1	Efficacy of AiiM, an N-acylhomoserine lactonase, against Pseudomonas
2	aeruginosa in a mouse model of acute pneumonia
3	
4	Yohei Migiyama ^{a,b,f} , Yukihiro Kaneko ^c , Katsunori Yanagihara ^a *, Tomohiro
5	Morohoshi ^d , Yoshitomo Morinaga ^{a,b} , Shigeki Nakamura ^b , Taiga Miyazaki ^b , Hiroo
6	Hasegawa ^a , Koichi Izumikawa ^b , Hiroshi Kakeya ^b , Hirotsugu Kohrogi ^f , and Shigeru
7	Kohno ^{b,e}
8	
9	^a Department of Laboratory Medicine and ^b Second Department of Internal Medicine,
10	Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
11	^c Department of Chemotherapy and Mycoses, National Institute of Infectious
12	Disease, Tokyo, Japan
13	^d Department of Material and Environmental Chemistry, Utsunomiya University
14	Graduate School of Engineering, Utsunomiya University, Tochigi, Japan
15	^e Global COE Program, Nagasaki University, Nagasaki, Japan
16	^f Department of Respiratory Medicine, Kumamoto University Graduate School of
17	Medical Sciences, Kumamoto, Japan

19	*Corresponding author:
20	Katsunori Yanagihara
21	Department of Laboratory Medicine, Nagasaki University Graduate School of
22	Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
23	Tel: +81-95-819-7418; Fax: +81-95-819-7257; E-mail: k-yanagi@ nagasaki-u.ac.jp
24	
25	Running title: Efficacy of AiiM against Pseudomonas aeruginosa
26	
27	Keywords: AiiM, mice, pneumonia, Pseudomonas aeruginosa, quorum sensing
28	
29	
30	
31	
32	
33	
34	

 $\mathbf{2}$

35 ABSTRACT

Quorum sensing (QS) in Pseudomonas aeruginosa (P. aeruginosa) regulates 36 the production of many virulence factors and plays an important role in the 3738pathogenesis of P. aeruginosa infection. N-Acyl homoserine lactones (AHL) are major QS signal molecules. Recently, a novel AHL-lactonase enzyme, AiiM, has 39been identified. The aim of this study was to evaluate the effect of AiiM on the 40 virulence of *P. aeruginosa* in a mouse model of acute pneumonia. 41 We developed a *P. aeruginosa* PAO1 strain harbouring an AiiM-expressing 42plasmid. The production of several virulence factors by the AiiM-expressing strain 43was examined. Mice were intratracheally infected with an AiiM-expressing PAO1 44 strain. Lung histopathology, bacterial burden, and bronchoalveolar lavage (BAL) 45

46 were assessed at 24 h post-infection.

AiiM expression in PAO1 reduced production of AHL-mediated virulence factors and attenuated cytotoxicity against human lung epithelial cells. In a mouse model of acute pneumonia, AiiM expression reduced lung injury and greatly improved the survival rates. The levels of pro-inflammatory cytokines and

51	myeloperoxidase activity in BAL fluid were significantly lower in mice infected with
52	AiiM-expressing PAO1.
53	Thus, AiiM can strongly attenuate P. aeruginosa virulence in a mammalian
54	model and is a potential candidate for use as a therapeutic agent against P.
55	aeruginosa infection.
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	

68 INTRODUCTION

Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative pathogen responsible for opportunistic and health-care associated infections such as pneumonia and urinary tract-, surgical site-, and catheter-related blood stream infections (1). Often, these infections are difficult to treat because of biofilm formation and intrinsic resistance to many antibiotics. In addition, *P. aeruginosa* easily develops resistance to many currently used antibiotics, and therefore, the development of novel treatment strategies is imperative.

Recently, quorum sensing (QS) system has attracted attention as a new 7677therapeutic target (2). P. aeruginosa has two well-characterised QS systems (the LasR-LasI and the RhIR-RhII systems) which mainly utilise two N-acyl homoserine 78lactones (AHL) molecules, namely, N-3-oxododecanoyl-L-homoserine lactone 79(3-oxo-C12-HSL) and *N*-butyryl-L-homoserine lactone (C4-HSL) (3). These systems 80 regulate the production of various virulence factors, including pyocyanin, elastase, 81 82 and rhamnolipid, which play important roles in promoting the infection (4). In addition, 3-oxo-C12-HSL itself has immunomodulatory activity, stimulates cytokine 83 84 production, and induces neutrophil or macrophage apoptosis (5, 6).

Previous studies showed that AHL-negative mutant *P. aeruginosa* had considerably lower virulence than the wild-type strain (7, 8). Thus, AHL inhibitor could be a therapeutic agent for infections by gram-negative bacteria.

