8^+T$ 344 cells in the range of 1.1–8.8% included both protected and unprotected mice.

346 **DISCUSSION**

347 In this study, we established a novel system to investigate the cellular and molecular 348 mechanisms underlying the protective immune response against liver-stage infection 349 with malaria parasites using a model malaria antigen, OVA. Unlike the CSP model, 350 which utilizes BALB/c mice, our model can be applied in B6 mice. Cockburn et al. 351 generated a model in which CS protein containing an OVA epitope was expressed on the 352 surface of sporozoites, and used B6 mice for the study of protective immunity at the liver 353 stage of infection (39). Our model is distinct from this model in that the antigen is 354 expressed in the cytoplasm of malaria parasites, and can become a target of specific $CD8^+$ 355 T cells during the liver stage of *Plasmodium* infection, leading to sterile protection. 356 Protection was achieved by both the inoculation of activated OT-I cells and by the 357 induction of polyclonal OVA-specific memory CD8⁺ T cells. Since protection by OT-I 358 cells was dependent on TAP molecule expression in non-hematopoietic host cells, consistent with the previous study (39), it is reasonable to speculate that OVA expressed 359 360 in the cytoplasm of the parasite is somehow transported into the cytoplasm of hepatocytes 361 for antigen processing. However, we did not detect any leakage of GFP into the

362	cytoplasm of the infected hepatocytes by confocal imaging. A possible explanation for
363	this is that cytoplasmic malaria antigens are processed to smaller peptides prior to transfer
364	into the host cells. Alternatively, the amount of the protein transported to the cytoplasm
365	may have been too low for visualization by our methods. Whatever the molecular
366	mechanisms, these results imply that malaria proteins expressed in the cytoplasm of
367	malaria parasites can be targets of protective immune responses, and should not be
368	excluded from the pool of candidate malaria vaccine targets.
369	
370	In our experimental model, we employed intravital imaging to visualize the interaction
371	between PbA-infected hepatocytes and specific CD8 ⁺ T cells. In the absence of
372	inoculation with OT-I cells, infected hepatocytes were observed as isolated GFP^+ cells, as
373	shown previously by others (41-43). When we used a lower number of OT-I cells for
374	inoculation (3 \times 10 ⁶), clustering of OT-I cells around the infected hepatocytes was
375	observed, suggesting that OT-I cells recognize the MHC/OVA epitope expressed on the
376	surface of hepatocytes, and make direct contacts with them. Using time-lapse imaging,
377	we were able to observe the disappearance of GFP ⁺ intra-hepatic parasites during their

378	interaction with OT-I cells, implying that the OT-I clusters are directly involved in the
379	elimination of the parasites in the liver. When the number of inoculated OT-I cells was
380	increased to a level sufficient for sterile immunity (1 \times 10 ⁷), the number of GFP ⁺ cells was
381	dramatically reduced. Furthermore, we observed OT-I clusters that did not contain GFP^+
382	hepatocytes, and some OT-I clusters were large (containing more than 1,000 OT-I cells),
383	suggesting that the accumulation of OT-I cells in the cluster continued after the
384	elimination of GFP^+ hepatocytes. After the submission of this manuscript, Cockburn et al.
385	(44) published an imaging study of CSP-specific CD8 ⁺ T cells eliminating liver-stage
386	malaria parasites, and showed that CD8 ⁺ T cells form clusters around infected
387	hepatocytes, similar to our study. Thus, cluster formation is not limited to our model
388	system, but occurs in <i>Plasmodium</i> -specific CD8 ⁺ T cells eliminating malaria parasites
389	during liver-stage infection.

390

391 The effector mechanisms of CD8⁺ T cell-mediated elimination of intra-hepatic parasites are complex. An earlier study suggested that perforin- or Fas-mediated killing is not the 392 main pathway of parasite elimination during the hepatic stage of the infection (45). 393

