Reactivity of a nitrosyl ligand on dinuclear ruthenium hydrotris(pyrazolyl)borato complexes toward a NO molecule

Yasuhiro Arikawa,* Ayumi Ikeda, Naoki Matsumoto and Keisuke Umakoshi

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

A cationic mononitrosyl dinuclear ruthenium complex was prepared by removing one NO ligand of a dicationic dinitrosyl ruthenium complex using NaN₃. Reduction and oxidation reactions of the mononitrosyl complex led to the isolation of a neutral nitrosyl-bridged complex and a dicationic mononitrosyl complex, respectively, as expected from the cyclic voltammogram. According to the ¹⁰ electron count, their reactions with a second NO molecule resulted in an N–N coupling complex from the

nitrosyl-bridged complex and the dicationic dinitrosyl complex from the dicationic mononitrosyl complex.

Introduction

The NO ligand on transition metal complexes has attracted a great deal of attention because of its "non-innocent" property ¹⁵ (M–NO⁺, linear form; M–NO[•] and M–NO⁻, bent form). The transformations have been characterized by electrochemistry and IR, UV/Vis, and EPR spectroscopies,¹ but most of the reported complexes are mononitrosyl mononuclear systems. We have

found two neighboring NO ligands on a dinuclear ruthenium ²⁰ complex [{TpRu(NO)}₂(μ -Cl)(μ -pz)](BF₄)₂ (1: {Ru₂(NO)₂}¹²)² (Tp = HB(pyrazol-1-yl)₃) and its unprecedented redox behaviour (eqn (1)).³ Reduction of the dicationic dinitrosyl ruthenium **1** induced an N-N bond formation of the two NO ligands, affording

- an N–N coupling complex $[(TpRu)_2(\mu-Cl)\{\mu-N(=O)-N(=O)\}(\mu-25 pz)]$ (2: $\{Ru_2(NO)_2\}^{14}$).^{3a} The reversibility of this N-N bond was also observed. Treatment of **2** with protons gave an oxidobridged complex $[(TpRu)_2(\mu-Cl)(\mu-O)(\mu-pz)]$ (3), evolving N₂O. Double protonation of complex **3**, followed by exposure to NO gas, reformed complex **1**. These reactions indicate completion of 2^{3}
- ³⁰ the NO reduction cycle (2NO + 2H⁺ + 2e⁻ -> N₂O + H₂O).^{3b,c} Although NO disproportionation (3NO -> N₂O + NO₂) is a very common metal complex-mediated reaction,⁴ the reduction reaction of NO to N₂O and H₂O has been scarcely reported,^{3c,5} and is seen for metalloenzyme nitric oxide reductase (NOR).⁶

In this context, we are interested in the reactivity of a mononitrosyl ligand on dinuclear ruthenium complexes toward an

additional NO molecule, including the formation of the unusual N–N coupling complex **2**. For this purpose, at first a cationic mononitrosyl dinuclear ruthenium complex ⁴⁰ [{TpRu(NO)}{TpRu(NCMe)}(μ -Cl)(μ -pz)](BF₄) (4: {Ru₂(NO)}¹²) was synthesized by reaction of complex **1** with NaN₃ as an NO removing reagent⁷ in CH₃CN. This reaction depended on the reaction solvents. The redox reactions are also

45 Results and Discussion

described.

50

The mononitrosyl complex **4** was prepared by treatment of **1** with nucleophile azide (NaN_3) in CH₃CN to remove a NO ligand, followed by coordination of the solvent molecule (Scheme 1).

4 and **6** exhibit $v(N\alpha O)$ bands (**4**; 1883 cm⁻¹, **6**; 1898 cm⁻¹) which

Fig. 1 Molecular structures of the cation part of 4 (top), 5 (middle), and the cation part of 7 (bottom) with thermal ellipsoids at the 50% probability level. All hydrogen atoms except for O-Me (7) and solvent 5 molecules are omitted for clarity. Selected bond lengths (Å) and angles (°) for 4: Ru(1)–N(1) = 1.813(8), Ru(2)–N(2) = 2.015(10), O(1)–N(1) = 1.145(12), N(2)–C(1) = 1.126(14), Ru(1)–N(1)–O(1) = 166.1(9), Ru(2)–N(2)–C(1) = 166.9(10). Selected bond lengths (Å) and angles (°) for 5: Ru(1)–N(1) = 1.949(3), O(1)–N(1) = 1.209(5), Ru(1)–N(1)–Ru(1)* = 10 96.38(15). Selected bond lengths (Å) and angles (°) for 7: Ru(1)–O(1) = 1.992(3), O(1)–C(12) = 1.410(7), Ru(1)–O(1)–Ru(1)* = 104.97(18).