88 The first AHL-inactivating enzyme, AHL-lactonase AiiA, was isolated from Bacillus species (9). Recently, Wang et al. have found a novel AHL-lactonase, 89 termed AiiM, from Microbacterium testaceum, which resides on the leaf surface of 90 potato (10, 11). AiiM is a member of the α/β hydrolase fold family and inactivates a 91broad range of AHL. They have also reported that expression of the *aiiM* gene in the 9293 gram-negative plant pathogenic bacterium Pectobacterium carotovorum subsp. 94*carotovorum*, resulted in significantly reduced pathogenicity to the potato slices (11). To date, although many AHL-lactonase enzymes (approximately 20) have been 95discovered, the efficacy of AHL-lactonase in infectious diseases has been 96 evaluated only in non-mammalian species (9, 10). The aim of the present study was 97 98 to investigate whether AHL-lactonase AiiM would attenuate P. aeruginosa pathogenicity both in vitro and in a mammalian model. 99

100

101 MATERIALS AND METHODS

 $\mathbf{6}$

102 Bacterial strains and growth conditions

103	P. aeruginosa reference strain PAO1 (12) was grown at 37°C in Luria-Bertani
104	(LB) medium with shaking at 250 rpm. The AHL-reporter strains Chromobacterium
105	violaceum (C. violaceum) CV026 (13) and C. violaceum VIR07 (14) were grown at
106	30°C in LB medium. When required, antibiotics were added to the medium at the
107	following final concentrations to maintain the plasmid: carbenicillin (50 μ g/mL) for <i>P</i> .
108	aeruginosa and kanamycin (40 µg/mL) for C. violaceum. A final concentration of
109	0.5% L-arabinose was used as an inducer in vitro. Since there was some residual
110	expression of AiiM, in vivo experiments were performed in the absence of arabinose
111	induction.
112	
113	Construction of a plasmid containing aiiM and P. aeruginosa mutants
114	A 1029-bp fragment containing aiiM was PCR-amplified with Nhel/EcoRI ends
115	from pUC118-aiiM (11) and cloned into pMJT1 (15), which contains
116	arabinose-inducible araBAD promoter to generate pMJT1-aiiM. The constructed
117	plasmid pMJT1-aiiM and pMJT1 (vector control) were transferred to P. aeruginosa
118	by chemical transformation (15). The strains, plasmids, and primers used in this

 $\overline{7}$

119 study are listed in Tables 1 and 2.

120

121 Detection of AHLs by thin-layer chromatography (TLC)

122CV026 and VIR07 were used to detect short-chain AHLs (C4-HSL and C6-HSL) and a long-chain AHL (3-oxo-C12-HSL), respectively. AHLs were 123extracted from culture supernatants and separated by TLC according to the 124methods described previously (13, 14, 16), with slight modifications. P. aeruginosa 125strains were grown overnight in 50 mL of LB medium and cell-free culture 126127supernatants were obtained by centrifugation (1,700 g for 45 min at 4°C), followed 128by filtration through a 0.22-µm filter (Millipore Corp., USA). The supernatants were extracted twice with the same volume of acidified ethyl acetate (0.1% v/v acetic 129130acid) in a separating funnel. The organic layers were dried over anhydrous magnesium sulphate, and evaporated. The residues were resuspended in 100 µL of 131ethyl acetate. 132

Eight microlitres of the solution was spotted on and separated using reverse-phase TLC plates (RP-18 F245; Merck) with methanol/ water (60:40, v/v) for the short chain AHLs and normal-phase TLC plates (Silica gel 60F254; Merck)

136	with hexane/acetone (45:55, v/v) for 3-oxo-C12-HSL. Then, TLC plates were dried
137	and overlaid with 120 mL of LB medium containing 0.5% (w/v) agar mixed with 12 $$
138	mL of overnight culture of either C. violaceum CV026 or C. violaceum VIR07. After
139	incubation for 24 h at 30°C, AHL-induced violacein production in C. violaceum
140	appeared as purple spots. AHL standards were purchased from Cayman Chemical,
141	MI, USA.
142	
143	Assay for pyocyanin and elastase production
144	Cell free culture supernatants were obtained by the same method as described
145	above for AHL detection assay. Pyocyanin production was determined using a
146	slightly modified procedure as previously described (17). Four millilitres of the
147	supernatant was mixed with 3 mL of chloroform and centrifuged at 1,700 g for 5 min.
148	Two millilitres of the lower organic layer containing pyocyanin was collected, and
149	extracted with 2 mL of 0.2 M HCI. After centrifugation, the absorbance of the pink
150	top layer was measured at 520 nm. Concentrations of pyocyanin were determined
151	by multiplying the absorbance by 17.072 (18).

The elastase activity of the same culture supernatants was measured by the elastin Congo red (ECR) assay (19). Ten microlitres of the supernatant was mixed with 250 μL of ECR buffer (30 mM Tris containing 2.5 mg of ECR, pH 7.5). After 14-h incubation, the absorbance of the supernatant was measured at 495 nm, and the elastase activity was calculated using porcine elastase as a standard.