394	Additionally, a recent study using CSP-specific transgenic T cells suggested that IFN- γ is
395	not essential for the protection of mice against infection with <i>P. yoelii</i> sporozoites (46).
396	However, IFN- γ and TNF- α have been reported to be important for the protection against
397	liver-stage infection with <i>P. berghei</i> as well as <i>P. yoelii</i> , while perforin is important for
398	protection against infection with <i>P. yoelii</i> but not <i>P. berghei</i> (47, 48). In our study, IFN-γ
399	expressed in CD8 ⁺ T cells was dispensable for in the elimination of infected hepatocytes
400	during infection with PbA-gfpOVA, whereas perforin was partially involved in this
401	process. Therefore, unlike the elimination of virus-infected or transformed cells (49),
402	perforin/granzyme-mediated killing is not the essential pathway for the elimination of
403	malaria parasites in the liver. Effector CD8 ⁺ T cells were shown herein to form clusters
404	around infected hepatocytes, leading to the elimination of the intra-hepatic parasites.
405	These features suggest that a novel mechanism might be involved in the protective
406	immune responses of CD8 ⁺ T cells against intra-hepatic parasites. It is intriguing to
407	speculate that other hepatic immune cells such as dendritic cells, Kupffer cells and liver
408	sinusoidal endothelial cells (43) are involved in parasite elimination.

410	Schmidt et al. showed that the proportion of CSP-specific memory $CD8^+$ T cells
411	correlated with sterilizing immunity at the liver stage, with protective effects observed
412	when more than 1% of $CD8^+$ T cells in PBL were CSP-specific (40). In our model, the
413	threshold frequency of OVA-specific memory CD8 ⁺ T cells was much higher and
414	required more than 8% OVA-specific CD8 ⁺ T cells to achieve sterile immunity in 100%
415	of mice. The probability of sterile immunity was reduced to 28.6% (8/27) when
416	OVA-specific CD8 ⁺ T cells constituted 1.1-8.8% of PBL. Therefore, the threshold
417	frequency of memory CD8 ⁺ T cells required for the sterile immunity in our OVA system
418	was higher than that in the CSP system. The localization of antigen expression may
419	influence the efficacy and timing of antigen presentation by hepatocytes. CSP is
420	expressed on the surface of the parasite; thus, it may be readily accessible to the
421	cytoplasm of the infected hepatocytes soon after infection. Further, CSP might be
422	transferred to sinusoidal endothelial cells when sporozoites migrate through hepatic
423	sinusoids prior to infection, and these cells cross-present CSP to specific CD8 ⁺ T cells in
424	a manner similar to hepatocyte-infecting viruses (50). In contrast, proteins expressed in
425	the cytoplasm of parasites might be transferred to host cells relatively late after infection,

426	and thus may have a narrower window for sterile protection. Alternatively, the outcome
427	of the individual studies may be affected by differences in the mouse strain used (BALB/c
428	for the CSP study and B6 in our OVA study) or the levels of antigen expressed. A recent
429	transcriptome approach revealed that approximately 2,000 genes are active during
430	liver-stage infection (14). It is possible that many of these proteins are expressed in the
431	cytoplasm of parasites and that combined polyclonal CD8 ⁺ T cell responses against
432	different sets of these antigens might achieve sterile protection against malaria parasites
433	in the liver.
434	
435	Our study showed that malaria proteins expressed in the cytoplasm of parasites can be
436	targets of the protective immune responses by CD8 ⁺ T cells. We also visualized the
437	interaction between the infected hepatocytes and specific effector CD8 ⁺ T cells, which led
438	to the elimination of the parasites in the liver, and revealed a novel aspect of the effector

439 mechanisms of protective immunity in liver-stage infection. These findings enhance our
440 understanding of the cellular and molecular mechanisms underlying the protective
441 immune responses during the liver stage of malaria infection, and identify novel

442 candidates for malaria vaccine targets.

444 ACKNOWLEDGEMENTS

- 445 We thank Drs. H. Kosaka and H. Watanabe for providing mice; Drs. Y. Yoshikai and H.
- 446 Shen for providing LM-OVA; Drs. M. Ishii (Osaka University, Osaka, Japan) and T.
- 447 Okada (RIKEN Center for Integrative Medical Sciences, Yokohama, Japan) for help in
- setting up two photon microscopy; and N. Kawamoto for technical assistance. This work
- 449 was supported by Grants-in-Aid from the Ministry of Education, Science, Sports and
- 450 Culture, Japan and by Global COE program, Nagasaki University.

