Association of periodontitis with carotid artery intima-media thickness and arterial stiffness in community-dwelling people in Japan

Subtitle: Periodontitis and early stage atherosclerosis

Hideaki Hayashida^a*; Toshiyuki Saito^a**; Koji Kawasaki^b; Masayasu Kitamura^a; Reiko Furugen^a; Takahiro Iwasaki^a; Yoshiko Hayashida^c, Mio Nakazato^d; Takaharu Sekita^d; Noboru Takamura^e; Takahiro Maeda^d a Department of Oral Health, Nagasaki University Graduate School of Biomedical Sciences b Community Medical Network Center, Nagasaki University Hospital

c Dental Hygiene Office, Nagasaki University Hospital

d Department of Island and Community Medicine, Nagasaki University

Graduate School of Biomedical Sciences

e Department of Radiation Epidemiology, Nagasaki University Graduate School of Biomedical Sciences *Corresponding author

**Equal to corresponding author

Word Counts: Abstract: 264 words; Main text: 3,019 words (excluding title pages, tables and references); References: 37; Figure: 1; Tables: four; Online-only supplementary materials.

Department of Oral Health, Nagasaki University Graduate School of Biomedical

Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan

Tel: 81-95-819-7663

Fax: 81-95-819-7665

E-mail: hide@nagasaki-u.ac.jp

1 Abstract

Objective:

3	Recent studies have suggested an association between periodontitis and
4	atherosclerosis; however, the relationship between periodontal status and arterial
5	alterations should be clarified. The purpose of this study was to examine
6	associations between periodontal status and carotid intima-media thickness
7	(cIMT) and arterial stiffness using the cardio-ankle vascular index (CAVI) in
8	community dwellers.
9	Methods:
10	A community-based cross-sectional study of 1,053 subjects ≥ 40 years with 10
11	teeth or more was conducted in Goto, Japan from 2008 to 2010.
12	Results:
13	In a multiple linear regression analysis adjusted for age, sex, number of present
14	teeth, and other confounders, each 1-mm increase in the mean periodontal pocket
15	depth corresponded to a 0.02-mm increase in the maximal cIMT (β = 0.018; P =
16	0.049) and also to a 0.1 increase in mean CAVI ($\beta = 0.133$; $P = 0.040$). In addition,

1	each 1-mm increase in the mean periodontal attachment loss corresponded to a
2	0.01-mm increase in the maximal cIMT (β = 0.013; <i>P</i> = 0.040). A multiple logistic
3	regression analysis revealed that each 1-mm increase in mean periodontal pocket
4	depth was associated with an increased risk of a maximal cIMT > 1 mm (adjusted
5	odds ratio [OR], 1.430; 95% confidence interval [CI], 1.067-1.918; P = 0.017) and
6	mean CAVI of ≥ 8 (OR, 1.323; 95% CI, 1.0031.743; P = 0.047). Furthermore, each
7	1-mm increase in mean periodontal attachment loss was associated with an
8	increased risk of a maximal cIMT of >1 mm (OR, 1.251; 95% CI, 1.032-1.516; <i>P</i> =
9	0.022).
10	Conclusion:
11	A linear, dose-dependent relationship was found between periodontal pocket
12	depth, cIMT, and arterial stiffness.
13	
14	Keywords: Periodontitis; Carotid intima-media thickness; Cardio-ankle vascular
15	index; Epidemiology

1 1. Introduction

2	Since 1989, many studies have suggested an association between
3	periodontal disease and cardiovascular or cerebrovascular diseases [1-3].
4	However, the mechanism of this association has not been sufficiently clarified [4].
5	Atherosclerosis is a well known leading cause of vascular diseases and is
6	considered to be an inflammatory disorder of the arteries. Periodontal disease is a
7	chronic inflammatory disease characterized by the destruction of supportive
8	connective tissues surrounding the roots of teeth in response to subgingival
9	infection with various periodontal pathogens, mainly Gram-negative anaerobes.
10	Recent evidence has shown that low-grade inflammation such as that occurring
11	in periodontal disease may play a role in atherosclerosis [5].
12	Several recent studies have suggested an association between periodontal
13	disease and markers of subclinical atherosclerosis used to assess morphological
14	abnormalities, such as carotid intima-media thickness (cIMT) and carotid plaque,
15	as well as functional abnormalities such as pulse-wave velocity (PWV) and
16	flow-mediated vasodilation (FMD) of the brachial artery induced by reactive

1	hyperemia [6-15]. Thus, the relationship between periodontal disease and
2	atherosclerosis is well known, but it has been little demonstrated
3	epidemiologically in Japan. The cardio-ankle vascular index (CAVI) has recently
4	been developed as a new tool to assess arterial stiffness of the aorta, femoral
5	artery, and tibial artery [16] and is an appropriate atherosclerosis screening tool
6	[17]. However, no studies have investigated the relationship between the CAVI
7	and periodontal status. The purpose of this study was to clarify whether
8	periodontal status was associated with two subclinical markers of early= stage
9	atherosclerosis, namely cIMT and arterial stiffness using the CAVI, in
10	community-dwelling Japanese adults.
11	
12	
13	2. Methods
14	2.1 Study population
15	We enrolled 2,029 subjects (766 men and 1263 women) aged ≥ 40 years

