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Abstract. A continously embedded force doublet over the particular region can be regarded
as the distributing eigen strain. This fact implies that many sorts of inelastic strain can be
replaced by the force doublet. In the present paper, the force doublet is used to alter the local
constitutive relationship. As a result, a method for analyzing the general inclusion problem in
which the material properties of the inclusion are not only different from those of the matrix
material but also can be even a function of spacial coordinate variables is proposed. The
theoretical background of the present analysis is explained followed by some representative
numerical results.

Introduction

There are at least two advantages, if the Body Force Method (BFM) is employed rather than
the conventional Finite Element Method (FEM), for the analysis of graded materials. The
1st advantage is that, there is no need to prepare the mesh division to the domain where the
material composition is identical to the matrix while the complete discretization of the total
body is indispensable in FEM. The 2nd advantage is that the location of crack is admitted only
along the boundary of each element in FEM while there is no such restriction in BFM.

So far, the inclusion problems analyzed by BFM were such a primitive one that the material
composition or property of the inclusion region is uniform though the value is different from
that of surrounding matrix material. M. Yatsuda, Y. Murakami and M. Isida[1] analyzed the
stress distribution in the vicinity of an elliptic inclusion embedded in the infinite plate under
remote tension. The Young’s modulus and the Poisson’s ratio in the inclusion and the matrix
regions were uniform at (EI , νI) and (EM , νM) respectively. The most characteristic point of
their approach was the use of the elastic fields due to a point force acting in a uniform infinite
medium that corresponds the matrix and the inclusion regions independently. To the contrast,
in the present analysis, the force doublet is employed in order to express the presence of general
inclusion whose composition can be even a function of the spacial coordinate variables as in
graded materials. Based on the present strategy, the interference problem between a general
inclusion and a line crack and so on were computed and the results were shown graphically.

Theoretical background

The strategy for the treatment of general inclusion problem is illustrated in Fig.1. In the
present analysis, the stress component at an arbitrary point P in the matrix region (σM

ij (P ))
and that of in the inclusion region (σI

ij(P )) is expressed by a superposition of the influence due



to remote stresses σ∞
ij (P ) and the influence of force doublet of magnitude Tij(Q) embedded at

a point Q[2,3].

σM
ij (P ) = σ∞

ij (P ) +

∫
Ω

σk`
ij (P,Q)Tk`(Q)dΩ(Q) (1)

σI
ij(P ) = σ∞

ij (P ) +

∫
Ω

σk`
ij (P,Q)Tk`(Q)dΩ(Q)− Tij(P ) (2)

As in a same manner, the strain components corresponding to the matrix (εMij (P )) and the
inclusion (εIij(P )) region can be expressed as

εMij (P ) = εIij(P ) = ε∞ij (P ) +

∫
Ω

εk`ij (P,Q)Tk`(Q)dΩ(Q) (3)

In Eq.1∼3, i, j, k and ` are indices that express either of x and y. Txx(Q), Tyy(Q) and Txy(Q)
are unknown density of force doublet at point Q to be embedded in the inclusion region Ω
(Q ∈ Ω). σxx

ij (P,Q), σyy
ij (P,Q) and σxy

ij (P,Q) are stress components at the reference point
P due to a unit magnitude of force doublet acting at the source point Q into xx, yy and
xy directions, respectively. In a same manner, εxxij (P,Q), εyyij (P,Q) and εxyij (P,Q) are strain
components at the reference point P due to a unit magnitude of force doublet acting at the
source point Q into xx, yy and xy directions, respectively.

The constitutive equation between components of stress and strain follows

σM
ij (P ) = DM

ijk`(P )εMk` (P ), εMij (P ) = CM
ijk`(P )σM

k` (P ) (4)

σI
ij(P ) = DI

ijk`(P )εIk`(P ), εIij(P ) = CI
ijk`(P )σI

k`(P ) (5)

where DM
ijk` and CM

ijk` are the stiffness and compliance tensor for matrix material and DI
ijk`

and CI
ijk` are those for inclusion material. As seen in Eq.3, εMij (P ) and εIij(P ) has the identical

expression. Therefore, the following relation is derived.

CI
ijk`(P )σI

k`(P ) = CM
ijk`(P )σM

k` (P ) (6)

Eq.6 defines the condition through which the unknown magnitude of body force doublet Tij(P )
at point P is determined as

Tij(P ) =
[
Eijαβ −DI

ijk`(P )CM
k`αβ(P )

]
×

[
σ∞
αβ(P ) +

∫
Ω

σst
αβ(P,Q)Tst(Q)dΩ(Q)

]
(7)

where Eijαβ is a unit matrix of order 3× 3.
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Figure 1: Analysis of inclusion problem by force doublets



Numerical example

In order to verify the applicability of the present method, stress distribution in an infinite plate
with a circular hole subjected to a uniform tensile stress at infinity was analyzed. A circular
hole can be considered a kind of inclusion whose modulus of elasticity is zero. Fig.2 shows the
analyzed σyy distribution along the x axis. In this analysis, the circular area corresponding
to a circular hole was divided with regularly distributed number of triangles NT. As seen,
the numerical solution exhibited a good agreement with theoretical value. Figure 3,4 and 5
shows the σyy distribution along the x axis for the cases of single circular inclusion (Fig.3),
interference between a circular inclusion and a circular hole (Fig.4) and interference between a
circular inclusion and a crack (Fig.5). The used number of triangles for the inclusion part was
fixed at NT=1024.

Conclusion

The body force doublet approach for solving the general inclusion problem was proposed. As
the present method does not require any of special fundamental solution, an arbitrary inclusion
problem can be solved in a same manner. For simplicity, the magnitude of force doublet for each
triangular area was assumed at constant in the present study, however, higher order element
could be easily introduced and expected to bring a further accurate solution.
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Figure 2: Triangular division of the circular area corresponding to a circular hole and the
calculated σyy distribution along the x axis (NT: number of triangles)
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Figure 3: σyy distribution along the x axis for the problem of tension of an infinite plate with
single circular inclusion of various characteristics (νI = νM = 0.0)
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Figure 4: σyy distribution along the x axis for the problem of tension of an infinite plate with
circular inclusion of various characteristics (νI = νM = 0.0) and a circular hole
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Figure 5: σyy distribution along the x axis for the problem of tension of an infinite plate with
circular inclusion of various characteristics (νI = νM = 0.0) and a crack