By column chromatography, complex **4** was isolated as a dark green solid in 96% yield, concomitant with a trace amount of a nitrosyl-bridged complex $[(TpRu)_2(\mu-Cl)(\mu-NO)(\mu-pz)]$ (5:

- ¹⁵ {Ru₂(NO)}¹³). But the use of CH₃OH instead of CH₃CN as the reaction solvent afforded complex **5** in 47% yield. In addition, two complexes, [{TpRu(NO)}{TpRu(OMe)}(μ -Cl)(μ -pz)](BF₄) (**6**: {Ru₂(NO)}¹¹; *ca.* 42%) and [(TpRu)₂(μ -Cl)(μ -OMe)(μ -pz)](BF₄) (**7**) (*ca.* 9.5%), were obtained. Complete purification
- ²⁰ of **6** and **7** was hampered by the fact that they are inseparable mutual complexes. The NO elimination reaction in CH₃OH is a complicated reaction, because the redox processes are required for the formation of **5**, **6**, and **7**. Although the ¹H NMR spectra of **5 7** indicate paramagnetism, the ¹H NMR spectrum of **4** shows
- ²⁵ diamagnetic signals assignable to distinct seven sets of peaks of the pyrazolyl groups (two Tp and one bridging pyrazolyl ligands), indicating an unsymmetrical dinuclear complex. The paramagnetic character of **7** indicates a weak antiferromagnetic coupling, as shown in a hydroxido-bridged dinuclear ruthenium
 ³⁰ complex [(TpRu)₂(µ-Cl)(µ-OH)(µ-pz)](BF₄).^{3b} The IR spectra of

Fig. 2 Cyclic voltammogram of 4 (0.1 mM) in CH₃CN containing ${}^{n}Bu_{4}NPF_{6}$ (0.1 M); working electrode: Pt; counter electrode: Pt; reference: 35 Ag/AgCl; scan rate 50 mVs⁻¹.

are lower frequencies than that of 1,^{3a} together with a v(C α N) band (4; 2264 cm⁻¹). The FAB-MS spectra of 4 - 7 exhibit the ⁴⁰ parent molecular ion signals, respectively.

The structures of **4**, **5**, and **7** were confirmed by single-crystal X-ray diffraction analyses (Fig. 1). All three structures are dinuclear ruthenium complexes bridged by a chlorido and a pyrazolato ligand, but furthermore NO (for **5**) or OMe (for **7**) ⁴⁵ bridges are seen. For complex **7**, two NO ligands are removed. In complex **4**, each ruthenium is coordinated by a NO and a MeCN ligand, respectively, exhibiting the unsymmetrical structure. The N–O bond distance of **4** (1.145(12) Å; terminal) is shorter than that of **5** (1.209(5) Å; bridging), which is reasonable.

⁵⁰ The order of the Ru–Ru distances is **4** (3.7241(17) Å) > **7** (3.1596(6) Å) > **5** (2.9051(3) Å). The Ru–O distances of **7** (1.992(3) Å) are similar to those of the hydroxido-bridged complex [(TpRu)₂(μ -Cl)(μ -OH)(μ -pz)](BF₄) (2.0038(19) Å).^{3b}

To check the redox behavior of **4**, the cyclic voltammogram ⁵⁵ was measured (Fig. 2). The CV of **4** features two reversible redox couple at -0.150 V and 0.750 V ($E_{1/2}$ vs. Ag/AgCl). Reductive treatment of **4** with KO₂ in CH₂Cl₂ gave the nitrosylbridged complex **5** in 61% yield, releasing the MeCN ligand. Moreover, oxidation of **5** with AgBF₄ in CH₃CN reformed **4** in

- ⁶⁵ {Ru₂(NO)}¹¹) in 65% yield. In the IR spectrum of 8, a ν(NαO) band (1898 cm⁻¹) appears at higher frequency than that of 4, because of the oxidation reaction. The paramagnetic complex 8 was confirmed by the X-ray structural analysis of the OH₂ ligated analog (complex 8'), where an OH₂ ligand instead of the ⁷⁰ acetonitrile ligand coordinated to the ruthenium atom. Complex

8' was prepared by precipitation from reaction of the nitrosylbridged complex **5** with AgBF₄ in wet benzene. However, when

5 Fig. 3 Molecular structure of the cation part of 8' with thermal ellipsoids at the 50% probability level. Minor sets of the disordered atoms and all hydrogen atoms are omitted for clarity.