157

158 Assessment of cytotoxicity

The human alveolar epithelial cell line A549 was cultured in RPMI 1640 159medium with 10% foetal bovine serum, 100 U of penicillin/mL and 100 µg of 160 streptomycin/mL at 37°C with 5% CO2. After achieving confluence, the cells were 161 diluted to 2.0 x 10^5 cells/mL and 100 µL aliquots were dispensed in a 96-well plate. 162After overnight incubation, the cells were washed and infected with *P. aeruginosa* 163strains at a concentration of 4.0×10^{6} cfu/well or normal saline (negative control) for 1641, 3, 6, 9, 12, and 15 h in serum-free RPMI 1640. The cytotoxicity was assessed by 165the amount of lactate dehydrogenase (LDH) in the culture medium by using 166Cytotoxicity Detection Kit (Roche Diagnostics, Mannheim, Germany). 167

169 Mouse model of *P. aeruginosa* acute lung infection

Animal experiments were approved by the Ethics Review Committee for 170Animal Experimentation and performed on the basis of the Guidelines for Animal 171172Experimentation at Nagasaki University. Pathogen-free 6-week-old male ddY mice (body weight, 30-35 g) were purchased from SLC Japan (Tokyo, Japan). All 173animals were housed under constant temperature and light conditions (12/12-h 174light/dark cycle) with free access to sterile food and water in the Laboratory Animal 175Center for Biomedical Science at Nagasaki University. 176177Overnight cultures of *P. aeruginosa* strains were grown, adjusted to an OD₆₀₀ 178of 0.1, and 30-µL aliquots were transferred to 3 ml of fresh LB medium. Following 6 h (late log phase) of incubation, bacteria were harvested by centrifugation (13,000 g 179for 1 min at 4°C) and resuspended in sterile normal saline at a final concentration of 180 $2 \times 10^{\circ}$ cfu/mL based on optical density. Inoculated bacterial counts were confirmed 181 by spreading the appropriately diluted suspension on LB plates. Mice were infected 182with an intratracheal instillation of 0.05 mL of bacterial suspension (1 \times 10⁷ 183

184 cfu/mouse) under anaesthesia with pentobarbital sodium. As a non-infected control,

intratracheal instillation was performed with normal saline in the same manner. For

186	survival studies, 10-12 mice in each group were observed at least once daily until
187	the seventh day post infection. Another group of infected mice was sacrificed by
188	cervical dislocation at 24 h after the infection, and the lungs, spleen, blood, and
189	bronchoalveolar lavage (BAL) fluid were collected for further analysis.

191 Bacteriological and histopathological examination

Blood was collected by right ventricular puncture using heparin-coated 192syringes. Lungs and spleens were dissected out under aseptic conditions. For 193194 bacteriological examination, the organs were suspended in normal saline (1 mL for 195the lung sample and 0.5 mL for the spleen sample) and homogenised using a homogeniser (AS One Co., Osaka, Japan). Each specimen (blood, lung, and 196spleen) was serially diluted and plated on LB agar, followed by incubation at 37°C 197 for 24 h. For histopathological examination, lung specimens were fixed in 10% 198buffered formalin, and the paraffin-embedded sections were stained with 199 200 haematoxylin-eosin.

201

202 Analysis of BAL fluid

After the pulmonary vasculature was flushed with 5 mL of normal saline via the right ventricle, an 18-gauge plastic intravenous catheter was inserted into the trachea and the lungs were lavaged three times with 1 mL of normal saline. Total and differential cell counts were determined manually.

Hemoglobin concentrations in BAL fluid were analyzed by using previously described methods with some modification (20, 21). A 200-µL aliquot of the BAL fluid was mixed with 800 µL of distilled water to lyse the red blood cells. Then the sample was mixed with an equal volume of Drabkin's reagent (Sigma-Aldrich, St. Louis, MO) and incubated at room temperature for 15 min. Hemoglobin content was quantified by measuring the absorbance at 540 nm using purified human hemoglobin (Sigma-Aldrich, St. Louis, MO) as the standard.

Cell-free BAL supernatants were obtained by centrifugation (15,000 g for 5 min
at 4°C) of BAL fluids. Albumin concentration and LDH activity in the supernatant
fluid were determined by using mouse albumin ELISA quantitation kit (Bethyl
Laboratories, Montgomery, TX) and Cytotoxicity Detection Kit (Roche Diagnostics,
Mannheim, Germany) according to the manufacturer's instructions. The
concentrations of myeloperoxidase (MPO), tumour necrosis factor (TNF)-α,