1	and 2010 with an oral assessment conducted in Goto City, which is comprised of > $$
2	60 islands located about 100 km off the west coast of Nagasaki Prefecture, Japan.
3	The "Specific Health Check-up and Guidance in Japan" is an annual health
4	check-up program conducted by the local government and directed by the
5	Ministry of Health, Labor, and Welfare in Japan; people ≥ 40 years of age and
6	covered by national health insurance are invited to participate in the program
7	free of charge. All subjects gave written informed consent to participate in this
8	study. Basic inclusion criteria were: subjects with all values for measures of
9	subclinical atherosclerosis, laboratory data, and questionnaires; subjects without
10	coronary heart disease (CHD) or cerebrovascular disease, and subjects with at
11	least 10 remaining teeth who underwent a periodontal examination. The
12	following subjects were excluded: one subject without a record of body mass index
13	(BMI), three subjects without a blood pressure (BP) record, 399 subjects whose
14	fasting blood samples were not collected, 16 subjects without a record of smoking
15	status, 189 subjects taking current medication for CHD and/or with a history of
16	CHD, 30 subjects with a history of cerebrovascular disease, 13 subjects who did

1	not undergo the CAVI measurement, 323 subjects with < 10 remaining teeth, and
2	two subjects who did not undergo a periodontal examination. A total of 1,053
3	subjects (394 men and 659 women) were ultimately included in the analysis.
4	This study was approved by the Ethics Committee of Nagasaki University
5	Graduate School of Biomedical Sciences (project registration numbers
6	0501120073 and 090528160) and was performed in accordance with the
7	Declaration of Helsinki.
8	
9	2.2 Data collection and laboratory measurements
9 10	<i>2.2 Data collection and laboratory measurements</i> Each subject's height and weight were measured, and BMI (kg/m ²) was
10	Each subject's height and weight were measured, and BMI (kg/m²) was
10 11	Each subject's height and weight were measured, and BMI (kg/m²) was calculated as an index of obesity. Systolic blood pressure (SBP) and diastolic blood
10 11 12	Each subject's height and weight were measured, and BMI (kg/m ²) was calculated as an index of obesity. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded at rest. Blood samples were collected from each
10 11 12 13	Each subject's height and weight were measured, and BMI (kg/m ²) was calculated as an index of obesity. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded at rest. Blood samples were collected from each participant after an overnight fast. Serum was separated and stored at $-20^{\circ}C < 3$

1	measured by a direct method (CV, 1.77%)[20]; low-density lipoprotein cholesterol
2	(LDL-C) levels were calculated by the Friedewald equation[21]. Fasting plasma
3	glucose and hemoglobin A1c (HbA1c) levels were measured by the hexokinase UV
4	method (CV, 0.45%) and by the latex agglutination reaction (CV, 4.29%),
5	respectively [22, 23]. Staff members completed questionnaires that included
6	information about each participant's smoking status and habitual drinking.
7	Subjects who drank alcohol less than once per week, and those who drank at least
8	once per week were defined as not habitual and habitual drinkers, respectively.
9	2.3 Assessment of subclinical atherosclerosis
9 10	2.3 Assessment of subclinical atherosclerosis We used two methods to assess early stage atherosclerosis. Four medical
10	We used two methods to assess early stage atherosclerosis. Four medical
10 11	We used two methods to assess early stage atherosclerosis. Four medical doctors measured cIMT by ultrasonography of the right and left carotid arteries
10 11 12	We used two methods to assess early stage atherosclerosis. Four medical doctors measured cIMT by ultrasonography of the right and left carotid arteries using a LOGIC Book XP with a 10-MHz linear array transducer (GE Medical
10 11 12 13	We used two methods to assess early stage atherosclerosis. Four medical doctors measured cIMT by ultrasonography of the right and left carotid arteries using a LOGIC Book XP with a 10-MHz linear array transducer (GE Medical Systems, Milwaukee, WI, USA) [24]. The far wall of the carotid artery was

1	second bright line (media–adventitia interface) was identified as the cIMT.
2	Images were stored on the hard disk of the ultrasound system, and the parts of
3	the common carotid artery without plaque were analyzed using Intima Scope
4	software (Media Cross, Tokyo, Japan). The maximum right and left cIMTs were
5	used for analysis. Intra- and inter-observer variations in cIMT were 0.91 (P<
6	0.01) and 0.78 (P < 0.01), respectively. cIMT values exceeding the normal range by
7	> 1 mm were defined as higher cIMTs, based on a previous study [25].
8	The CAVI was recorded with subjects in the supine position using a
9	VaSera VS-1000 vascular screening system (Fukuda Denshi, Tokyo, Japan) by
10	several trained clinicians. Measuring the CAVI using VaSera is very simple and
11	performed automatically, and has good reproducibility [26]. The principles
12	underlying the CAVI have been described by Yambe et al.[27].
13	Electrocardiographic electrodes were placed on both wrists, a microphone to
14	detect heart sounds was placed on the sternum, and cuffs were wrapped around
15	both arms and ankles to obtain automatic measurements.