¹⁰ this oxidation reaction was carried out in CH₃CN, only the 1 e⁻ oxidation product **4** was isolated. The crystallographically determined structure of **8'** is shown in Fig. 3. Unfortunately, the crystallographic disorder between N α O and OH₂ ligands causes uncertainty of the metric structural parameters, but the presence ¹⁵ of these two ligands was established.

With the desired mononitrosyl complexes in hand, their reactions to a second NO molecule were carried out (Scheme 3). Complex 8' $({Ru_2(NO)}^{11})$ was reacted with NO (gas) for 3 h to give the dicationic dinitrosyl complex 1 ($\{Ru_2(NO)_2\}^{12}$) as a red-20 brown solid in 50% yield, where the OH₂ ligand of 8' was replaced by a NO molecule. Treatment of the NO-bridged complex 5 ($\{Ru_2(NO)\}^{13}$) with NO (gas) for 3 h gave the N-N coupling complex 2 ($\{Ru_2(NO)_2\}^{14}$) as a yellow-brown solid in 67% yield, which was purified by column chromatography. 25 Although the reaction mechanism is unclear, transformation of the bridging NO ligand to the N-N coupling form is interesting. In contrast to this, transformation of two NO molecules on dinuclear ruthenium complexes, affording trans-hyponitrite complexes, has been reported.⁸ On the other hand, reaction of the ³⁰ cationic mononitrosyl ruthenium 4 ($\{Ru_2(NO)\}^{12}$) with NO (gas) did not proceed sufficiently to recover the starting complex 4 (58%), along with the formation of 1 (13%) and 2 (2.4%) which should be formed after initial redox reaction of 4 with NO radical.

The reactivity of **4** indicated that the reaction scheme $35 (\{Ru_2(NO)\}^{12} (4) + NO -> \{Ru_2(NO)_2\}^{13})$ did not proceed, because the CV of **2** showed a reversible two-electron redox couple ((2: { $Ru_2(NO)_2$ }¹⁴) / (1: { $Ru_2(NO)_2$ }¹²)) at 0.389 V ($E_{1/2}$ vs. Ag/AgCl),^{3a} indicating that the putative dinitrosyl complex { $Ru_2(NO)_2$ }¹³ is unstable. In addition, the difficulty in ⁴⁰ substituting the MeCN ligand of **4** may account for this low reactivity.

Conclusions

In conclusion, we succeeded in isolating the neutral nitrosylbridged complex and the cationic and dicationic mononitrosyl ⁴⁵ complexes, and showed their interconversion by chemical redox reactions. As expected from the electron count, the reactions of the nitrosyl-bridged complex **5** ({Ru₂(NO)}¹³) and the dicationic mononitrosyl complex **8'** ({Ru₂(NO)}¹¹) with a second NO molecule resulted in the N–N coupling complex **2** ({Ru₂(NO)₂}¹⁴) ⁵⁰ and the dicationic dinitrosyl complex **1** ({Ru₂(NO)₂}¹²), respectively. On the other hand, the NO addition reaction of the cationic mononitrosyl complex **4** ({Ru₂(NO)}¹²) did not proceed.

Experimental

General

SAll reactions were carried out under N₂ or Ar unless otherwise noted and subsequent work-up manipulations were performed in air. The starting material [{TpRu(NO)}₂(µ-Cl)(µ-pz)](BF₄)₂ (1) was prepared according to a previously reported method.^{3a} Organic solvents and all other reagents were commercially available and used without further purification. NMR spectra were recorded on a Varian Gemini-300 and a JEOL JNM-AL-400 spectrometers. ¹H NMR chemical shifts in CDCl₃ or CD₃CN are quoted with respect to TMS and the deuterated solvent signal, respectively, and ¹³C{¹H} NMR chemical shifts are quoted with f⁶⁵ respect to the deuterated solvent signal. Infrared spectra in KBr pellets were obtained on JASCO FT-IR-4100 spectrometers. Fast atom bombardment mass spectra (FAB-MS) was recorded on a JEOL JMS-700N spectrometer. Elemental analyses (C, H, N) were performed on a Perkin Elmer 2400II elemental analyzer.