220	interleukin (IL)-1 β , IL-6, and macrophage inflammatory protein (MIP)-2 in cell-free
221	BAL supernatants were quantified using ELISA kits for MPO glycoprotein (Hycult
222	Biotech, Uden, The Netherlands) and mouse cytokine and chemokine ELISA kits
223	(R&D Systems, Minneapolis, MN), according to the manufacturer's instructions.
224	
225	Statistical analyses
226	The data are expressed as mean \pm standard error of the mean (SEM).
227	Differences between groups were examined using the unpaired Student's t test or
228	the Mann-Whitney's U test, as appropriate depending on the normality of data
229	distribution. Survival analysis was performed using the log rank test, and the
230	survival rate was calculated by the Kaplan-Meier method. A significant difference
231	was defined as a P value less than or equal to 0.05.
232	
233	RESULTS
234	Expression of AiiM in P. aeruginosa reduced AHL accumulation

As seen in Fig. 1, short- and long-chain AHL (C4-HSL, C6-HSL, and 2353-oxo-C12-HSL) were detected as purple spots on the TLC plates from the extracts 236

237	of the wild-type strain PAO1 (PAO1) and the mutant carrying the empty vector
238	(PAO1/pMJT1). In contrast, none of these AHLs were detected from the mutant
239	carrying the plasmid with aiiM gene (PAO1/pMJT1-aiiM). The growth curve of
240	PAO1/pMJT1-aiiM and PAO1/pMJT1 showed no difference (data not shown).
241	Therefore, the results indicated that AiiM expressed in PAO1/pMJT1-aiiM degraded
242	AHL.
243	
244	AiiM expression reduced virulence factor production in <i>P. aeruginosa</i>
245	Since the production of pyocyanin and elastase, the important virulence factors
246	of P. aeruginosa, are controlled by QS system, we examined whether AiiM
247	expression could inhibit the production of these virulence factors. As shown in Fig. 2,
248	the levels of pyocyanin and elastase decreased to a large extent in P. aeruginosa
249	PAO1/pMJT1-aiiM compared to PAO1/pMJT1.
250	
251	AiiM expression attenuated cytotoxicity against human lung epithelial cells
252	A549

253	To test the influence of AiiM expression on the infectivity of <i>P. aeruginosa</i> , we
254	evaluated the cytotoxicity of each strain against A549 cells by measuring the
255	release of LDH following infection. P. aeruginosa PAO1/pMJT1-aiiM
256	showed approximately half the level of cytotoxicity compared with PAO1/pMJT1 at
257	9–15 h post infection (Fig. 3).
258	
259	AiiM expression improved survival in murine models of acute lung infection
260	and reduced systemic dissemination of bacteria
261	Our preliminary results encouraged us to investigate the in vivo efficacy of AiiM
262	expression in P. aeruginosa. Mortality was significantly lower in the mice infected
263	with PAO1/pMJT1-aiiM compared to those infected with PAO1/pMJT1 (Fig. 4a).
264	We further investigated whether AiiM could reduce local infection and systemic
265	dissemination. The bacterial count in the lungs did not significantly differ between
266	the groups. However, the bacterial counts in the blood and spleen of mice infected
267	with PAO1/pMJT1-aiiM was significantly lower than in those of the mice infected
268	with PAO1/pMJT1 (Fig. 4b), indicating that AiiM expression contributed to reduction

269 of systemic dissemination, but did not alter the local bacterial burden.

271	AiiM expression decreased the lung injury induced by <i>P. aeruginosa</i> infection
272	Next, we examined whether AiiM expression could reduce lung injury and
273	inflammation. In spite of the identical bacterial burden in both groups,
274	PAO1/pMJT1-aiiM-infected mice showed mild and localised inflammation, while P.
275	aeruginosa PAO1/pMJT1-infected mice exhibited a large area of diffuse
276	inflammation accompanied by haemorrhage into the alveolar spaces (Fig. 5a and b).
277	In addition, the reduced levels of haemoglobin, albumin, and LDH in the cell-free
278	BAL fluids of PAO1/pMJT1-aiiM infected mice (Fig. 5c-e) were also observed.
279	
280	AiiM expression altered the host inflammatory response to P. aeruginosa
281	lung infection
282	The total cell counts and neutrophil percentage in the BAL fluid of both the
283	infected groups increased compared to the uninfected control, with no significant
284	differences between the two groups (Fig. 6a and b); however, MPO activity,
285	a marker of neutrophil activation, in the BAL fluid of the mice infected with P.

286 aeruginosa PAO1/pMJT1-aiiM was significantly lower than that of the
 287 PAO1/pMJT1-infected mice (Fig. 6c).

The levels of pro-inflammatory cytokines (TNF- α , IL-1 β , and IL-6) in the BAL 288289fluid were also significantly lower in the PAO1/pMJT1-aiiM-infected mice than in the PAO1/pMJT1-infected mice (Fig. 7a-c). MIP-2 level tended to be lower in the 290PAO1/pMJT1-aiiM-infected group than in the PAO1/pMJT1-infected group, 291although the decrease was not statistically significant (Fig. 7d). Therefore, these 292results suggest that AiiM expression could reduce lung injury and inflammation and 293systemic dissemination by reducing bacterial virulence, but it does not reduce 294295bacterial count.