16 The formula for measuring this index is:

1
$$CAVI = a\{(2\rho/\Delta P) \times \ln(Ps/Pd) PWV^2\} + b$$

2	where, Ps and Pd are systolic and diastolic BPs respectively, ΔP is Ps – Pd,
3	ρ is blood density, and a and b are constants [26]. This equation was derived from
4	the Bramwell-Hill equation, and the stiffness parameter β . The data were then
5	analyzed using VSS-10 software (Fukuda Denshi), and mean values for the right
6	and left CAVI were used. A CAVI exceeding the normal range by ≥ 8 was defined
7	as a higher CAVI, which was reported recently to be the optimal cutoff point for
8	arteriosclerosis [28].
0	
9	
9 10	2.4 Oral examination
	<i>2.4 Oral examination</i> A periodontal examination was performed using the method modified
10	
10 11	A periodontal examination was performed using the method modified
10 11 12	A periodontal examination was performed using the method modified from the Third National Health and Nutrition Examination Survey [29] by one of
10 11 12 13	A periodontal examination was performed using the method modified from the Third National Health and Nutrition Examination Survey [29] by one of four trained dentists, as described previously [30]. Probing pocket depth and

1	of this study, all examiners were trained and calibrated using a chart, periodontal
2	models, and volunteers at the Nagasaki University Hospital.
3	
4	2.5 Statistical analysis
5	Results are expressed as means ± standard deviations for continuous
6	variables. The results of categorical variables, such as the prevalence of higher
7	cIMT (> 1.0 mm), higher CAVI (\geq 8), smoking status, and habitual drinking,
8	results are expressed as percentages. Differences in means were assessed by
9	Student's t-test and the Bonferroni correction after analysis of variance, as
10	appropriate. Differences in prevalence were assessed by the chi-squared test.
11	Pearson's correlation and partial correlation analyses were conducted between
12	two continuous variables. Because the distribution of TG values was skewed, the
13	values were logarithmically transformed for the regression analyses. We
14	evaluated the associations between periodontal status parameters such as
15	mean probing pocket depth and mean clinical attachment loss, and markers of
16	subclinical atherosclerosis such as maximal cIMT and mean CAVI using simple

1	and multivariate linear regression analyses. Because of their high collinearity, we
2	used SBP but not DBP, LDL-C and HDL-C but not TC levels, and HbA1c levels
3	but not fasting plasma glucose, in the adjusted analyses. Furthermore, we
4	evaluated the associations between periodontal status parameters and higher
5	cIMT (>1 mm) and higher CAVI (≥8) using simple and multiple logistic regression
6	analyses. The SPSS software ver. 15.0J (SPSS Japan, Tokyo, Japan) was used for
7	statistical analyses. Values of $P < 0.05$ were considered significant.

3. Results

2	The characteristics of the study participants are shown in Table 1. Men
3	were slightly older than women. The mean number of teeth present, mean
4	probing pocket depth, and mean clinical attachment loss were significantly
5	higher in men than those in women. BMI, HDL-C and LDL-C levels, SBP, DBP,
6	fasting plasma glucose levels, maximal cIMT, the prevalence of cIMT > 1 mm,
7	mean CAVI, prevalence of CAVI \geq 8, smoking status, and habitual drinking
8	differed significantly between men and women. All of these parameters, with the
9	exception of LDL-C levels, were worse in men than those in women.
10	Maximal cIMT and mean CAVI increased significantly with age and were
11	significantly correlated with each other ($P < 0.001$, Supplementary Fig. 1). The
12	relationships and distributions among maximal cIMT, mean CAVI, and
13	periodontal status are shown in Fig. 1. Maximal cIMT and mean CAVI were
14	significantly correlated with mean probing pocket depth and mean clinical
15	attachment loss (P < 0.001, Fig. 1). Correlation analyses among maximal cIMT,
16	mean CAVI, and other variables are shown in Table 2. In simple correlation

1	analyses, maximal cIMT was significantly correlated with all variables except TG,
2	TC, and LDL-C. Mean CAVI was significantly correlated with all variables except
3	BMI and TG. The correlation coefficients suggested that age was a major
4	contributor to maximal cIMT and mean CAVI. The results of partial correlation
5	analyses were similar to those of simple correlation analyses. In the partial
6	correlation analysis adjusted by for sex and age, maximal cIMT was significantly
7	correlated with mean probing pocket depth. A partial correlation between
8	maximal cIMT and mean clinical attachment loss was marginally significant (P =
9	0.053). In addition, the partial correlation between mean CAVI and mean probing
10	pocket depth was also marginally significant (P = 0.059). Both cIMT and the CAVI
11	of former smokers were significantly higher than those of never smokers (data not
12	shown). Habitual drinking was not associated with cIMT or CAVI. Smoking
13	status was associated with the prevalence of higher cIMT and CAVI, whereas
14	habitual drinking was not (data not shown).
15	The results of the multiple linear regression models for maximal cIMT
16	and mean CAVI are shown in Table 3 and Supplementary Table 1. The multiple