70

Reactions of [{TpRu(NO)}2(µ-Cl)(µ-pz)](BF4)2 (1) with NaN3

NaN₃ (5.1 mg, 0.078 mmol) was added to a solution of complex **1** (50.0 mg, 0.0518 mmol) in CH₃CN (10 mL), followed by stirring for 3 h at room temperature. After evaporation to dryness, the ⁷⁵ residue was separated on column chromatography with a silica gel using a CH₂Cl₂ eluent to give [(TpRu)₂(μ -Cl)(μ -NO)(μ -pz)] (**5**) as an ocher solid (trace) and a CH₂Cl₂-acetone (10/1) eluent to give [{TpRu(NO)}{TpRu(NCMe)}(μ -Cl)(μ -pz)](BF₄) (**4**) as a dark green solid (44.2 mg, 96%).

⁸⁰ When this reaction was performed in a CH₃OH reaction solvent (10 mL) using complex **1** (30.0 mg, 0.031 mmol) and NaN₃ (6.1 mg, 0.094 mmol), column chromatographic purification with a silica gel afforded complex **5** (11.1 mg, 47%; a CH₂Cl₂ eluent), [(TpRu)₂(μ -Cl)(μ -OMe)(μ -pz)](BF₄) (**7**) as a

ss green solid (2.5 mg, *ca.* 9.5%; a CH_2Cl_2 -acetone (20/1) eluent), and [{TpRu(NO)}{TpRu(OMe)}(\mu-Cl)(\mu-pz)](BF₄) (**6**) as a brown solid (11.4 mg, *ca.* 42%; a CH_2Cl_2 -acetone (10/1) eluent). Complete purification of **6** and **7** was hampered by the fact that they are inseparable mutual complexes.

90 4: IR (KBr, pellet): ν(BH) 2520 (w); ν(C=N) 2264 (w); ν(N=O)

1883 (s); v(BF) 1113–1053 (s) cm⁻¹. ¹H NMR (CDCl₃): δ 8.43 (d, J = 2.2 Hz, 1H, pz), 8.14 (d, J = 1.8 Hz, 1H, pz), 8.08 (d, J = 2.2 Hz, 1H, pz), 7.97 (d, J = 2.4 Hz, 1H, pz), 7.87 (d, J = 2.4 Hz, 1H, pz), 7.81 (d, J = 2.4 Hz, 1H, pz), 7.78 (d, J = 2.3 Hz, 1H, pz), s 7.77 (d, J = 2.4 Hz, 1H, pz), 7.75 (d, J = 2.3 Hz, 1H, pz), 7.60 (d, J = 1.8 Hz, 1H, pz), 7.15 (d, J = 2.0 Hz, 1H, pz), 7.03 (d, J = 2.4 Hz, 1H, pz), 6.63 (t, J = 2.4 Hz, 1H, pz), 6.51 (t, J = 2.4 Hz, 1H, pz), 6.35

- (t, J = 2.3 Hz, 1H, pz), 6.34 (t, J = 2.3 Hz, 1H, pz), 6.24 (t, J = 2.3¹⁰ Hz, 1H, pz), 6.23 (t, J = 2.3 Hz, 1H, pz), 6.15 (t, J = 2.2 Hz, 1H, pz), 2.44 (s, 3H, CH₃CN). ¹³C{¹H} NMR (CD₃CN): δ 145.6 (pz),
- 145.2 (pz), 145.1 (pz), 144.9 (pz), 144.8 (pz), 144.6 (pz), 143.9 (pz), 143.2 (pz), 139.7 (pz), 139.2 (pz), 138.3 (pz) 137.6 (pz), 137.4 (pz), 137.1 (pz), 110.2 (pz), 109.4 (pz), 108.6 (pz), 108.2 (pz), 107.4 (pz), 107.4 (pz), 107.2 (pz), 126.2 (CH CN), 5.22
- ¹⁵ (pz), 108.1 (pz), 107.4 (pz), 107.3 (pz), 126.3 (CH₃CN), 5.23 (CH₃CN). FAB-MS (m/z): 802.2 ([M]⁺), 761.2 ([M (CH₃CN)]⁺). Elemental analysis (%) calcd for C₂₃H₂₆N₁₆B₃ClF₄ORu₂: C 31.09, H 2.95, N 25.22; found: C 30.91, H 2.76, N 24.95.
- ²⁰ **5**: IR (KBr, pellet): v(BH) 2485 (w) cm⁻¹. FAB-MS (m/z): 761.1 ([M]⁺), 694.0 ([M pz]⁺), 528.2 ([Tp₂Ru]⁺). Elemental analysis (%) calcd for C₂₁H₂₃N₁₅B₂ClORu₂: C 33.16, H 3.05, N 27.62; found: C 33.62, H 2.86, N 27.24.
- 6: IR (KBr, pellet): v(BH) 2518 (w); v(N≡O) 1898 (s); v(BF) ²⁵ 1120–1052 (s) cm⁻¹. FAB-MS (m/z): 792.0 ([M]⁺), 762.0 ([M – (NO)]⁺).

