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The nonlinear dynamic instability of an annular sector plate 
subjected to equal and opposite time-varying moments is examined. The 
equation of motion describing a large deflection of the annular sector 
plate based upon Berger's approximate equation is analyzed by the 
Galerkin method. 
The resulting equations for time variables are integrated by using 
the Runge-Kutta-Gill method. Numerical results are presented .for 
various boundary conditions， damping forces， and static moments. 

J. INTRODUCJ'ION 

Out-of-plane vibrations of a thin plate may be observed under in-plane 
periodic forces by reason of parametric excitation. " Since the parametric 
resonance may induce fatigue cracks or acoustic radiations， it is important to 
clarify the conditions under which the unstable motions occur. 

The dynamic stability of an annular sector plate such as a web plate of an 
arch rib or corner member of a rigid-frame is examined in this study. 

The dynamic stability which is determined by the small deflection theory has 
been preser.ted." The amplitudes of unstable regions become infinite under 
assumptions of the small deflection theory. However， the amplitudes are 
bounded because of the stretching of the middle plane of the plate. From this 
fact， the amplitudes of unstable motions must be estimated by the large 
deflection theory of the plate. 
The purpose of the present paper is to present an analytical approach to the 

investigation of the non1inear response of an annular sector plate subjected 
to an in-plane dynamic moment. The equation of motion describing a large 
deflection of the plate based upon Berger's approxおnate equations" is 
analyzed by the Galerkin method. The resulting equations for time variables 
are integrated by using the Runge-Kutta-Gill method. 

Numerical results are presented for different boundary conditions， damping 
forces， and static moment. 

U.DIFFERENTIAL EQUATION AND BOUNDARY CONDITION 

Figure 1 shows an annular sector plate with an opening angle α， outer radius 
a and inner radius b. 

The polar coordinates (r， 8) are taken in the neutral surface of the plate. 
Equal and opposite moments M， which consist of the static moment Mf. and 
sinusoidally time-varying moment M，cosQt， act along the radial edges. In-plane 
forces Nr， N" .and Nr， due to the moment M are given as follows‘， : 

-4(仇 +MtcゅsOt)，a' b' N， ~ \"~ ....N ---.._， (-r;' lnli+a'lniï+ b'ln~) (1. a) 



206 K. TAKAHASHI et al 

Fig. 1. Geometry and coordinates of an annular sect口rplate. 

-4(比+M，cosnt)， al b~ N・=--'\""""'~'N""''''''''..''' ー-r;ln~a'ln~b'lnfta'-b') (1. b) 

N，. =0 (1. c) 

where N= (a' -b' )' -4a' b' (ln (a/b))'. M=地+M，cosnt， Nr， N. and N，・ arefunctions of 
independent variable r， and n and M， are the forcing circular frequency and 
amplitude of the sinusoidally time varying moment. 

制henthe transverse inertia term is added to Berger's equations，" the basic 
equations for large-amplitude free vibrations of an annular sector plate 
subjected to an in-plane moment can be written as 

I W. ，，_ .. 18 ，_.， oW¥ .f 1 o' w 
L(w)=ph~.;IDV' ωー一一 (rNrー) -N. ~，百r -N.ザ w=Odt' . _. -rdr ，...， dr' ... r' d6' 

N，h'_du.l，dW" ，u，ldv，l ，dw 
古昔一=友可(EF)+F+可ポ訂正;;;)

(2) 

(3) 

where w is the plate deflection， t is the time， h is the plate thickness， p is 
the mass density， D=Eh'/12(1ーが is the bending stiffness， E is Young's 
modulus， v is Poisson's ratio， u and v are the in-plane disp1acements in the r 
and 6 directions， and 

d' .1d，ld' 
V' = (号可+ι4ー+可百r)'is the biharmonic operator in the polar coordinates and dr" r dr'r' d 
N， is a constant. 

The following two boundary conditions for bending are considered in the 
present analysis: 

case I:simply supported a10ng a11 edges;i.e.， 

w=M. =0 (6=0， a)， w=M， =0 (r=b， a) ; (4. a) 

case D:simply supported along the loaded edges and clamped along the other 
edges 

叫 =0(同町)， w=会=0(叫札 (4. b) 

ωhere M. is the bending moment in the radia1 direction and M， is the bending 
moment in the angular direction. 