452 **REFERENCES**

453	1.	Nussenzweig RS, Vanderberg J, Most H, Orton C. 1967. Protective immunity
454		produced by the injection of X-irradiated sporozoites of Plasmodium berghei.
455		Nature 216: 160-162.
456	2.	Hoffman SL, Doolan DL. 2000. Malaria vaccines-targeting infected hepatocytes.
457		Nat Med 6: 1218-1219.
458	3.	Overstreet MG, Cockburn IA, Chen YC, Zavala F. 2008. Protective CD8 T
459		cells against <i>Plasmodium</i> liver stages: immunobiology of an 'unnatural' immune
460		response. Immunol Rev 225: 272-283.
461	4.	Mueller AK, Labaied M, Kappe SH, Matuschewski K. 2005. Genetically
462		modified <i>Plasmodium</i> parasites as a protective experimental malaria vaccine.
463		Nature 433: 164-167.
464	5.	Butler NS, Schmidt NW, Vaughan AM, Aly AS, Kappe SH, Harty JT. 2011.
465		Superior antimalarial immunity after vaccination with late liver stage-arresting
466		genetically attenuated parasites. Cell Host & Microbe 9:451-462.
467	6.	Belnoue E, Voza T, Costa FT, Gruner AC, Mauduit M, Rosa DS, Depinay N,

468		Kayibanda M, Vigario AM, Mazier D, Snounou G, Sinnis P, Renia L. 2008.
469		Vaccination with live <i>Plasmodium yoelii</i> blood stage parasites under chloroquine
470		cover induces cross-stage immunity against malaria liver stage. J Immunol
471		181: 8552-8558.
472	7.	Doolan DL, Hoffman SL. 2000. The complexity of protective immunity against
473		liver-stage malaria. J Immunol 165:1453-1462.
474	8.	Rodrigues M, Nussenzweig RS, Zavala F. 1993. The relative contribution of
475		antibodies, $CD4^+$ and $CD8^+$ T cells to sporozoite-induced protection against
476		malaria. Immunology 80: 1-5.
477	9.	Good MF, Doolan DL. 2010. Malaria vaccine design: immunological
478		considerations. Immunity 33: 555-566.
479	10.	Romero P, Maryanski JL, Corradin G, Nussenzweig RS, Nussenzweig V,
480		Zavala F. 1989. Cloned cytotoxic T cells recognize an epitope in the
481		circumsporozoite protein and protect against malaria. Nature 341: 323-326.
482	11.	Hafalla JC, Silvie O, Matuschewski K. 2011. Cell biology and immunology of
483		malaria. Immunol Rev 240: 297-316.

484	12.	Kumar KA, Sano G, Boscardin S, Nussenzweig RS, Nussenzweig MC,
485		Zavala F, Nussenzweig V. 2006. The circumsporozoite protein is an
486		immunodominant protective antigen in irradiated sporozoites. Nature
487		444: 937-940.
488	13.	Khusmith S, Charoenvit Y, Kumar S, Sedegah M, Beaudoin RL, Hoffman
489		SL. 1991. Protection against malaria by vaccination with sporozoite surface
490		protein 2 plus CS protein. Science 252:715-718.
491	14.	Rogers WO, Malik A, Mellouk S, Nakamura K, Rogers MD, Szarfman A,
492		Gordon DM, Nussler AK, Aikawa M, Hoffman SL. 1992. Characterization of
493		Plasmodium falciparum sporozoite surface protein 2. Proc Natl Acad Sci U S A
494		89: 9176-9180.
495	15.	Wang R, Charoenvit Y, Corradin G, De La Vega P, Franke ED, Hoffman SL.
496		1996. Protection against malaria by <i>Plasmodium yoelii</i> sporozoite surface protein
497		2 linear peptide induction of CD4 ⁺ T cell- and IFN- γ -dependent elimination of
498		infected hepatocytes. J Immunol 157:4061-4067.

499	16.	Weiss WR, Good MF, Hollingdale MR, Miller LH, Berzofsky JA. 1989.
500		Genetic control of immunity to Plasmodium yoelii sporozoites. J Immunol
501		143: 4263-4266.
502	17.	Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, Camargo N, Daly
503		TM, Bergman LW, Kappe SH. 2008. A combined transcriptome and proteome
504		survey of malaria parasite liver stages. Proc Natl Acad Sci U S A 105:305-310.
505	18.	Speake C, Duffy PE. 2009. Antigens for pre-erythrocytic malaria vaccines:
506		building on success. Parasite Immunol 31: 539-546.
507	19.	Kaufmann SH, Hess J. 1999. Impact of intracellular location of and antigen
508		display by intracellular bacteria: implications for vaccine development.
509		Immunology letters 65: 81-84.
510	20.	Mazzaccaro RJ, Gedde M, Jensen ER, van Santen HM, Ploegh HL, Rock KL,
511		Bloom BR. 1996. Major histocompatibility class I presentation of soluble antigen
512		facilitated by Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A
513		93: 11786-11791.