7: IR (KBr, pellet): v(BH) 2514 (w); v(BF) 1120–1050 (s) cm⁻¹. FAB-MS (m/z): 762.0 ([M]⁺).

$_{30}$ Redox reactions of [{TpRu(NO)}{TpRu(NCMe)}(\mu-Cl)(\mu-pz)](BF_4) (4) and [(TpRu)_2(\mu-Cl)(\mu-NO)(\mu-pz)] (5)

 KO_2 (7.7 mg, 0.11 mmol) was added to a solution of complex 4 (92.2 mg, 0.104 mmol) in CH_2Cl_2 (10 mL), and the mixture was stirred for 17 h at room temperature. After addition of KO_2 (7.6 ³⁵ mg, 0.11 mmol) and stirring for a further 7 h, column

chromatographic purification with a silica gel afforded complex 5 (48.4 mg, 61%) using a CH₂Cl₂ eluent.

To a CH_2Cl_2 (10 mL) solution of complex 4 (50.0 mg, 0.0563 mmol) was added $AgBF_4$ (11.0 mg, 0.0565 mmol) in benzene

⁴⁰ (1.0 mL). After the mixture was stirred overnight and evaporated to dryness, the residue was extracted with acetone, followed by filtration. After evaporation, the residue was washed with benzene and a small amount of CH_2Cl_2 to give [{TpRu(NO)}{TpRu(NCMe)}(\mu-Cl)(\mu-pz)](BF_4)_2 (**8**) as a purple 45 solid (35.9 mg, 65%).

To a CH₃CN (10 mL) solution of complex **5** (25.0 mg, 0.0329 mmol) was added AgBF₄ (6.4 mg, 0.033 mmol). After the mixture was stirred overnight and evaporated to dryness, the residue was separated by column chromatography with a silica ⁵⁰ gel using a CH₂Cl₂-acetone (10/1) eluent to give complex **4** (27.5

- mg, 94%). On the other hand, the use of a wet benzene reaction solvent (5.0 mL), complex 5 (25.0 mg, 0.0329 mmol), and AgBF₄ (12.8 mg, 0.0658 mmol) resulted in a dark red purple precipitate. After stirring for 4 h and decantation of the mixture, the
- ⁵⁵ precipitate was washed several times with benzene to yield $[{TpRu(NO)}{TpRu(OH_2)}(\mu-Cl)(\mu-pz)](BF_4)_2$ (8') as a redpurple solid (29.3 mg, 94%).

8: IR (KBr, pellet): v(BH) 2523 (w); v(N=O) 1898 (s); v(BF) 1121–1053 (s) cm⁻¹. FAB-MS (m/z): 802.2 ([M]⁺), 761.1 ([M –

- 60 (CH₃CN)]⁺). Elemental analysis (%) calcd for C₂₃H₂₆N₁₆B₄ClF₈ORu₂: C 28.32, H 2.69, N 22.98; found: C 28.55, H 2.90, N 23.04.
- **8'**: IR (KBr, pellet): v(BH) 2543 (w); v(N=O) 1915 (s); v(BF) 1122–1053 (s) cm⁻¹. FAB-MS (m/z): 778 ([M-1]⁺), 761.1 ([M –
- 65 (OH₂)]⁺), 694.0 ([M (OH₂) pz]⁺). Elemental analysis (%) calcd for C₂₄H₃₁N₁₅B₄Cl₇F₈O₂Ru₂: C 23.88, H 2.59, N 17.40; found: C 24.04, H 2.27, N 17.87.