With regard to in-plane boundary conditions， a11 edges are immovab1e. Since 
it is difficult to satisfy the in-p1ane constraints exact1y， the average 
in-plane constraint boundary cond1tions are emp1oyed: 

!urd6=0 (r=b， a)， !vdr=O (6=0， a). (4. c) 

S1nce N， 1s independent of r and 6 1n the equations， we can mul tip1y Eq. (3) 
by rdrd6 and integrate over the area of the annular sector plate as shown in 
F1g. 1 to find 
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Nf hJ ~ I'...! t....l ¥ _ r r ，du. u. ldv ¥ _.... _...1 n， 1 r t I ，dw， ~ 1 ，dω2 
120α(a'-b')=ff(喜子+戸市百)rdrd8+~f f( (ai) +;， (ぉ))rdrd8. (5) 

lIIe find. from Eq. (4. c). 

Nc hl 
_ '~I. h..I' _1， r f ，dw 1，dW 

琵官官(a'-b') =~f f {(;;; ) + ~，(;;ã )) rdrdO. (6) 

Since the edges are either simply supported or clamped. the right白 handside 
of Eq. (6) can be integrated by parts and is simplified as follows: 

N， h' 7t長-{l(a' -b' ) =ーちffWV' wrdrd8. (7) 120 -，- -，-2 

飢 METHOOOF SOLUTION 

Taking these boundary conditions into account. we assume the solution of 
Eq. (1) by 

w=h1:1'，. (t) W，. (r. 8) (8) 

where T，. is an unknown function of the time variable and 111， n is an eigen-
function associated ωith free vibration satisfying the geometric boundary 
condition of the plate. defined as 

111， n =R，. (r) sinα~ 8. (9) 

Rin=A'nJ.n (k'n~)+Bin Y.n (k'n~)+C ， .I.. (k'n~)tDin K. n (kin~) 
in which A， n. B， n. C， n and D， n are constants of integration dependent on t.he 
boundary conditions. J. n and Y. n are the Bessel function. 1. n and K. n are the 
modified Bessel function. k， n =a‘.fphωi n' /D. ~=r/a.ω'n is the radian frequency 
for the linear case. 仇 =n1tla. and n=1. 2. ...is an integer. 
SUbstituting Eqs. (8) and (7) into Eq. (2) and applying the Galerkin method. 

one has 

f fLW， n ~d~d6=0 (10) 

where j=1. 2. ・ヘ
Performing integrations. one has 

1'. n +p'， n T. n + (Q. +仏cosC;;r)1:E，..T， n +1:11" n T'n I:I:Gi・.T，nT.n=O (11) 

where P'n. EiJ n• l1i.n and Gi ・ are constants dependent on vibration 
田oae(Appendix). The fOllowing nondimensional quantities have been introduced 
in the above equation" 

比~ i'i_~ Dnl'l 1"'_1.1¥ 廊。=応t. 飼t=応ry=zz and τ凶.t (12) 

where n1
1 is the lowest natural radian frequency. 民t=λcr D is the buckling 

moment and 10 t is the eigen-value of buckling which is determined by boundary 
conditions and geometrica1 parameters of the plate.‘' 

Geometrical parameters in the present analysis are the opening angle a and 
the rad1us ratio s(=b/a). The aspect ratio of the annular sector plate may be 
defined by the rectangular plate analogy as μ=J!/c. in which ~= (a+b)α/2 is the 
mean arc length and c is the radial edge length. 

W. METHOD 011 TIME RESPONSE ANALYSIS 

The dynamic unstable regions of the present problem consist of simple 
paraw.etric and sum type combination resonances." 
Combination resonance i5 the vibration of the two-degrees-of-freedom system. 

The two-degrees-of-freedom approach is邑doptedto obtain a time response. Time 
variables are numerically integrated using the Runge-Kutta-Gill method. The 
purpose of the present analysis is to determine the amplitudes of unstable 
motions which occur under the assumptions of the small deflection theory. 
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Therefore， the initia1 conditions for the time variab1es are T，， =T.J=O.Ol and 
t.，=t.J=O.OO to satisfy the small amplitude vibration. Poisson's ratio v of 
the p1ate is taken as 0.3. 

V.NUMER1CAL RESULTS 

V-l. Accuracy of solution 
Consider the annu1ar sector p1ate with opening ang1e a:x/18 and s=0.839.The 

aspect ratio of the p1ate is unity(μ=1.0). The boundary conditions are simp1y 
supported on a11 edges(case 1). 
The amplitudes of combination resonances， ω， 1 +叫" and ω，1 I +ωt. for centra1 

frequencies， are shown in Fig. 2. 1n this figure， the abscissa Qt shows the 
nondimensiona1 moment， and the ordinate 瓦 indicates the maximum amplitude 
which is nondimensionalized by the p1ate thickness h. The amplitudes of the 
unstab1e motions for the square p1ate which are obtained by uSing Karman' s 
theory are a1so shown. From the comparison of these results， it wil1 be seen 
that in spite of approximate Berger's basic equation， the present solution is 

0.5 

。 2.0 4.0 6.0 8.0_ 
ω 

10.0 

Fig.3.Unstab1e regions for an annular sector p1ate 
subject to moment仏 case1，α=60・andμ=1. O. 
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Fig.4. Unstable regions for an annular sector plate 
subject to moment仏 casen， a=60・andμ=1. O. 

in reasonable agreement with that of the more reliable basic equation， i.e.， 
Karman' 5 equation. 

