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Dynamic Stability of a flat sag cable subjected to an axial periodic
force is investigated. The equation of motion of the cable is solved by
the Galerkin method. Unstable regions are presented first for various
sag-to-span ratios and ratios of wave speeds. Amplitudes of unstable
motions are obtained using the nonlinedar cable theory.

I. INTRODUCTION

Dynamic stability problem of structures subjected to a periodic load has been
studied by many researchers.'' *' Recently, Kovacs®' pointed out that dynamic
instability of a cable employed as a tension member of a cable stayed bridge or
a guy tower may occur under the axial periodic load due to bending vibration of
the tower or the girder of bridges.He treated dynamic instability of the string
which has no sag and discussed the control of this unstable vibration by using
a vibration absorber, However, Kovacs neglected the sag of the cable which
influences the dynamic properties of the cable. Takahashi and Konishi‘' analyzed
unstable out-of-plane vibrations of cables under inplane forcing by the
multiple degrees-of-freedom approach.

In this paper, theoretical solutions are reported for the dynamic stability of
a flat-sag cable under an axial sinuscidally time-varying load. This problem is
solved by using the harmonic balance method described first by Bolotin'' and
lately extended by the author.®’

After presenting the problem in the eigenvalue form numerical results are
presented for dynamic unstable regions of the cable with various sag-to-span
ratios and ratio of wave speeds, and second for amplitudes of unstable motions
by using time response analysis based upon nonlinear theory of cables

I. EQUATION OF MOTION

If a uniform flat-sag suspended cable anchored on the supports at the same
level as shown in Fig. 1 is given a longitudinal time-varying load
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Fig. 1. Geometry of the cable.
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H, cosQt, the equation of motion®’ describing the vertical component is reduced

to
‘w , Bf ., EA :
L(wy =md 3t L)t 2y wdx - (H, +H, cosat) S =0 (1)

where,w s the vertical deflection of the cable, x is the co-ordinate in the
horizontal direction, t is the time,® is the span length between the supports,m
is mass of the cable per unit length,E is Young's modulus, A is the cross-
sectional area, Le=R(1+8f*/2*), H, is the horizontal component of the static
cable tension due to the own weight of the cable per unit length, H. is the
amplitude of the horizontal component of cable tension due to the support
excitation, and Q is the radian frequency of the applied load

The second term (8f/%)% fwdx shows the restoring force due to the additicnal
horizontal component of cable tension. This term is zero in the case of the
anti-symmetric vibration because [wdx is zero. Eq. (1) is reduced to that of the
string. Then, dynamic stability of the anti-symmetric vibration of the cable with
flat-sag is estimated by using that of the string which has no sag.?®’

. METHOD OF SOLUTION
The solution of Eq. {1) is assumed to be the form
w=RET, (t)W, (x) (2)

where T, (t} is an unknown function of the time and W, (x) is the space variable
satisfying the geometric boundary conditions for the associated linear problem
defined as®'

W,=1—tan£§Lsinnw.€—cosnw.§ (3)

where £=x/%, v, =n, &/aym/H, is the nondimensional natural frequency of the i-th
symmetric in-plane mode which is obtained by the following transendental
equation

W, _Tw, 1 uw.), (4)

tan—g=——r (55—

where A*=847*k!/(1487*).7=f/2 is the sag-to-span ratio, k=yEA/H.=¢, /¢, is the
ratio of the wave propagation.c.=yH,7m is the speed of transverse wave
propagation, ¢, =fEA/m is the speed of longitudinal wave propagation and n, is
the natural circular frequency of the cable.

Upon applying a Galerkin method to Eq. (1) by considering orthogonality
condition of the vibration mode, the following equation of motion for time
variable is obtained as

T.+w.’f.+iyﬂ,cosa% ; IB,, T, =0 (5)
(]

where H. =H. /H, , 5=0/n.*.n,° is the first natural circular frequency of the
string, and

dv, d¥, .

An 1 =J’W| tdé, and B,J=fm€_d

Eq. (5) is rewritten by using matrix notations as

(1] (T) +(E] (T) +H. coswz [F] (T} = (0) (8)
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Here, [I] is the unit matrix, [E] is the diagonal matrix and (F]
is the coefficient matrix which defines kinds and widths of the parametric
resonances.

Equation {(B) is coupled Mathieu equations, for multiple-degree-of-freedom
systems, which have been studied by Bolotin,'' Hsu'' and Nayfeh and Mook.?!' The
solution of Eq. (6) is now sought in the form® %'

(T):e"(%(bv)+E((ak)sinkﬁt+(bk)005kﬁr)) (1)

where (bu). {a.) and (b.)} are vectors that are independent of the time variable.
Substituting Eq. (7) into Eq. {6) and applying the harmonic balance method
yield a set of homogeneous algebraic equations as

([Mo]-A[M]-2* (M ]) (x}=(0) (8)

in which [M;], [Mi] and (My] are coefficient matrices of the zeroth (constant),
first and second powers of A respectively, and (x} is the column vector
consisting of {b.}, (be) and {(a.}.