1	linear regression analysis adjusted for age and sex revealed that maximal cIMT
2	was significantly correlated with mean probing pocket depth. A multiple linear
3	regression analysis adjusted for age, sex, number of teeth present, BMI,
4	log-transformed TG levels, HDL-C and LDL-C levels, HbA1c level, SBP, smoking
5	status, and habitual drinking revealed that maximal cIMT was significantly
6	correlated with mean probing pocket depth (P = 0.049) and mean clinical
7	attachment loss (P = 0.040). Each 1-mm increase in mean probing pocket depth
8	and mean clinical attachment loss corresponded to a 0.02-mm and 0.01-mm
9	increase in cIMT after adjustment, respectively. The mean CAVI was significantly
10	correlated with mean probing pocket depth (P = 0.040) but not with mean clinical
11	attachment loss after adjusting for the above-mentioned covariates.
12	The results of the multiple logistic regression models for higher cIMT (>1
13	mm) and higher CAVI (≥8) are shown in Table 4 and Supplementary Table 2. The
14	multiple logistic regression analysis adjusted for age and sex showed that the
15	prevalence of higher cIMT (>1 mm) was significantly correlated with a 1-mm
16	increase in mean probing pocket depth and mean clinical attachment loss.

1	Further adjustment for the number of teeth present , BMI, TG level, HDL-C and
2	LDL-C levels, HbA1c level, SBP, smoking status, and habitual drinking revealed
3	that the prevalence of higher cIMT (>1 mm) was significantly correlated with
4	each 1-mm increase in mean probing pocket depth (adjusted odds ratio [OR],
5	1.430; 95% confidence interval [CI], 1.067-1.918; P =0.017), and with each 1-mm
6	increment of mean clinical attachment loss (adjusted OR, 1.251; 95%CI, 1.032-
7	1.516: P = 0.022). Similarly, the prevalence of higher CAVI (\geq 8) was significantly
8	correlated with each 1-mm increase in mean probing pocket depth (adjusted OR,
9	1.323; 95% CI, 1.003-1.743: P = 0.047) but not with each 1-mm increase in mean
10	clinical attachment loss after adjusting for the above-mentioned covariates. When
11	we conducted the same multivariate analyses stratified by sex, the similar
12	tendencies were observed but did not reach statistical significance (data not
13	shown).
14	

1 4. Discussion

2	We found that periodontal status was linearly and dose-dependently
3	associated with markers of atherosclerosis, such as cIMT and CAVI, after
4	adjusting for known risk factors of atherosclerosis. Each 1-mm increase in the
5	mean probing pocket depth and mean clinical attachment loss corresponded to a
6	0.02- and 0.01-mm increase in maximal cIMT after adjustment, respectively.
7	Moreover, the prevalence of higher cIMT (>1 mm) increased by 43% with each
8	1-mm increase in mean probing pocket depth and increased by 25% with each
9	1-mm increase in mean clinical attachment loss after adjustment, respectively.
10	Measurements of cIMT with B-mode ultrasonography have been used as a
11	marker of subclinical atherosclerosis. Two recent epidemiological studies showed
12	an association between oral status and atherosclerosis using cIMT [6, 8]. Beck et
13	al. [6] reported that severe periodontitis with extensive clinical attachment loss is
14	associated with increased cIMT. Desvarieux <i>et al.</i> [8] reported that tooth loss,
15	probably due to previous periodontal disease, is associated with cIMT and carotid
16	artery plaque only in men. Thereafter, researchers reported that periodontal

1	pathogens in subgingival dental plaque were associated with increased cIMT [9]
2	and that levels of serum immunoglobulin G antibodies to various periodontal
3	bacteria were associated with increased cIMT [7]. The present results regarding
4	the association between periodontal status and cIMT are consistent with these
5	studies.
6	Besides cIMT, several noninvasive subclinical methods, such as FMD and
7	PWV, have been used to assess vascular dysfunction and arterial stiffness,
8	respectively [31]. Several previous studies of the effect of periodontal therapy on
9	vascular endothelial function using FMD have reported that periodontal therapy
10	results in improved endothelial function [13-15]. In contrast, the association
11	between periodontitis and arterial stiffness remains unclear. PWV is a
12	non-invasive clinical index of aortic stiffness [32] that enables the prediction of
13	cardiovascular events and all-cause mortality in patients with hypertension and
14	the general population [33, 34]. A study of the relationship between periodontal
15	status and brachial-ankle PWV in healthy Japanese male workers reported that
16	periodontal status is not related to baPWV after adjusting for confounding factors

1	[35]. The baPWV is influenced by changes in BP during examination and by the
2	autonomic nervous system [27, 36]. The CAVI, which was recently developed by
3	measuring PWV from the starting point of the aorta in the heart to the ankle, is
4	similar to but more reliable than baPWV [16]. The CAVI, which reflects the
5	stiffness of the aorta, femoral artery, and tibial artery, adjusts for BP based on the
6	stiffness parameter β [26, 27]. Thus, the CAVI is minimally influenced by BP at
7	the time of measurement and has higher reproducibility than does the PWV.
8	CAVI is an appropriate screening tool for atherosclerosis [17]. Our study is the
9	first study to demonstrate a relationship between periodontal status and arterial
10	stiffness using the CAVI. After adjusting for known risk factors of atherosclerosis,
11	multivariate linear and logistic regression analyses revealed that the probing
12	pocket depth was significantly correlated with the mean CAVI and the prevalence
13	of higher CAVI (≥8), respectively. Each 1-mm increase in mean probing pocket
14	depth corresponded to a 0.1 increase in mean CAVI. In addition, the prevalence of
15	higher CAVI (\geq 8) increased by 32% with each 1-mm increase in mean probing
16	pocket depth after adjustment. In contrast, the clinical attachment loss was not