In a Schlenk flask, complex **8'** (32.0 mg, 0.0336 mmol) was dissolved in distilled CH₂Cl₂ (10 mL), followed by freeze-pump-thaw cycling for three times. After the cycling, NO gas was ⁷⁵ introduced into the Schlenk flask through a column containing KOH pellets and through an acetone/liquid N₂ (-78 °C) cooled trap to remove impurities. The solution was exposed to NO gas for 3 h and evaporated to dryness, followed by washing with CH₂Cl₂. The resulting red-brown powder was crystallized from ⁸⁰ CH₃CN/ether to afford [{TpRu(NO)}₂(µ-Cl)(µ-pz)](BF₄)₂ (1) (16.2 mg, 50%).

Following analogous procedures to those above, reaction of complex **5** (30.7 mg, 0.0404 mmol) with NO gas in distilled CH₂Cl₂ (10 mL) afforded [(TpRu)₂(μ-Cl){μ-N(=O)-N(=O)}(μ-85 pz)] (**2**) (21.5 mg, 67%), which was purified by column chromatography.

A solution of complex **4** (41.0 mg, 0.0461 mmol) in distilled CH₂Cl₂ (10 mL) was exposed to NO gas according to the method described above. After filtration, column chromatographic ⁹⁰ purification with a silica gel gave unreacted complex **4** (23.7 mg, 58%), complex **1** (6.0 mg, 13%), and complex **2** (0.9 mg, 2.4%).

Single-crystal X-ray structural determinations

The crystallographic data are summarized in Table 1. X-ray 95 quality single crystals were obtained from THF/ether (for $4 \cdot (C_4 H_8 O)_3),$ CH₃CHCl₂/MeOH (for **5** \cdot (MeOH)_{1.33} \cdot (CH₃CHCl₂)_{0.33}), CH₂ClCH₂Cl/ether (for $7 \cdot (CH_2ClCH_2Cl))$, and $CH_2Cl_2/hexane$ (for $8' \cdot (CH_2Cl_2)_3$), respectively. Diffraction data were collected at -180 °C under a 100 stream of cold dinitrogen gas on a Rigaku RA-Micro7 HFM instrument equipped with a Rigaku Saturn724+ CCD detector by using graphite-monochromated Mo Ka radiation. The intensity images were obtained at exposure of 8 s/° (4 · (C₄H₈O)₃ and 7.(CH₂ClCH₂Cl)), 16 s/° (5.(MeOH)_{1.33}.(CH₃CHCl₂)_{0.33}), and 4 105 s/° (8'·(CH₂Cl₂)₃). The frame data were integrated using a Rigaku CrystalClear program package, and the data sets were corrected for absorption using REQAB program.

The calculations were performed with a CrystalStructure software package. The structures were solved by direct methods (for $5 \cdot (MeOH)_{1.33} \cdot (CH_3CHCl_2)_{0.33}$, $7 \cdot (CH_2ClCH_2Cl)$, and $8' \cdot (CH_2Cl_2)_{3}$) and Patterson methods (for $4 \cdot (C_4H_8O)_3$), and refined on F^2 by the full-matrix least squares methods. Anisotropic refinement was applied to all non-hydrogen atoms except for three THF crystal solvents and a BF₄ group in

 $4 \cdot (C_4H_8O)_3$, and the disordered minor positions (NO and O atoms) and fluorine atoms of two BF₄ groups in $8' \cdot (CH_2Cl_2)_3$. For $4 \cdot (C_4H_8O)_3$, three fluorine atoms of a BF₄ group were disordered with an occupancy factor of 0.5/0.5. Restraints were