514	21.	Teitelbaum R, Cammer M, Maitland ML, Freitag NE, Condeelis J, Bloom
515		BR. 1999. Mycobacterial infection of macrophages results in
516		membrane-permeable phagosomes. Proc Natl Acad Sci U S A 96:15190-15195.
517	22.	Garg N, Nunes MP, Tarleton RL. 1997. Delivery by Trypanosoma cruzi of
518		proteins into the MHC class I antigen processing and presentation pathway. J
519		Immunol 158: 3293-3302.
520	23.	Khan ZM, Ng C, Vanderberg JP. 1992. Early hepatic stages of Plasmodium
521		berghei: release of circumsporozoite protein and host cellular inflammatory
522		response. Infect Immun 60:264-270.
523	24.	Hugel FU, Pradel G, Frevert U. 1996. Release of malaria circumsporozoite
524		protein into the host cell cytoplasm and interaction with ribosomes. Mol Biochem
525		Parasitol 81: 151-170.
526	25.	Bongfen SE, Torgler R, Romero JF, Renia L, Corradin G. 2007. Plasmodium
527		berghei-infected primary hepatocytes process and present the circumsporozoite
528		protein to specific CD8 ⁺ T cells in vitro. J Immunol 178: 7054-7063.

529	26.	Miyakoda M, Kimura D, Yuda M, Chinzei Y, Shibata Y, Honma K, Yui K.
530		2008. Malaria-specific and nonspecific activation of CD8^+ T cells during blood
531		stage of <i>Plasmodium berghei</i> infection. J Immunol 181:1420-1428.
532	27.	Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR.
533		1994. T cell receptor antagonist peptides induce positive selection. Cell 76: 17-27.
534	28.	Barnden MJ, Allison J, Heath WR, Carbone FR. 1998. Defective TCR
535		expression in transgenic mice constructed using cDNA-based $\alpha\text{-}$ and $\beta\text{-}chain$
536		genes under the control of heterologous regulatory elements. Immunol Cell Biol
537		76: 34-40.
538	29.	Van Kaer L, Ashton-Rickardt PG, Ploegh HL, Tonegawa S. 1992. TAP1
539		mutant mice are deficient in antigen presentation, surface class I molecules, and
540		CD4 ⁻ 8 ⁺ T cells. Cell 71: 1205-1214.
541	30.	Kawabata Y, Udono H, Honma K, Ueda M, Mukae H, Kadota J, Kohno S,
542		Yui K. 2002. Merozoite surface protein 1-specific immune response is protective
543		against exoerythrocytic forms of Plasmodium yoelii. Infect Immun
544		70: 6075-6082.

545	31.	Ishino T, Yano K, Chinzei Y, Yuda M. 2004. Cell-passage activity is required
546		for the malarial parasite to cross the liver sinusoidal cell layer. PLoS biology
547		2: E4.
548	32.	Badovinac VP, Messingham KA, Jabbari A, Haring JS, Harty JT. 2005.
549		Accelerated CD8 ⁺ T-cell memory and prime-boost response after dendritic-cell
550		vaccination. Nat Med 11:748-756.
551	33.	Dudani R, Chapdelaine Y, Faassen Hv H, Smith DK, Shen H, Krishnan L,
552		Sad S. 2002. Multiple mechanisms compensate to enhance tumor-protective
553		$CD8^+$ T cell response in the long-term despite poor $CD8^+$ T cell priming initially:
554		comparison between an acute versus a chronic intracellular bacterium expressing
555		a model antigen. J Immunol 168:5737-5745.
556	34.	Udono H, Yamano T, Kawabata Y, Ueda M, Yui K. 2001. Generation of
557		cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate
558		protein 70. Int Immunol 13: 1233-1242.
559	35.	Huang Q, Richmond JF, Suzue K, Eisen HN, Young RA. 2000. In vivo
560		cytotoxic T lymphocyte elicitation by mycobacterial heat shock protein 70 fusion