296

297 **DISCUSSION**

Although several studies have reported the therapeutic potential of AHL lactonases against gram-negative pathogens in non-mammalian models (22, 23, 24), it has never been considered as therapeutic agent for mammalian infections. This is the first study demonstrating that AiiM could serve as a potent inhibitor of *P*. aeruginosa QS and attenuate bacterial virulence in the mouse model of *P*.
 aeruginosa lung infection.

304 AHL-mediated virulence factors such as pyocyanin and elastase and AHL itself 305have been reported to cause cytotoxic effects and tissue damage, and play an important role in the pathogenesis of *P. aeruginosa* (6, 25, 26). Expression of AiiM 306 in *P. aeruginosa* PAO1 strongly suppressed AHL accumulation, including two major 307 ones (C4-HSL and 3-oxo-C12-HSL) and the production of the QS-dependent 308 virulence factors. Furthermore, we demonstrated that AiiM-expressing PAO1 309 310 mutant exhibit a significantly decreased virulence, both in vitro and in vivo. A 311 previous report that described less virulence in AHL-negative mutant *P. aeruginosa* lung infection in neonatal mice supports our results (7). 312

It is unclear whether systemic bacterial dissemination is directly involved with the mortality in our model, although development of bacteraemia has been reported to be related to the high mortality rate in acute *Pseudomonas* infection (27). The decreased lung injury in the mice infected with AiiM-expressing mutant may contribute less to mortality and also minimise airway epithelial permeability, thereby resulting in reduced systemic dissemination (28).

319	Despite pro-inflammatory cytokines, chemokine and MPO activities in BAL
320	fluid were lower in mice infected with the AiiM-carrying mutant than in the control
321	mutant. Neutrophil counts in BAL fluid were identical in both groups. While the
322	3-oxo-C12-HSL attract neutrophils either directly or through the induction of
323	chemokines (IL-8, MIP-2) (29, 30), the pro-apoptotic effect of 3-oxo-C12-HSL on
324	neutrophils is known (6). AHL-mediated virulence factors, namely, pyocyanin and
325	rhamnolipid, also cause apoptotic or necrotic cell death of neutrophils in BAL fluid
326	(31, 32). Thus, part of migrated neutrophils may be killed by these factors, with no
327	change in the BAL neutrophil counts.

328 AHL-lactonase enzymes are highly specific for AHL and are expected to have beneficial effects in patients with P. aeruginosa infection. Thus, our results indicate 329 that a novel strategy using AHL may be useful for treating intractable Pseudomonas 330 infections, though there are still some issues for clinical use. We consider several 331332possibilities of AiiM for clinical applications in patients with infectious diseases. First, 333 the aiiM gene can be used to improve probiotics to enhance their positive effects through genetic modification. There are, however, some additional issues with 334mutant probiotics, such as human safety or possibly adverse effects on the 335

environment, and thus it is not yet ethically practical. Second, the use of the purified 336 AiiM protein will be the most convenient and practical method. Local administration 337 of the purified AiiM protein may reduce the severity of lung infections due to P. 338 339 aeruginosa and may have an efficacy in preventing infection, though it is not technically available at the present point. Therefore, further studies will be required 340 to evaluate the efficacy and safety of purified AiiM protein. In conclusion, this study 341demonstrates that AiiM can disturb the QS systems of *P. aeruginosa* and attenuate 342bacterial virulence in a mouse model of acute lung infection. Although the 343 mechanism of host immune response to QS-related factors is not fully understood. 344345we have found that quenching QS signals by AiiM may result in the reduction of excessive inflammation and help in inciting an immune response against P. 346 aeruginosa infection. Thus, our results are expected to supply attractive candidates 347to develop novel prophylactic or therapeutic strategies using AHL lactonases 348349 against Pseudomonas infections.

350

351 **ACKNOWLEDGMENTS**

352 We thank Prof. Paul Williams (University of Nottingham, UK) for kindly

353	providing Chromobacterium violaceum CV026. We declare no competing financial
354	interests. This research is partly supported by grants from Takeda Science
355	Foundation, the Ministry of Education, Culture, Sports, Science and Technology of
356	Japan (KAKENHI24791032) and the Ministry of Health, Labour and Welfare of
357	Japan (H22shinkouippan008 and H23shinkouippan018).
358	
359	
360	
361	REFERENCES
362	1. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin
363	SK. 2008. NHSN annual update: antimicrobial-resistant pathogens associated
364	with healthcare-associated infections: annual summary of data reported to the
365	National Healthcare Safety Network at the Centers for Disease Control and
366	Prevention, 2006-2007. Infection Control and Hospital Epidemiology
367	29: 996–1011.
368	2. Sintim HO, Smith JAI, Wang J, Nakayama S, Yan L. 2010. Paradigm shift in
369	discovering next-generation anti-infective agents: targeting quorum sensing,

370 c-di-GMP signaling and biofilm formation in bacteria with small molecules.