	4·(C ₄ H ₈ O) ₃	5-(MeOH) _{1.33} -(CH ₃ CHCl ₂) _{0.33}	7·(CH ₂ ClCH ₂ Cl)	8'•(CH ₂ Cl ₂) ₃
Formula	$C_{35}H_{50}N_{16}B_3ClF_4O_4Ru_2$	C ₂₃ H _{29.67} N ₁₅ B ₂ Cl _{1.67} O _{2.33} Ru ₂	$C_{24}H_{30}N_{14}B_3Cl_3F_4ORu_2$	$C_{24}H_{31}N_{15}B_4Cl_7F_8O_2Ru_2$
Fw	1104.90	836.50	947.52	1207.15
Cryst system	Triclinic	Hexagonal	Monoclinic	Monoclinic
10 Space group	<i>P</i> -1 (No. 2)	<i>P</i> 6 ₃ / <i>m</i> (No. 176)	$P2_1/m$ (No. 11)	$P2_1/c$ (No. 14)
Color of crystal	Dark green	Dark brown	Dark brown	Dark purple
Crystal size (mm)	0.10 x 0.10 x 0.05	0.30 x 0.25 x 0.05	0.15 x 0.07 x 0.04	0.23 x 0.21 x 0.13
a (Å)	11.597(5)	19.3345(5)	9.2986(15)	11.2451(15)
b (Å)	11.793(5)	19.3345(5)	14.618(3)	11.8268(15)
15 C (Å)	17.685(6)	14.6049(4)	13.390(3)	33.225(5)
α (deg)	77.253(16)	90	90	90
β (deg)	75.450(17)	90	100.519(3)	98.519(3)
γ (deg)	84.730(16)	120	90	90
$V(Å^{3})$	2281.8(16)	4728.2(3)	1789.5(5)	4369.9(10)
20 Z	2	6	2	4
$\rho_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1.608	1.763	1.758	1.835
μ (cm ⁻¹)	7.944	11.522	11.334	12.004
$2\theta_{\rm max}$ (deg)	54.8	54.9	54.9	54.9
No. of all reflns collected	18577	30479	14890	32374
25 No. of unique reflns	10180	3746	4230	9940
$R_{\rm int}$	0.0545	0.0197	0.0258	0.0297
No. of obsd reflns ^a	6595	3504	3692	8449
No. of parameters	494	228	257	563
$R_1^{a,b}$	0.0980	0.0255	0.0422	0.0571
30 R_w (all data) ^c	0.2782	0.0720	0.1125	0.1521
GOF (all data) ^{d}	1.067	1.045	1.044	1.053

 $Table 1 Crystallographic data for 4 \cdot (C_4H_8O)_3, 5 \cdot (MeOH)_{1.33} \cdot (CH_3CHCl_2)_{0.33}, 7 \cdot (CH_2ClCH_2Cl), and 8' \cdot (CH_2Cl_2)_3 + (CH$

 ${}^{a} I > 2\sigma(I). {}^{b} R_{1} = \Sigma ||Fo| - |Fc||/\Sigma |Fo|. {}^{c} Rw = \{\Sigma w (Fo^{2} - Fc^{2})^{2}/\Sigma w (Fo^{2})^{2}\}^{1/2}. {}^{d} \text{GOF} = [\{\Sigma w (Fo^{2} - Fc^{2})^{2}/(N_{o} - N_{p})]^{1/2}, \text{ where } No \text{ and } Np \text{ denote the number of data and parameters.} \}$

applied to BF_4 and three THF atoms. For $_{35}$ 5·(MeOH)_{1.33}·(CH₃CHCl₂)_{0.33}, one MeOH, one-third MeOH, and one-third CH₃CHCl₂ crystal solvents are included. The latter two are located in the special positions, where the oxygen atom of the MeOH crystal solvent is disordered over three positions and for CH₃CHCl₂ crystal solvent the carbon and chlorine atoms are

- ⁴⁰ disordered over two and three positions, respectively. Three protons of the OMe group and the CH₂ClCH₂Cl crystal solvent in $7 \cdot (CH_2ClCH_2Cl)$ are disordered over two positions with an occupancy factor of 50:50. For $8' \cdot (CH_2Cl_2)_3$, there was a disorder between N=O group and O (OH₂) atom with an
- ⁴⁵ occupancy factor of 0.7/0.3. Moreover, three fluorine atoms on each of the two BF₄ groups were disordered with an occupancy factor of 0.7/0.3. Restraints were applied to two BF₄ and three CH₂Cl₂ atoms in **8'**·(CH₂Cl₂)₃. Hydrogen atoms for all structures were put at calculated positions, except for B-H (**8'**·(CH₂Cl₂)₃),
- ⁵⁰ while those of the OH₂ ligand (8'·(CH₂Cl₂)₃) and the crystal solvent molecules (4·(C₄H₈O)₃, 5·(MeOH)_{1.33}·(CH₃CHCl₂)_{0.33}, and 7·(CH₂ClCH₂Cl)) were not included in the calculations.

Acknowledgements

This work was supported by JSPS KAKENHI grant number 55 22685008 and by a Grant-in-Aid for Scientific Research from Nagasaki University.