V-2. Effect of boundsry conditions 
Figures.3 and 4 show unstable regions of an annular sector plate with no 

209 

static moment (1.¥， =0. 0) for case 1 and case n which are obtained by linear 
analysis.川 1n these figures， the ordinate臥 denotesthe amplitude of the 
periodic moment normalized to the buckling moment， while the abscissa w is the 
exciting nondimensional frequency. Further， the cross-hatched portions 
represent the regions of various types of instability such as both simple 
parametric resonances (弘l'I Ik) and combination resonances of the sum 
type ((c.f' け c.f'1)/k). which contain the secondary unstable region(k=2) as well as 
ttle prjmary unstable region (k=l). 
The widths of primary unstable regions of the simple resonances are broader 

than those of the combination resonance. When two frequencies have adjacent 
half-wave numbers in the radial direction and the same half-wave number in the 
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Fig. 5. Amplitudes of unstable motions: 

case 1，α=60・， μ=1.O. 
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Fig.6，Amplitudes of unstable motions: 
case n，α=60・.μ=1.O. (for n=l) 
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Fig. 7. Amplitudes of unstable motions: case n， a=60・andμ=1. 0 (for n=2). 
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angular direction， unstable regions of the combination resonances such as 
CJ" ， +CJ" ，・ are obtained in the present problem. The amplitudes of these 
unstable regions obtained by linear analysis grow indefinitely. However， 
nonlinear time responses of the unstable regions are bounded because of the 
nonlinear terms effect， which is caused by in-plane stretching forces due to 
the deflection of the plate. 

The amplitudes for each central frequency ~， /k and 
(ω. ， +ω. J) Ik of the unstable motions are shown in Figs. 5， 6 and 7. ln these 
figures， the abscissa仏 shows the nondimensional mαnent and the ordinate瓦
indicates the amplitude which is non-dimensionalized by the plate thickness. 
The amplitude of the simple resonance is greater than that of the combination 
resonance for each boundarγcondition. This fact is quite at variance with 
that of the rectangular plate in which the amplitudes of combination 
resor.ances are greater. The amplitudes are not directly dependent on the 
widths of the unstable regions and for case D are greater than for case 1. 

Y-3. Effect of damping 
Amplitudes of the simple resonance ~. and the combination resonance 
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Fig.8. Effect of damping on the amplitudes of unstable motions: 
case 1，α=60・， μ=1.o. 
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ω" +叫" for various magnitudes of damping constant(h電.=h' ，=h) are shown in 
fig.8. The effect of damping decreases the amplitudes of unstable motions， and 
this tendency is conspicuous where the exciting moment臥 issmall. The 
unstable motion does not occur if the damping effect is greater than the 
divergent (negative damping) .effect of the parametric instability. The effect 
of damping becomes smaller as the moment悶τincreases.

v-~ Effect of static mコment
figure 9 shows the amplitudes of unstable motions for the simple resonance 

2ω" and the combination resonance ω， ， +ω" of an annular sector plate 
subjected to static moments !Jo =0. 0 and 0.3. The static moment !Jo has an 
influence upon the amplitudes of unstable motions. 
The effect of the static moment is to increase the amplitude of the 

combination resonance w'，+ω" and decrease the amplitude of the simple 
resonance 2ω， ，・

W.CONCLUSIONS 

The present paper shows the nonlinear dynamic instability of an annular 
sector plate subjected to an in-plane dynamic moment. The conclusions are as 
follows: 
(1) Amplitudes of the out-of-plane vibrations of an annular sector plate 
subjected to an in-plane dynamic moment can be satisfactorily estimated using 
Berger's approximate equation. 
(2) Amplitudes of simple parametric resonances are greater than those of 
combination resonances for the present case. This is quite different from the 
response of the rectangular plate， in which the amplitudes of combination 
resonances are greater. 
(3)Damping decreases the amplitudes of unstable motions. This effect is 
conspicuous where the parametric excitation moment is small. 
(4)The static moment influences the amplitudes of unstable motions. 

APPENDIX 

A， n ={R， n' ~d~ 

EHH-;tf・I吋iiL宇土f，R1n)R，. ~ 
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fig.9. Effect of static moment on the amplitudes of unstable motions: 
case 1， a=60・andμ=1. O. 
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