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The nonlinear dynamic instability of an annular sector plate
subjected to equal and opposite time-varying moments is examined. The
equation of motion describing a large deflection of the annular sector
plate based upon Berger's approximate equation is analyzed by the
Galerkin method.

The resulting equations for time variables are integrated by using
the Runge-Kutta-Gill method. Numerical results are presented .for
various boundary conditions, damping forces, and static moments.

I. INTRGDUCTION

Out-of-plane vibrations of a thin plate may be observed under in-plane
periodic forces by reason of parametric excitation.!' Since the parametric
resonance may induce fatigue cracks or acoustic radiations, it is important to
clarify the conditions under which the unstable motions occur.

The dynamic stability of an annular sector plate such as a web plate of an
arch rib or corner member of a rigid-frame is examined in this study.

The dynamic stability which is determined by the small deflection theory has
been presented.!' The amplitudes of unstable regions become infinite under
assumptions of the small deflection theory. However, the amplitudes are
bounded because of the stretching of the middle plane of the plate. From this
fact, the amplitudes of unstable motions must be estimated by the large
deflection theory of the plate.

The purpose of the present paper is to present an analytical approach to the
investigation of the nonlinear response of an annular sector plate subjected
to an in-plane dynamic moment. The equation of motion describing a large
deflection of the plate based upon Berger's approximate equations®’ is
analyzed by the Galerkin method. The resulting equations for time variables
are integrated by using the Runge-Kutta-Gill method.

Numerical results are presented for different boundary conditions, damping
forces, and static moment.

0. DIFFERENTIAL EQUATION AND BOUNDARY CONDITION

Figure 1 shows an annular sector plate with an opening eangle @, outer radius
a and inner radius b.

The polar coordinates (r,#8)are taken in the neutral surfece of the plate.
Equal and opposite moments M, which consist of the static moment ME and
sinusoidally time-varying moment M,cosQt, act along the radial edges. In-plane
forces N;,N,, .and N., due to the moment M are given as follows*’:

- 1 Kt
N, ==4 (M *”&“Sm) (% Int+ar Inf4br 1n§) (1. a)
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Fig. 1. Geometry and coordinates of an annular sector plate.

-4 (M +M, cosQit) . a* b'l
= N %3

N, n%+a‘ lngc-b' 11‘:?7}&' -b*) (1. b)

Ny =0 (1.¢c)

where N=(a'-b*)*-4a*b®* (In(a/b))". M=M; +M.cosQt, N.,N, and N., are functions of
independent variable r, and Q and M, are the forcing circular frequency and
amplitude of the sinuscidally time varying moment.

When the transverse inertia term is added to Berger’'s equations,?’ the basic
equations for large-amplitude free wvibrations of an annular sector plate
subjected to an in-plane moment can be written as

1l 2w

Lw) =phg-t+”+w w-%(rm 3—?) N dt -Nevtu=0 (2)
Noh* _gu.1 gw,.ulav,1 ,aw
120 ~art3 G0 " *rtraetardas) @

where w is the plate deflection, t is the time, h is the plate thickness, p is
the mass density, D=Eh’/12(1-+*) is the bending stiffness, E is Young's
modulus, v is Poisson’s ratio, u and v are the in-plane displacements in the r
and & directions, and
z x

v‘:(ﬁ_,—hl_—g?%,%,—)' is the biharmonic operator in the polar coordinates and
N: is a constant.

The following two boundary conditions for bending are considered in the
present analysis:

case [:simply supported along all edges;i.e.,

w=M, =0 (8=0, o), w=M, =C (r=b, a); (4. a)

case [:simply supported along the loaded edges and clamped along the other
edges

w=M, =0 (8=0, a), w=g:—=0 (r=b, a), (4. b)

where M, is the bending moment in the radial direction and M: is the bending
moment in the angular direction.