1	correlated with mean CAVI or prevalence of higher CAVI (≥ 8). Arterial stiffness is
2	associated with impaired endothelial function [37], and it has been proposed that
3	periodontal pathogens or their products may directly affect endothelial function
4	[15]. In general, probing pocket depth is a better marker of current periodontal
5	inflammatory exposure than clinical attachment loss, which indicates a history of
6	past periodontal destruction. Clinical attachment loss increases simply by
7	gingival recession with heavy tooth brushing, abnormal alignment of teeth, and
8	periodontal treatment, all of which are non-inflammatory factors. Moreover,
9	treatment of periodontal infection could improve endothelial dysfunction within
10	several months [14, 15]. Thus, it is feasible that clinical attachment loss less
11	affects arterial stiffness, because deep periodontal pockets do not always exist in
12	subjects with attachment loss. Our results indicate the relationship between
13	periodontal status and arterial change more clearly than do previous studies [6, 8,
14	10].
15	Our study had several limitations. First, no causal relationship between

16 periodontal disease and markers of atherosclerosis could be determined because

1	of the cross-sectional design of this study. We have initiated a cohort study using
2	the same subjects. Second, subjects participated in this study on a voluntary basis
3	and might not be representative of the Japanese population ; therefore, the
4	results of this study may not be able to be generalized to a non-Japanese
5	population. Third, data related to diet and physical activity were not available
6	for this study.
7	In conclusion, a linear and dose-dependent association between
8	periodontal status and markers of subclinical atherosclerosis was revealed.
9	Periodontal status is likely to be associated both with alterations in arterial wall
10	thickness and arterial wall stiffness during the initial change changes of
11	atherosclerosis. Further study of how periodontal status impacts the structural
12	and qualitative aspects of subclinical atherosclerosis is needed.
13	

1	Conflicts of interest
2	
3	None.
4	
5	Acknowledgements
6	This study was supported by Grants-in-Aid for Scientific Research from
7	the Japan Society for the Promotion of Science, Sports, and Health (nos.
8	19390542 and 22390402 to Dr. T. Saito, no. 21592655 to Dr. R. Furugen, no.
9	22592338 to Dr. H. Hayashida, and no. 22370090 to Dr. T. Maeda).
10	
11	The English in this document has been checked by at least two professional
12	editors, both native speakers of English. For a certificate, please see:
13	http://www.textcheck.com/certificate/OO5AJn

1 **References**

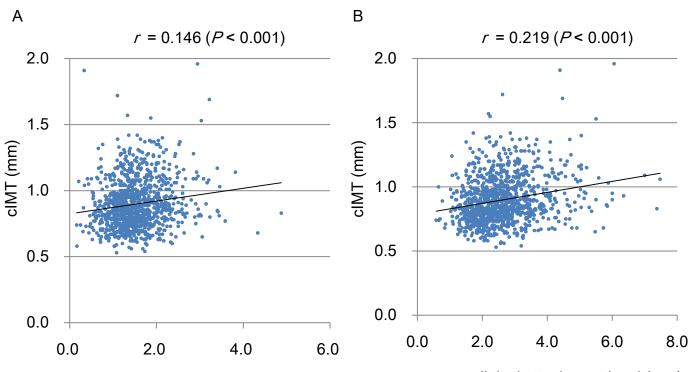
3	[1]	Khader YS, Albashaireh ZS, Alomari MA. Periodontal diseases and the
4		risk of coronary heart and cerebrovascular diseases: a meta-analysis. J
5		Periodontol 2004; 75: 1046-1053.
6	[2]	Bahekar AA, Singh S, Saha S, Molnar J, Arora R. The prevalence and
7		incidence of coronary heart disease is significantly increased in
8		periodontitis: a meta-analysis. Am Heart J 2007; 154: 830-837.
9	[3]	Humphrey LL, Fu R, Buckley DI, Freeman M, Helfand M. Periodontal
10		disease and coronary heart disease incidence: a systematic review and
11		meta-analysis. J Gen Intern Med 2008; 23: 2079-2086.
12	[4]	Lockhart PB, Bolger AF, Papapanou PN, et al. Periodontal disease and
13		atherosclerotic vascular disease: does the evidence support an independent
14		association?: a scientific statement from the American Heart Association.
15		Circulation 2012; 125: 2520-2544.
16	[5]	Abbas M, Bignamini V, Corea F. Effects of chronic microbial infection on