561		proteins maps to a discrete domain and is CD4 ⁺ T cell independent. J Exp Med
562		191: 403-408.
563	36.	Gruring C, Heiber A, Kruse F, Ungefehr J, Gilberger TW, Spielmann T.
564		2011. Development and host cell modifications of <i>Plasmodium falciparum</i> blood
565		stages in four dimensions. Nat Commun 2:165.
566	37.	Sano G, Hafalla JC, Morrot A, Abe R, Lafaille JJ, Zavala F. 2001. Swift
567		development of protective effector functions in naive CD8 ⁺ T cells against
568		malaria liver stages. J Exp Med 194: 173-180.
569	38.	Rai D, Pham NL, Harty JT, Badovinac VP. 2009. Tracking the total CD8 T cell
570		response to infection reveals substantial discordance in magnitude and kinetics
571		between inbred and outbred hosts. J Immunol 183:7672-7681.
572	39.	Cockburn IA, Tse SW, Radtke AJ, Srinivasan P, Chen YC, Sinnis P, Zavala
573		F. 2011. Dendritic cells and hepatocytes use distinct pathways to process
574		protective antigen from plasmodium in vivo. PLoS Pathog 7:e1001318.
575	40.	Schmidt NW, Podyminogin RL, Butler NS, Badovinac VP, Tucker BJ,
576		Bahjat KS, Lauer P, Reyes-Sandoval A, Hutchings CL, Moore AC, Gilbert

577		SC, Hill AV, Bartholomay LC, Harty JT. 2008. Memory CD8 T cell responses
578		exceeding a large but definable threshold provide long-term immunity to malaria.
579		Proc Natl Acad Sci U S A 105:14017-14022.
580	41.	Sturm A, Amino R, van de Sand C, Regen T, Retzlaff S, Rennenberg A,
581		Krueger A, Pollok JM, Menard R, Heussler VT. 2006. Manipulation of host
582		hepatocytes by the malaria parasite for delivery into liver sinusoids. Science
583		313: 1287-1290.
584	42.	Amino R, Thiberge S, Martin B, Celli S, Shorte S, Frischknecht F, Menard R.
585		2006. Quantitative imaging of <i>Plasmodium</i> transmission from mosquito to
586		mammal. Nat Med 12: 220-224.
587	43.	Frevert U, Nardin E. 2008. Cellular effector mechanisms against Plasmodium
588		liver stages. Cell Microbiol 10:1956-1967.
589	44.	Cockburn IA, Amino R, Kelemen RK, Kuo SC, Tse SW, Radtke A,
590		Mac-Daniel L, Ganusov VV, Zavala F, Menard R. 2013. In vivo imaging of
591		CD8 ⁺ T cell-mediated elimination of malaria liver stages. Proc Natl Acad Sci U S
592		A 110: 9090-9095.

593	45.	Renggli J, Hahne M, Matile H, Betschart B, Tschopp J, Corradin G. 1997.
594		Elimination of P. berghei liver stages is independent of Fas (CD95/Apo-I) or
595		perforin-mediated cytotoxicity. Parasite Immunol 19:145-148.
596	46.	Chakravarty S, Baldeviano GC, Overstreet MG, Zavala F. 2008. Effector
597		$CD8^+$ T lymphocytes against liver stages of <i>Plasmodium yoelii</i> do not require γ
598		interferon for antiparasite activity. Infect Immun 76:3628-3631.
599	47.	Butler NS, Schmidt NW, Harty JT. 2010. Differential effector pathways
600		regulate memory CD8 T cell immunity against Plasmodium berghei versus P.
601		yoelii sporozoites. J Immunol 184:2528-2538.
602	48.	Trimnell A, Takagi A, Gupta M, Richie TL, Kappe SH, Wang R. 2009.
603		Genetically attenuated parasite vaccines induce contact-dependent CD8 ⁺ T cell
604		killing of Plasmodium yoelii liver stage-infected hepatocytes. J Immunol
605		183: 5870-5878.
606	49.	Trapani JA, Smyth MJ. 2002. Functional significance of the perforin/granzyme
607		cell death pathway. Nature Rev Immunol 2:735-747.