With regard to in-plane boundary conditions, all edges are immovable. Since
it is difficult to satisfy the in-plane constraints exactly, the average
in-plane constraint boundary conditions are employed:

furd8=0(r=b, a), [vdr=0(6=0, a). (4. c)

Since N, is independent of r &nd 8 in the equations, we can multiply Eq. (3)
by rdrd8 and integrate over the area of the annular sector plate as shown in
Fig.1 to find
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'l

120 Cafat-bt)= If(%%i—%)rdrdw%fﬂ(g ( )}rdrde 5)
We find, from Eq. (4.c),
Tbﬁ-a(a’ b')“-ff{( 3+ —{ 99 )} rrdo. 6)

Since the edges are either simply supported or clamped, the right-hand side
of Eq. (6) can be integrated by parts and is simplified as follows:
N, h*

Lopaat -b'):-%ffwv’ wrdrde. )

. METHOD OF SOLUTION

Taking these boundary conditions into account, we assume the sclution of
Eq. (1) by
w=h2T.l © (t) W . (rl 6) (8)

where T,, is an unknown function of the time variable and W,, is an eigen-
function associated with free vibration satisfying the geometric boundary
condition of the plate, defined as

Win=Riq (r)ysina, 8. (9)

RinzAﬁnJ.n (kinE)"‘BinY-n (kine)"‘cinlun (kine)"'Diann (kinE)
in which Aq,,.Bin.Cin and Di;, are constants of integration dependent on the
boundary conditions, J,, and Y., are the Bessel function, I,. and K., are the
modified Bessel function, k;j,=a*'/phw;,*/D, £=r/a, w;, is the radian frequency
for the linear case. a,=nz/a, and n=1, 2,--is an integer.

Substituting Egs. (8) and (7) into Eq. (2) and applying the Galerkin method,
one has

[fLW, , £d£d6=0 (10)

where j=1, 2, -~
Performing integrations, one has

Tia 4P snTsn+ (M +Me COSBT) ZE; s a Tin+LF 140 Tia ZLG i unT1n Tan =0 (11)

where pyn,Eiin.Fiin and Gjap are constants dependent on vibration
mode (Appendix). The following nondimensjonal quantities have been introduced
in the above equation®?:

u‘,:%“ . =ﬂ—:h¢7;=%rl and 7=t t (12)
where 8, is the lowest natural radian frequency, M.r=2.:D is the buckling
moment and 1., is the eigen-value of buckling which is determined by boundary
conditions and geometrical parameters of the plate.*’

Geometrical parameters in the present analysis are the opening angle a and
the radius ratio B(=b/a). The aspect ratio of the annular sector plate may be
defined by the rectangular plate asnalogy as p=82/c, in which 2=(a+b)as2 is the
mean arc length and ¢ is the radial edge length.

N. METHOD OF TIME RESPONSE ANALYSIS

The dynamic unstable regions of the present problem consist of simple
parametric and sum type combination resonances. ?’

Combination resonance is the vibration of the two-degrees-of-freedom system.
The two-degrees-of-freedom approach is adopted to obtain a time response. Time
variebles are numerically integrated using the Runge-Kutta-Gill method. The
purpose of the present- analysis is to determine the amplitudes of unstable
motions which occur under the assumptions of the small deflection theory.
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Fig. 2. Accuracy of the present solution.

Therefore , the initial conditions for the time variables are T, =T.;=0.01 and
T.1=T.4=0.00 to satisfy the small amplitude vibration. Poisson's ratio v of
the plate is taken as 0. 3.

V. NUMERICAL RESULTS

V-1. Accuracy of solution

Consider the annular sector plate with opening angle a=x/18 and B=0. 839. The
aspect ratio of the plate is unity(g=1.0). The boundary conditions are simply
supported on all edges(case I).

The amplitudes of combination resonances, ';+w', and w's+w'; for central
frequencies, are shown in Fig. 2. In this figure, the abscissa M. shows the
nondimensional moment, and the ordinate A indicates the maximum amplitude
which is nondimensionslized by the plate thickness h. The amplitudes of the
unstable motions for the square plate which are obtained by using Karman's
thecry are also shown. From the comparison of these results, it will be seen
that in spite of approximate Berger's basic equation, the present solution is
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Fig. 3.Unstable regions for an annular sector plate
subject to moment M. : case [, a=60° and wg=1.0.
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Fig. 4.Unstable regions for an annular sector plate
subject to moment M. : case I, a=60° and u=1.0.

in reasonable agreement with that of the more reliable basic equation, i.e.,
Karman's equation.