371 Future Medicinal Chemistry **2:1005–1035**.

372 3. Pesci EC, Pearson JP, Seed PC, Iglewski BH. 1997. Regulation of *las* and *rhl* 373 quorum sensing in *Pseudomonas aeruginosa*. Journal of Bacteriology
 374 179:3127–3132.

Wagner VE, Bushnell D, Passador L, Brooks Al, Iglewski BH. 2003.
 Microarray analysis of *Pseudomonas aeruginosa* quorum-sensing regulons:
 effects of growth phase and environment. Journal of Bacteriology
 185:2080–2095.

Smith RS, Harris SG, Phipps R, Iglewski B. 2002. The *Pseudomonas aeruginosa* quorum-sensing molecule *N*-(3-oxododecanoyl)homoserine lactone
 contributes to virulence and induces inflammation in vivo. Journal of
 Bacteriology **184:**1132–1139.

Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC,
 Standiford TJ, Ishiguro M, Yamaguchi K. 2003. The *Pseudomonas aeruginosa* autoinducer *N*-3-oxododecanoyl homoserine lactone accelerates
 apoptosis in macrophages and neutrophils. Infection and Immunity **71**:

5785–5793.

7. Pearson JP, Feldman M, Iglewski BH, Prince A. 2000. *Pseudomonas aeruginosa* cell-to-cell signaling is required for virulence in a model of acute
 pulmonary infection. Infection and Immunity 68:4331–4334.

8. Imamura Y, Yanagihara K, Tomono K, Ohno H, Higashiyama Y, Miyazaki Y,

Hirakata Y, Mizuta Y, Kadota J, Tsukamoto K, Kohno S. 2005. Role of

393 Pseudomonas aeruginosa quorum-sensing systems in a mouse model of

394 chronic respiratory infection. Journal of Medical Microbiology **54:**515–518.

395 9. Dong YH, Xu JL, Li XZ, Zhang LH. 2000. AiiA, an enzyme that inactivates the

- acylhomoserine lactone quorum-sensing signal and attenuates the virulence of
- 397 Erwinia carotovora. Proceedings of the National Academy of Sciences of the
- 398 United States of America **97:**3526–3531.

Morohoshi T, Someya N, Ikeda T. 2009. Novel *N*-acylhomoserine
 lactone-degrading bacteria isolated from the leaf surface of *Solanum tuberosum* and their quorum-quenching properties. Bioscience, Biotechnology, and
 Biochemistry **73**:2124–2127.

403 11. Wang W-Z, Morohoshi T, Ikenoya M, Someya N, Ikeda T. 2010. AiiM, a novel

404 class of *N*-acylhomoserine lactonase from the leaf-associated bacterium
405 *Microbacterium testaceum*. Applied and Environmental Microbiology
406 **76**:2524–2530.

407 12. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ,

408 Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L,

- 409 Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger
- 410 KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen
- 411 **IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson M V.** 2000. Complete
- 412 genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic
- 413 pathogen. Nature **406**:959–964.

13. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin
 M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P. 1997. Quorum
 sensing and *Chromobacterium violaceum*: exploitation of violacein production
 and inhibition for the detection of *N*-acylhomoserine lactones. Microbiology
 143:3703–3711.

419 14. Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. 2008.
 420 *N*-Acylhomoserine lactone regulates violacein production in *Chromobacterium*

421	violaceum type strain ATCC 12472. FEMS Microbiology Letters 279:124–130.
422	15. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. 2007. The
423	transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and
424	has antimicrobial and antibiofilm activity. The Journal of Clinical Investigation
425	117: 877–888.
426	16. Ravn L, Christensen AB, Molin S, Givskov M, Gram L. 2001. Methods for
427	detecting acylated homoserine lactones produced by Gram-negative bacteria
428	and their application in studies of AHL-production kinetics. Journal of
429	Microbiological Methods 44: 239–251.
430	17. Li C, Wally H, Miller SJ, Lu C-D. 2009. The multifaceted proteins MvaT and
431	MvaU, members of the H-NS family, control arginine metabolism, pyocyanin
432	synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. Journal
433	of Bacteriology 191: 6211–6218.
434	18. Kurachi M. 1958. Studies of the biosynthesis of pyocyanine. (II) Isolation and
435	determination of pyocyanine. Bull Inst Chem Res Kyoto Univ 36: 174–87.
436	19. Rust L, Messing CR, Iglewski BH. 1994. Elastase assays. Methods in
437	Enzymology 235: 554–562.