1		atherosclerosis. Atherosclerosis 2006; 187: 439-440.
2	[6]	Beck JD, Elter JR, Heiss G, Couper D, Mauriello SM, Offenbacher S.
3		Relationship of periodontal disease to carotid artery intima-media wall
4		thickness: the atherosclerosis risk in communities (ARIC) study.
5		Arterioscler Thromb Vasc Biol 2001; 21: 1816-1822.
6	[7]	Beck JD, Eke P, Lin D, et al. Associations between IgG antibody to oral
7		organisms and carotid intima-medial thickness in community-dwelling
8		adults. Atherosclerosis 2005; 183: 342-348.
9	[8]	Desvarieux M, Schwahn C, Volzke H, et al. Gender differences in the
10		relationship between periodontal disease, tooth loss, and atherosclerosis.
11		Stroke 2004; 35: 2029-2035.
12	[9]	Desvarieux M, Demmer RT, Rundek T, et al. Periodontal microbiota and
13		carotid intima-media thickness: the Oral Infections and Vascular Disease
14		Epidemiology Study (INVEST). Circulation 2005; 111: 576-582.
15	[10]	Soder PO, Soder B, Nowak J, Jogestrand T. Early carotid atherosclerosis in
16		subjects with periodontal diseases. Stroke 2005; 36: 1195-1200.

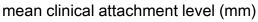
1	[11]	Southerland JH, Moss K, Taylor GW, et al. Periodontitis and diabetes
2		associations with measures of atherosclerosis and CHD. Atherosclerosis
3		2012; 222: 196-201.
4	[12]	Desvarieux M, Demmer RT, Rundek T, et al. Relationship between
5		periodontal disease, tooth loss, and carotid artery plaque: the Oral
6		Infections and Vascular Disease Epidemiology Study (INVEST). Stroke
7		2003; 34: 2120-2125.
8	[13]	Seinost G, Wimmer G, Skerget M, et al. Periodontal treatment improves
9		endothelial dysfunction in patients with severe periodontitis. Am Heart J
10		2005; 149: 1050-1054.
11	[14]	Elter JR, Hinderliter AL, Offenbacher S, et al. The effects of periodontal
12		therapy on vascular endothelial function: a pilot trial. Am Heart J 2006;
13		151: 47.
14	[15]	Tonetti MS, D'Aiuto F, Nibali L, et al. Treatment of periodontitis and
15		endothelial function. N Engl J Med 2007; 356: 911-920.
16	[16]	Takaki A, Ogawa H, Wakeyama T, et al. Cardio-ankle vascular index is

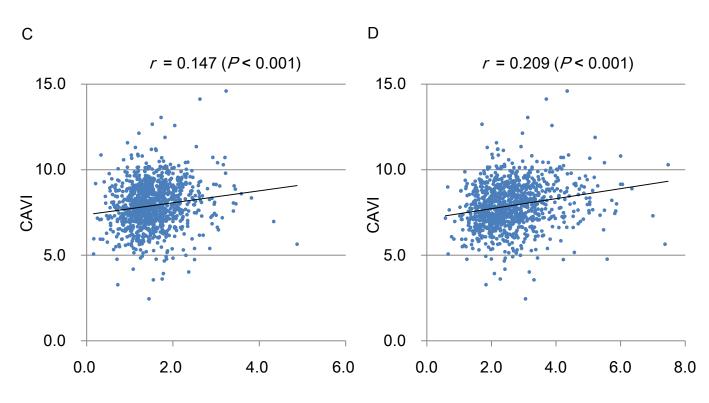
1		superior to brachial-ankle pulse wave velocity as an index of arterial
2		stiffness. Hypertens Res 2008; 31: 1347-1355.
3	[17]	Kadota K, Takamura N, Aoyagi K, et al. Availability of cardio-ankle
4		vascular index (CAVI) as a screening tool for atherosclerosis. Circ J 2008;
5		72: 304-308.
6	[18]	MacAulay MA, Jacklyn CL, Mathers JM, Storm VA. Continuous-flow
7		enzymatic determination of total serum cholesterol and method
8		standardization with CDC-calibrated pooled sera. Clin Chem 1980; 26:
9		896-902.
10	[19]	Sullivan DR, Kruijswijk Z, West CE, Kohlmeier M, Katan MB.
11		Determination of serum triglycerides by an accurate enzymatic method not
12		affected by free glycerol. Clin Chem 1985; 31: 1227-1228.
13	[20]	Okada M, Matsui H, Ito Y, Fujiwara A. Direct measurement of HDL
14		cholesterol: method eliminating apolipoprotein E-rich particles. J Clin Lab
15		Anal 2001; 15: 223-229.
16	[21]	Friedewald WT. Levy RI. Fredrickson DS. Estimation of the concentration

1		of low-density lipoprotein cholesterol in plasma, without use of the
2		preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.
3	[22]	Fritsche HA, Dee JW, Adams-Park HR. Enzymatic endpoint analysis of
4		glucose with the hexokinase method and the Union Carbide fast
5		centrifugal analyzer. Clin Biochem 1975; 8: 240-246.
6	[23]	Kopp HP, Festa A, Hopmeier P, Schernthaner G. [Evaluation of a new
7		method for determining glycated hemoglobin with monoclonal antibodies
8		(DCA 2000)]. Wien Klin Wochenschr 1996; 108: 16-19.
9	[24]	Takamura N, Akilzhanova A, Hayashida N, et al. Thyroid function is
10		associated with carotid intima-media thickness in euthyroid subjects.
11		Atherosclerosis 2009; 204: e77-81.
12	[25]	Handa N, Matsumoto M, Maeda H, et al. Ultrasonic evaluation of early
13		carotid atherosclerosis. Stroke 1990; 21: 1567-1572.
14	[26]	Shirai K, Utino J, Otsuka K, Takata M. A novel blood
15		pressure-independent arterial wall stiffness parameter; cardio-ankle
16		vascular index (CAVI). J Atheroscler Thromb 2006; 13: 101-107.