608	50.	Wohlleber D, Kashkar H, Gartner K, Frings MK, Odenthal M, Hegenbarth
609		S, Borner C, Arnold B, Hammerling G, Nieswandt B, van Rooijen N,
610		Limmer A, Cederbrant K, Heikenwalder M, Pasparakis M, Protzer U,
611		Dienes HP, Kurts C, Kronke M, Knolle PA. 2012. TNF-induced target cell
612		killing by CTL activated through cross-presentation. Cell reports 2:478-487.
613		

614 FIGURE LEGENDS

615 **Figure 1**

C1 C		•	e		. •	• • •	4	1		P 1 4	
616	Tho ov	nraccian	At 9	modal	ontiaan	in th		nlacm	01	t racomhingnt	PhA
010		DICSSIUI	ui a	mout	anuzun			DIASIII	U	l i ccompinant	I VA.
									-		

- 617 (A) Schematic representation of the transgenic PbA constructs used in this study. (B)
- 618 PbA-gfpOVA sporozoites, HepG2 cells infected with PbA-gfpOVA sporozoites in vitro,
- and infected RBCs (iRBC) were stained with Bodipy-TR-C₅-ceratide and DRAQ5, which
- 620 mark membrane structure and nuclei, respectively. Images were obtained using confocal
- 621 microscopy. Arrowheads indicate the margin of the RBC, and the scale bars indicate 5
- 622 μm.
- 623
- 624 **Figure 2**

625 OT-I cells protect against infection with sporozoites of OVA-expressing PbA.

- 626 B6 mice were inoculated with activated OT-I $CD8^+$ T cells (0–10⁷) (A, B) and infected
- 627 with sporozoites (300/mouse) of PbA-hsOVA, wild-type PbA (A), or PbA-gfpOVA (B) 2
- 628 days later. Alternatively, after transfer with OT-II CD4⁺ T cells (3×10^7 or 0), mice were
- 629 infected with PbA-hsOVA sporozoites (500/mouse) (C). Representative flow cytometry

630	profiles of PBLs from mice transferred with OT-I cells (1×10^7) (A, B) or OT-II cells (3×10^7) (A, B) or OT-II cells (A,
631	10^{7}) (C) are shown. The proportion of OT-I or OT-II cells within the total CD8 ⁺ or CD4 ⁺
632	T cell populations are indicated. Note that the levels of CD8 expression on activated T
633	cells are reduced as reported previously (38). The number in the upper left of each graph
634	indicates the number of transferred cells; the number in parentheses indicates the
635	proportion of OT-I cells in the total CD8 ⁺ T cell population in PBL at the time of infection
636	Parasitemia was monitored daily starting 4 days after infection. Values significantly
637	different ($p < 0.05$) from mice not receiving T cells are indicated (*). The experiments
638	were performed twice (B, C) or 3 times (A); representative data are shown.

640 **Figure 3**

641 TAP-dependent presentation of MHC I epitope by infected host cells.

B6 or TAP^{-/-} mice were inoculated (or not inoculated, for controls) with activated OT-I CD8⁺ T cells and infected with sporozoites (5×10^3) of PbA-hsOVA or PbA (A, B). The numbers in parentheses indicate the proportion of OT-I cells in the total CD8⁺ T cell population in PBL at the time of infection (A). Bone marrow (BM) chimeras were generated between B6 and TAP^{-/-} mice (as described in the Materials and Methods section), inoculated with OT-I cells, and infected with PbA-hsOVA sporozoites (C). Two

649 burden was determined by real-time PCR. The experiments were performed twice (A) or 650 3 times (B, C); representative data are shown. ns, not significant; *, p < 0.05; **, p < 0.01. 651 652 Figure 4 653 Clustering of OT-I cells around GFP⁺ infected hepatocytes during liver-stage 654 infection with PbA-gfpOVA B6 mice were transferred with activated DsRed/OT-I CD8⁺ T cells at a dose of 3×10^{6} (A, 655 C, D, F) or 1×10^7 (B, C-F), and were infected with PbA-gfpOVA sporozoites (1×10^4) . 656 Some mice did not receive DsRed/OT-I or were not infected with PbA-gfpOVA as 657 controls (E, F). Forty-eight hours after infection, the liver was imaged with TPM. The 2 658 659 dimensional projections of 3 dimensional imaging volumes are shown, and the scale bars indicate 10 µm (A, B). A still image of GFP⁺ cell disappearance while in contact with 660 661 OT-I cells is shown (A, right image; time-lapse image in supplementary Fig. 1). The 662 numbers of GFP⁺ cells and T-cell clusters were counted within a surface area of 75mm² using fluorescence microscopy (C, E). GFP⁺ cells and T-cell clusters were imaged in 3 663 dimensions using TPM, and the number of OT-I cells within each cluster was determined 664

days after infection, RNA was extracted from the liver of the infected mice, and parasite