438	20. Battistini B, Steil AA, Jancar S, Sirois P. 1998. Roles of endothelins and their
439	receptors in immune complex-induced/polymorphonuclear-mediated lung injury
440	(reversed passive arthus reaction) in CD-1 mice. Pulmonary Pharmacology &
441	Therapeutics 11: 165–172.
442	21. Wesselkamper SC, McDowell SA, Medvedovic M, Dalton TP, Deshmukh HS,
443	Sartor MA, Case LM, Henning LN, Borchers MT, Tomlinson CR, Prows DR,
444	Leikauf GD. 2006. The role of metallothionein in the pathogenesis of acute lung
445	injury. American journal of Respiratory Cell and Molecular Biology 34: 73–82.
446	22. Asad S, Opal SM. 2008. Bench-to-bedside review: Quorum sensing and the
447	role of cell-to-cell communication during invasive bacterial infection. Critical
448	Care 12: 236.
449	23. Wang L-H, Weng L-X, Dong Y-H, Zhang L-H. 2004. Specificity and enzyme
450	kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase
451	(AHL-lactonase). The Journal of Biological Chemistry 279: 13645–13651.
452	24. Huang W, Lin Y, Yi S, Liu P, Shen J, Shao Z, Liu Z. 2012. QsdH, a novel AHL
453	lactonase in the RND-type inner membrane of marine Pseudoalteromonas
454	byunsanensis strain 1A01261. PloS One 7:e46587.

455	25. Lee K-M, Yoon MY, Park Y, Lee J-H, Yoon SS. 2011. Anaerobiosis-induced
456	loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas
457	aeruginosa. Infection and Immunity 79:2792–2800.
458	26. Sadikot RT, Blackwell TS, Christman JW, Prince AS. 2005. Pathogen-host
459	interactions in Pseudomonas aeruginosa pneumonia. American Journal of
460	Respiratory and Critical Care Medicine 171: 1209–1223.
461	27. Sawa T, Ohara M, Kurahashi K, Twining SS, Frank DW, Doroques DB, Long
462	T, Gropper MA, Wiener-Kronish JP. 1998. In vitro cellular toxicity predicts
463	Pseudomonas aeruginosa virulence in lung infections. Infection and Immunity
464	66: 3242–3249.
465	28. Azghani AO. 1996. Pseudomonas aeruginosa and epithelial permeability: role
466	of virulence factors elastase and exotoxin A. American Journal of Respiratory
467	Cell and Molecular Biology 15:132–140.
468	29. Smith RS, Fedyk ER, Springer TA, Mukaida N, Iglewski BH, Phipps RP.
469	2001. IL-8 production in human lung fibroblasts and epithelial cells activated by
470	the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is
471	transcriptionally regulated by NF-kappa B and activator protein-2. Journal of

472 Immunology **167:**366–374.

473	30. Wagner C, Zimmermann S, Brenner-Weiss G, Hug F, Prior B, Obst U,
474	Hänsch GM. 2007. The quorum-sensing molecule N-3-oxododecanoyl
475	homoserine lactone (3OC12-HSL) enhances the host defence by activating
476	human polymorphonuclear neutrophils (PMN). Analytical and Bioanalytical
477	Chemistry 387: 481–487.
478	31. Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte
479	MKB. 2005. Pyocyanin production by Pseudomonas aeruginosa induces
480	neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo.
481	Journal of Immunology 174:3643-3649.
482	32. Jensen PØ, Bjarnsholt T, Phipps R, Rasmussen TB, Calum H,
483	Christoffersen L, Moser C, Williams P, Pressler T, Givskov M, Høiby N. 2007.
484	Rapid necrotic killing of polymorphonuclear leukocytes is caused by
485	quorum-sensing-controlled production of rhamnolipid by Pseudomonas
486	aeruginosa. Microbiology 153: 1329–1338.
487	

489	
490	
491	
492	
493	
494	
495	
496	
497	FIGURE LEGENDS
498	FIGURE 1. TLC analysis of AHL produced by <i>P. aeruginosa</i> strains
499	Lane 1: AHL standards (C4-HSL, C6-HSL, and 3-oxo-C12-HSL). Lane 2: PAO1.
500	Lane 3: PAO1/pMJT1. Lane 4: PAO1/pMJT1-aiiM. Spots were visualised with the
501	AHL-reporter strains C. violaceum CV026 for short-chain AHL (a) or C. violaceum
502	VIR07 for long-chain AHL (b). None of the three AHLs were detected from
503	PAO1/pMJT1-aiiM.

505 **FIGURE 2.** The amount of pyocyanin (a) and elastase (b) activity in the culture 506 supernatant of PAO1/pMJT1 or PAO1/pMJT1-aiiM

507 Each bar represents the mean of mean of triplicates of the sample and the error

508 bars indicate the standard error of the mean. PAO1/pMJT1-aiiM produced very low

- 509 levels of both pyocyanin and elastase.
- 510

511 **FIGURE 3.** Cytotoxicity of A549 cells after infection with *P. aeruginosa* PAO1/pMJT1

512 (closed circle), PAO1/pMJT1-aiiM (open circle), or uninfected control (cross)

513 Cytotoxicity was determined by measuring the LDH release. Every data point

represents the mean of mean of triplicates of the sample and the error bars indicate

the standard error of the mean. *P. aeruginosa* PAO1/pMJT1-aiiM showed reduced

516 cytotoxicity. *, P < 0.05 compared with PAO1/pMJT1.