Notes and references

Division of Chemistry and Materials Science, Graduate School of

 Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan. Fax: +81-95-819-2684; E-mail: arikawa@nagasaki-u.ac.jp
 † CCDC 939832-939835. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c3dt51319j

- 65 1 (a) G. K. Lahiri and K. Wolfgang, *Dalton Trans.*, 2010, **39**, 4471–4478; (b) F. Roncaroli, M. Videla, L. D. Slep and J. A. Olabe, *Coord. Chem. Rev.*, 2007, **251**, 1903–1930; (c) S. Sarkar, B. Sarkar, N. Chanda, S. Kar, S. M. Mobin, J. Fiedler, W. Kaim and G. K. Lahiri, *Inorg. Chem.*, 2005, **44**, 6092–6099; (d) J. A. McCleverty, *Chem.*
- 70 *Rev.*, 2004, **104**, 403–418; (e) R. G. Serres, C. A. Grapperhaus, E. Bothe, E. Bill, T. Weyhermüller, F. Neese and K. Wieghardt, *J. Am. Chem. Soc.*, 2004, **126**, 5138–5153.
- 2 To grasp the redox states better, the modified notation $\{M_2(NO)_x\}^n$ based on the Enemark-Feltham electron counting formalism is ⁷⁵ described, where *n* denotes the number of electrons in the two metal d and π^*_{NO} orbitals (or *n* represents the number of d electrons on the two metals when the NO is formally considered to be NO⁺).
- 3 (a) Y. Arikawa, T. Asayama, Y. Moriguchi, S. Agari and M. Onishi, J. Am. Chem. Soc., 2007, 129, 14160–14161; (b) Y. Arikawa, N.
- Matsumoto, T. Asayama, K. Umakoshi and M. Onishi, *Dalton Trans.*, 2011, **40**, 2148–2150; (c) Y. Arikawa and M. Onishi, *Coord. Chem. Rev.*, 2012, **256**, 468–478.
- 4 (a) G. B. Richter-Addo and P. Legzdins, *Metal Nitrosyls*, Oxford University Press, New York, 1992; (b) P. C. Ford and I. M. Lorkovic,
- 85 Chem. Rev., 2002, **102**, 993–1017; (c) T. W. Hayton, P. Legzdins and W. B. Sharp, Chem. Rev., 2002, **102**, 935–991; (d) W. B. Tolman, Activation of Small Molecules, Wiley-VCH, Weinheim, 2006.
- 5 S. Zheng, T. C. Berto, E. W. Dahl, M. B. Hoffman, A. L. Speelman and N. Lehnert, *J. Am. Chem. Soc.*, 2013, **135**, 4902–4905.
- 6 (a) I. M. Wasser, S. de Vries, P. Moënne-Loccoz, I. Schröder and K.
 D. Karlin, *Chem. Rev.*, 2002, **102**, 1201–1234; (b) B. A. Averill,
 Chem. Rev., 1996, **96**, 2951–2964; (c) P. Girsch and S. de Vries,

Biochim. Biophys. Acta, 1997, 1318, 202–216; (d) J. Hendriks, A.
Warne, U. Gohlke, T. Haltia, C. Ludovici, M. Lübben and M. Saraste, Biochemistry, 1998, 37, 13102–13109; (e) E. Pinakoulaki, S.
Gemeinhardt, M. Saraste and C. Varotsis, J. Biol. Chem., 2002, 277,

- ⁵ 23407–23413; (f) W. G. Zumft, J. Inorg. Biochem., 2005, 99, 194–215; (g) P. Tavares, A. S. Pereira, J. J. G. Moura and I. Moura, J. Inorg. Biochem., 2006, 100, 2087–2100; (h) T. Hino, Y. Matsumoto, S. Nagano, H. Sugimoto, Y. Fukumori, T. Murata, S. Iwata and Y. Shiro, Science, 2010, 330, 1666–1670. (i) N. Xu, J. Yi and G. B.
- 10 Richter-Addo, *Inorg. Chem.*, 2010, **49**, 6253–6266; (j) M. P. Schopfer, J. Wang and K. D. Karlin, *Inorg. Chem.*, 2010, **49**, 6267–6282.
- 7 F. Bottomely, Acc. Chem. Res., 1978, 11, 158–163.
- 8 (a) H.-C. Böttcher, M. Graf, K. Mereiter and K. Kirchner,
 15 Organometallics, 2004, 23, 1269–1273; (b) T. Mayer, P. Mayer and
 H.-C. Böttcher, J. Organomet. Chem., 2012, 700, 41–47.