V-2, Effect of boundary conditions

Figures. 3 and 4 show unstable regions of an annular sector plate with no
static moment (M, =0.0) for case | and case [ which are obtained by linear
analysis.?’ In these figures, the ordinate M. denotes the amplitude of the
periodic moment normalized to the buckling moment, while the abscissa © is the
exciting nondimensional frequency. Further, the cross-hatched portions
represent the regions of various types of instability such as both simple
parametric resonances (2" ;/k) and combination resonances of the sum
type({w*; +w*;)/k), which contain the secondary unstable region(k=2) as well as
the primary unstable region(k=1).

The widths of primary unstable regions of the simple resonances are broader
than those of the combination resonance. When two frequencies have adjacent
half-wave numbers in the radial direction and the same half-wave number in the
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Fig. 5, Amplitudes of uhstable motions: Fig. 6, Amplitudes of unstable motions:
case [, a=60°, u=1.0. case [, a=60°, y=1.0. (for n=1)
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Fig. 7. Amplitudes of unstable motions: case l, a=60" and #=1.0 (for n=2).

angular direction, unstable regions of the combination resonances such as
Ww;+w,;., are obtained in the present problem. The amplitudes of these
unstable regions cobtained by linear analysis grow indefinitely. However,
nonlinear time responses of the unstable regions are bounded because of the
nonlinear terms effect, which is caused by in-plane stretching forces due to
the deflection of the plate.

The amplitudes for each central frequency 2w*,/k and
(w*,+w*,)/k of the unstable motions are shown in Figs.5,6 and 7. In these
figures, the abscissa M. shows the nondimensional moment and the ordinate {
indicates the amplitude which is non-dimensicnalized by the plate thickness.
The amplitude of the simple resonance is greater than that of the combination
resonance for each boundary condition. This fact is quite at variance with
that of the rectangular plate in which the amplitudes of combination
resonances are greater. The amplitudes are not directly dependent on the
widths of the unstable regions and for case I are greater than for case I.

V-3. Effect of damping
Amplitudes of the simple resonance 2w', and the combination resonance
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Fig. 8.Effect of damping on the amplitudes of unstable motions:
case I, a=60°, u=1.0.
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w';+w', for various magnitudes of damping constant (h*, =h",=h) are shown in
Fig. 8. The effect of damping decreases the amplitudes of unstable motions, and
this tendency is conspicuous where the exciting moment M. is small. The
unstable motion does not occur if the damping effect is greater than the
divergent (negative damping) -effect of the parametric instability. The effect
of damping becomes smaller as the moment M. increases.

V-4. Effect of static moment

Figure 9 shows the amplitudes of unstable motions for the simple resonance
2w'y and the combination resonance ';+w'; of an annular sector plate
subjected to static moments T, =0.0 and 0.3. The static moment ®, has an
influence upon the amplitudes of unstable motions.

The effect of the static moment is to increase the amplitude of the
combination resonance ';+w!; and decrease the amplitude of the simple

resonance 2wt,.
V. CONCLUSIGONS

The present paper shows the nonlinear dynamic instability of an annular
sector plate subjected to an in-plane dynamic moment. The conclusions are as
follows:

(1)Amplitudes of the out-of-plane vibrations of an annular sector plate
subjected to an in-plane dynamic moment can be satisfactorily estimated using
Berger's approximate equation.

(2)Amplitudes of simple parametric resonances are greater than those of
combination resonances for the present case. This is quite different from the
response of the rectangular plate, in which the amplitudes of combination
resonances are greater,

(3) Damping decreases the amplitudes of unstable motions. This effect is
conspicuous where the parametric excitation moment is small.

(4)The static moment influences the asmplitudes of unstable motions.

APPENDIX
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Fig. 9. Effect of static moment on the amplitudes of unstable motions:
case |, a=60" and p=1.0,
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