517

518 **FIGURE 4.** Analysis of survival data and bacterial loads

a) Kaplan–Meier survival curve of the mice infected with *P. aeruginosa*PAO1/pMJT1 (closed circle) or PAO1/pMJT1-aiiM (open circle). Survival was
followed for 7 days. n = 10–12 mice per group. *P. aeruginosa* PAO1/pMJT1-aiiM

522	exhibited significantly lower mortality than wild-type control strain. *, $P < 0.01$
523	compared with PAO1/pMJT1. b) Bacterial loads in the lungs, spleen, and blood at
524	24 h after infection with P. aeruginosa PAO1/pMJT1 (closed circle) or
525	PAO1/pMJT1-aiiM (open circle). Each horizontal line represents the mean of the
526	bacterial counts. n = 8 mice per group. P. aeruginosa PAO1/pMJT1-aiiM had a
527	decreased ability to disseminate in the infected mouse.
528	
529	FIGURE 5. Lung tissue damage caused by P. aeruginosa infection
530	Histological examination of the lungs from the mice infected with P. aeruginosa
531	PAO1/pMJT1 (a) and PAO1/pMJT1-aiiM (b). Lung tissue sections were obtained at
532	24 h post infection, and stained with haematoxylin and eosin. Representative
533	images were shown at an original magnification of 25x. Scale bar = 200 μ m. The
534	amount of haemoglobin (c), albumin (d), and LDH (e) in cell-free BAL fluids at 24 h
535	after infection with P. aeruginosa PAO1/pMJT1, PAO1/pMJT1-aiiM or
536	uninfected control. Each bar represents average values and error bars show
537	standard error of the mean. n = 8 mice per group. Mice infected with <i>P. aeruginosa</i>

538 PAO1/pMJT1-aiiM developed only small lung lesions and had significantly 539 decreased levels of haemoglobin, albumin, and LDH in BAL fluids.

540

541 **FIGURE 6.** BAL fluid analysis

BAL fluids were harvested 24 h after infection with P. aeruginosa PAO1/pMJT1, 542PAO1/pMJT1-aiiM, or uninfected control. Total cell counts (a) and differential 543cellular analysis (b) MPO levels (c) in cell-free BAL fluids. Each bar represents 544average values and the error bars show the standard error of the mean. n = 8545mice per group. Both P. aeruginosa PAO1/pMJT1 and PAO1/pMJT1-aiiM induced a 546547similar increase in the total BAL cell and neutrophil numbers in infected mice. The levels of MPO in cell-free BAL fluids were significantly reduced in the mice infected 548with *P. aeruginosa* PAO1/pMJT1-aiiM. Neu = neutrophils; Mac = macrophages; Lym 549= lymphocytes. 550

551

FIGURE 7. Proinflammatory cytokine and chemokine levels in cell-free BAL fluids at
24 h post infection

554	Each bar represents average values and the error bars show the standard error of
555	the mean. n = 8 mice per group. Mice infected with <i>P. aeruginosa</i> PAO1/pMJT1-aiiM
556	produced lower levels of TNF- α , IL-1 β , IL-6, and MIP-2 in cell-free BAL than in mice
557	infected with PAO1/pMJT1.
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	

571 **TABLES**

Strain or plasmid genotype Source P. aeruginosa Wild-type prototroph PAO1 12 PAO1 with pMJT1 PAO1/pMJT1 15 PAO1/pMJT1-aiiM PAO1 with pMJT1-aiiM This study C. violaceum ATCC 31532 derivative; cvil::Tn5xylE; CV026 11 KmR SmR VIR07 ATCC 12472 derivative; cvil::KmR; 11 AmpR Plasmid pUC118-aiiM pUC118 (cloning vector, Takara Bio) 11 containing homoserine lactonase gene

572 **Table 1.** Bacterial strains and plasmids used

aiiM; AmpR

pMJT1	Broad-host-range expression vector	15
	containing the araBAD promoter and the	
	araC gene; AmpR, CarbR	
pMJT1-aiiM	pMJT1 with arabinose-inducible aiiM;	This study
	AmpR, CarbR	

573 P. aeruginosa: Pseudomonas aeruginosa; C. violaceum: Chromobacterium

- 574 violaceum.
- 575
- 576 **Table 2.** Amplification primers

Primer name	sequence
AiiMrbsNhel_F	TACgctagcGATATGCTCGGGCAAAGCCCG
AiiMendEcoRI_R	CTCgaattcTCGACGACGACATCCAGCTCCACG

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.