665 using Imaris software (D, F). The number of OT-I cells were determined separately for clusters containing and not containing GFP⁺ cells (D). Bars indicate average. *, p < 0.05; 666 667 **, *p* < 0.01; ***, *p* < 0.0001. 668 Figure 5 669 670 Perforin and IFN- γ expressed in CD8⁺ T cells are dispensable for sterile immunity 671 at the liver stage of infection. Activated CD8⁺ T cells from perforin^{-/-}IFN- $\gamma^{-/-}$ OT-I, IFN- $\gamma^{-/-}$ OT-I, perforin^{-/-} OT-I, 672 673 wild-type OT-I mice, or no cells (-) were adoptively transferred into B6 mice, which were then infected with sporozoites (300/mouse) of PbA-hsOVA (A) or PbA-gfpOVA 674 675 (B), and the levels of parasitemia were monitored. Values significantly different (p < p676 0.05) from mice not receiving OT-I cells are indicated (*). In each graph, the number in parentheses indicates the proportion of OT-I cells in the total CD8⁺ T cell population in 677 678 PBL at the time of infection. The experiments were performed 3 times; representative 679 data are shown.

682 OVA-specific memory CD8⁺ T cells were protective against infection with
683 PbA-hsOVA.

684	B6 mice were immunized with OVA ₂₅₇₋₂₆₄ as described in the Materials and Methods
685	section. Two months later, the proportion of OVA-specific memory CD8^+ T cells was
686	determined by staining PBL with anti-CD8 mAb and OVA ₂₅₇₋₂₆₄ /H-2K ^b tetramer.
687	Representative flow cytometry profiles of PBLs from naive and immunized mice are
688	shown (A). Each bar in the graph shows the proportion of OVA-specific memory $\text{CD8}^+\text{ T}$
689	cells in total CD8 ⁺ T cells for an individual mouse (left axis) (B). The data are arranged
690	from left to right in order of high to low specific $CD8^+$ T cell ratios. These mice were
691	challenged by intravenous injection of PbA-hsOVA sporozoites (1,000/mouse).
692	Parasitemia was assessed 8 days after challenge; each dot shows the level of parasitemia
693	in an individual mouse (right axis). Data from 37 mice are summarized in (C). $* < 0.05\%$.
694	The experiments were performed 3 times; pooled data are shown.

(A) PbA-gfpOVA GFP OVA₂₅₇₋₂₆₄ **PbA-hsOVA** P.yoelii hsp70 OVA₃₂₃₋₃₃₉ OVA₂₅₇₋₂₆₄ **(B)** Sporozoite HepG2 iRBC Bodipy DRAQ5 GFP Merge

(B)

(A)

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$

GFP⁺ cells

(D)

(A) **(B) PbA-hsOVA PbA-gfpOVA** $Perforin^{\prime -} IFN \textbf{-} \gamma^{\prime -} OT \textbf{-} I$ 20 -²⁰] Perforin^{-/-} IFN-γ^{-/-} OT-I $(48.5 \pm 7.6 \%)$ 15 (53.8 ± 5.1 %) 15 1010 5 5 Û 20 $I\!FN\text{-}\gamma^{\not -} \, OT\text{-}I$ $IFN\text{-}\gamma^{-\!/}\text{-}OT\text{-}I$ 20 $(47.9 \pm 3.1 \%)$ $(42.8 \pm 3.0 \%)$ 15 15 10 10 5 5 * * Û Û Perforin^{-/-} OT-I 20 Perforin^{-/-} OT-I % Parasitemia 20 % Parasitemia $(49.5 \pm 8.0 \%)$ 15 $(41.3 \pm 7.9 \%)$ 15 -10 10 . 5 5 Û 0 OT-I 20 -OT-I 20 $(26.3 \pm 8.9 \%)$ $(60.7 \pm 8.8 \%)$ 15 15 10 10 5 5 Û Û (-) 20 • 20 (-) 15 15 10 10 5 5 0 Û 2 3 5 6 7 2 3 Û 1 4 Û 1 4 5 6 7 Days after infection Days after infection

1	1	1	£
t	٩	~	,
- 1			1

%	OVA257-264 specifi	С		
	CD8+T ceÎls	Challenged	Protected	% Protected
	>8.8	7	7	100 *
	8.8~1.1	26	8	30.8*
	<1.1	4	0	0