1	[27]	Yambe T, Yoshizawa M, Saijo Y, et al. Brachio-ankle pulse wave velocity
2		and cardio-ankle vascular index (CAVI). Biomed Pharmacother 2004; 58
3		Suppl 1: S95-98.
4	[28]	Hu H, Cui H, Han W, et al. A cutoff point for arterial stiffness using the
5		cardio-ankle vascular index based on carotid arteriosclerosis. Hypertens
6		Res 2013; doi:10.1038/hr.2012.192.
7	[29]	Brown LJ, Brunelle JA, Kingman A. Periodontal status in the United
8		States, 1988-1991: prevalence, extent, and demographic variation. J Dent
9		Res 1996; 75 Spec No: 672-683.
10	[30]	Shimazaki Y, Saito T, Kiyohara Y, et al. Relationship between
11		electrocardiographic abnormalities and periodontal disease: the Hisayama
12		Study. J Periodontol 2004; 75: 791-797.
13	[31]	Kobayashi K, Akishita M, Yu W, Hashimoto M, Ohni M, Toba K.
14		Interrelationship between non-invasive measurements of atherosclerosis:
15		flow-mediated dilation of brachial artery, carotid intima-media thickness
16		and pulse wave velocity. Atherosclerosis 2004; 173: 13-18.

1	[32]	van Popele NM, Grobbee DE, Bots ML, et al. Association between arterial
2		stiffness and atherosclerosis: the Rotterdam Study. Stroke 2001; 32:
3		454-460.
4	[33]	Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave
5		velocity as a marker of cardiovascular risk in hypertensive patients.
6		Hypertension 1999; 33: 1111-1117.
7	[34]	Shokawa T, Imazu M, Yamamoto H, et al. Pulse wave velocity predicts
8		cardiovascular mortality: findings from the Hawaii-Los Angeles-Hiroshima
9		study. Circ J 2005; 69: 259-264.
10	[35]	Miyaki K, Masaki K, Naito M, et al. Periodontal disease and
11		atherosclerosis from the viewpoint of the relationship between community
12		periodontal index of treatment needs and brachial-ankle pulse wave
13		velocity. BMC Public Health 2006; 6: 131.
14	[36]	Kubozono T, Miyata M, Ueyama K, et al. Clinical significance and
15		reproducibility of new arterial distensibility index. Circ J 2007; 71: 89-94.
16	[37]	Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and


- therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005; 25:
 932-943.
 4


1 Figure legends

3	Figure 1.
4	Simple correlation and distribution among maximal carotid intima-media
5	thickness (cIMT), mean cardio-ankle vascular index (CAVI), mean probing pocket
6	depth, and mean clinical attachment loss. (Panel A) maximal cIMT and mean
7	probing pocket depth, (Panel B) maximal cIMT and mean clinical attachment loss,
8	(Panel C) mean CAVI and mean probing pocket depth, and (Panel D) mean CAVI
9	and mean clinical attachment loss.

mean probing pocket depth (mm)

mean probing pocket depth (mm)

mean clinical attachment level (mm)

	r	nen	I	WO	me	en			total	
	(n=394)			(n=	9)	(n=1053)				
number of present teeth	23.3	±	5.5	22.5	±	5.4	†	22.8	±	5.4
mean probing pocket depth, mm	1.64	±	0.60	1.45	±	0.51	**	1.52	±	0.56
mean clinical attachment loss, mm	2.87	±	1.07	2.46	±	0.81	**	2.61	±	0.94
age, y	64.7	±	10.5	62.8	±	9.7	†	63.5	±	10.0
body mass index, kg/m ²	23.7	±	2.9	22.7	±	3.2	**	23.1	±	3.2
triglycerides, mg/dL	109.6	±	87.3	100.1	±	64.0		103.7	±	73.7
log-transformed triglycerides	1.96	±	0.24	1.94	±	0.22		1.95	±	0.23
total cholesterol, mg/dL	192.8	±	34.3	210.9	±	33.9		204.1	±	35.1
HDL-cholesterol, mg/dL	56.6	±	14.3	63.7	±	14.4	**	61.0	±	14.8
LDL-cholesterol, mg/dL	114.2	±	29.4	127.2	±	30.1	**	122.3	±	30.1
systolic blood pressure, mmHg	143.0	±	20.5	136.4	±	20.4	**	138.9	±	20.7
diastolic blood pressure, mmHg	84.9	±	11.0	81.1	±	9.7	**	82.6	±	10.4
fasting plasma glucose, mg/dL	102.2	±	31.8	96.4	±	19.2	†	98.6	±	24.8
hemoglobin A1c	5.3	±	0.6	5.3	±	0.5		5.3	±	0.5
maximal cIMT, mm	0.94	±	0.19	0.87	±	0.18	**	0.90	±	0.18
prevalence of maximal cIMT > 1mm (%)	3	2.2		18	3.2		**		23.5	
mean CAVI	8.22	±	1.41	7.71	±	1.22	**	7.90	±	1.32
prevalence of CAVI >= 8 (%)	5	3.6		39	9.6		**		44.8	
smoking status (%)										
never	4	3.4		95	5.8		**		76.1	
former	3	7.6		2	.1				15.4	
current	1	9.0		2	.1				8.5	
habitual drinking (yes) (%)	4	2.6		6	.5		**		20.0	

Table 1. Characteristics of the Study Subjects

Student's t-tests for continuous variables and chi-squared tests for categorical variables were conducted. [†] P < 0.05, ^{**} p < 0.001

	ma	aximal cIM	Т	mean CAVI					
correlation coefficient	r ^a	partial ^b	partial ^c	r ^a	partial ^b	partial ^c			
number of present teeth	-0.22 **	-0.23 **	-0.27	-0.22 **	-0.24 **	0.02			
mean probing pocket depth	0.15 **	0.12 **	0.07 †	0.15 **	0.12 **	0.06			
mean clinical attachment loss	0.22 **	0.19 **	0.06	0.21 **	0.18 **	0.01			
age	0.45 **	0.45 **	-	0.54 **	0.53 **	-			
BMI	0.12 **	0.10 †	0.10 †	0.03	0.00	-0.02 †			
triglycerides	0.02	0.00	0.05	0.01	-0.01	0.05			
log-transformed triglycerides	0.04	0.04	0.07 †	0.02	0.01	0.06			
total cholesterol	-0.26	0.02	0.08 †	-0.14 **	-0.10 †	-0.04			
HDL-cholesterol	-0.18 **	-0.15 **	-0.09 †	-0.18 **	-0.14 **	-0.06 †			
LDL-cholesterol	0.05	0.09 †	0.11 **	-0.08 †	-0.04	-0.04			
systolic blood pressure	0.30 **	0.28 **	0.14 **	0.28 **	0.26 **	0.08 †			
diastolic blood pressure	0.14 **	0.11 **	0.08 †	0.12 **	0.09 †	0.05			
fasting plasma glucose	0.22 **	0.20 **	0.18 **	0.15 **	0.13 **	0.10 †			
hemoglobin A1c	0.22 **	0.23 **	0.20 **	0.12 **	0.13 **	0.08 †			

Table 2. Correlation between maximal cIMT, mean CAVI and other variables

^a Pearson's correlation coefficient

^b Partial correlation coefficient adjusted for sex

^c Partial correlation coefficient adjusted for sex and age

[†] P < 0.05, ^{**} $\rho < 0.001$

Table 3. Multiple Linear Regression Analyses for maximal cIMT and mean CAVI according to Periodontal Variables

		maximal cIMT						mean CAVI						
			β	95% CI	R^2	P value			β	95% CI	R^2	P value		
mean probing pocket depth	model	1	0.048	0.029, 0.068	0.020	<0.001	model	1	0.123	0.069, 0.177	0.018	<0.001		
(per 1mm greater)		2	0.021	0.003, 0.039	0.224	0.023		2	0.118	-0.004, 0.24	0.312	0.059		
		3	0.018	0.000, 0.037	0.271	0.049		3	0.133	0.006, 0.259	0.323	0.040		
mean clinical attachment loss	model	1	0.043	0.031, 0.054	0.047	<0.001	model	1	0.103	0.071, 0.134	0.037	<0.001		
(per 1mm greater)	meder	2	0.011	0.000, 0.022	0.223	0.053	model	2	0.016	-0.060, 0.092	0.309	0.687		
		3	0.013	0.001, 0.025	0.271	0.040		3	0.026	-0.059, 0.111	0.320	0.548		

β: partial regression coefficient

model 1 unadjusted

2 adjusted for age and sex

3 adjusted for age, sex, number of present teeth, BMI, log-transformed triglycerides, HDL-cholesterol, LDL-cholesterol, hemoglobin A1c, SBP, smoking status, and habitual drinking

Table 4. Multiple Logistic Regression Analyses for maximal cIMT > 1mm and mean CAVI >= 8 according to Periodontal Variables

			maximal c	IMT > 1mm			mean CAVI >= 8				
			Odds ratio	95% CI	P value		Odds ratio	95% CI	P value		
mean probing pocket depth	model	1	1.767	1.376-2.269	<0.001	model	1 1.663	1.325-2.086	<0.001		
(per 1mm greater)		2	1.401	1.069-1.837	0.015	:	2 1.306	1.007-1.693	0.044		
		3	1.430	1.067-1.918	0.017	:	3 1.323	1.003-1.743	0.047		
mean clinical attachment loss	model	1	1.557	1.344-1.804	<0.001	model	1 1.545	1.343-1.776	<0.001		
(per 1mm greater)		2	1.178	1.000-1.387	0.050	:	2 1.058	0.904-1.239	0.482		
		3	1.251	1.032-1.516	0.022	:	3 1.066	0.889-1.278	0.492		

model 1 unadjusted

2 adjusted for age and sex

 adjusted for age, sex, number of present teeth, BMI, log-transformed triglycerides, HDL-cholesterol, LDL-cholesterol, hemoglobin A1c, SBP, smoking status, and habitual drinking