The eigen-value A can be obtained by solving a double sized matrix as an
eigenvalue problem. 5" If the eigenvalues of Eq. (7) are distinct, then the
necessary and sufficient conditions for stability are that real roots and the
real parts of the complex roots should be negative or zero.

The parameters of the cable in the present analysis are the sag-to-span ratio
v and ratio of wave speeds k.

From the information with respect to the coupled Mathieu Eq. (6), the unstable
regions are the simple parametric resonance near &=2w: 7/q(q=1,2,....)and the
combination resonance ©={w; tw.)/q in which the positive sign corresponds to the
sum type and the negative sign corresponds to the difference type.The principal
unstable region is called that for q=1 and the second region that for gq=2 and
so on. As the signs of e,; and e;, are the same, the combination resonance of the
sum type exists only and that of difference type does not exist.

V. NUMERICAL RESULTS

(1)Free Vibrations
Free vibrations with symmetric modes of the cable anchored on the supports at
the same level are shown in Fig.2. These results were obtained by Irvine and

Caughey, *' and Yamaguchi and Ito."’

Fig. 2. Nondimensional frequency w vs sag-to span ratio v
for cables with k=30 and 60
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The effect of the sag-to-span ratio is considerable:that is, a modal crossover
occurs from one symmetric vibration to the next for a certain sag-to-span ratio
and then the frequency increases. The sag-to-span ratio where modal crossover
occurs changes dependently of the order of vibration and ratio of wave
speeds. These results give influence upon widths of unstable regions.

(2)Unstable Regions

Figure 3-7 shows unstable regions of the cables with various sag-to-span
ratios v and ratio of the wave speeds k. respectively. In these figures, the
ordinate H, denotes the amplitude of the periodic cable tension normalized to
the corresponding initial axial tension,which @ is the excitation frequency
normalized to the lowest natural frequency. Further, the cross-hatched portions
represent the regions of various types of instability. The narrow regions of
instability with w less than 0.2 when H.=0.5 are omitted in the figures.
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Fig. 3. Unstable regions of a cable with k=30 and r=0. 001
under symmetric forcing.
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Fig. 4. Unstable regions of a cable with k=30 and v=0.02
under symmetric forcing.
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Fig. 5. Unstable regions of a cable with k=30 and 7=0. 04
under symmetric forcing.
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Fig. 6. Unstable regions of a cable with k=30 and v=0. 06
under symmetric forcing.
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Fig. 7. Unstable regions of a cable with k=30 and v=0. 01
under symmetric forcing.
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Normalized natural frequencies w, (i=1,2,3) for each case are given in Table
1.

Table 1. Nondimensional frequency w, of cables.

k 30 60

T\ 1 1 2 3 1 2 3
~0.001 [1.00247 3.0001 ] 5.0000 [ 71.0084|3.0004 [5.0001
~0.002 [ 1.0094 | 3.0004 [ 5. 0001 [1.0371 [3.0014 {5.0003
~0.01 [1.2120]3.009315.0019 [ 1.6793 |3.0447 [5.0083
~0.02 [1.6781 [3.0445 | 5. 0OB3 | 25566 | 3.4096 [ 5. 0462
~0.03 12.1830]3.1421 | 5.0210] 2. 77179 | 4.3545 | 5. 2353
0.04 [2.5518 13,4023 ]5.0455 [ 2. 8216 [ 47851 [ 6. 0484
0.05 [2.713313.8542 | 5. 0967 | 2. 8374 | 4. 8627 | 6. 7280
~0.06 [ 2.7754]14.3273 15,2220 [ 2. 8450 [ 4. 8841 | 6. 8627
0.08 12 8198 [ 4. 7724 {5.9739 | 2. 8520 {4.9013 }6.9122
0.1 2. 8358 4. 8545 [ 6. 6810 | 2. 85501 4. 8077 |'6. 9251

k:ratio of wave speeds, v:sag-to-span ratio and i:mode number.

Wide unstable regions of simple parametric resonances in the vicinity of 2w
are obtained and the width of unstable regions become broad with increase of
order of vibration. The second unstable regions of the simple resonance such as
w; are also obtained and widths of theserunstable regions are narrower than
those of the principal unstable regions such as 2w..The widths of unstable
regions of the combinatjon resonances are narrow in the case of the
string. However, The width of the combination resonance becomes of larger width
with increase in the sag-to-span ratio. Kovacs®' discussed the principal
unstable region of the first mode of the string i.e..2w shown In Fig. 3.

_ Figure 8 and 9 summarizes the relation between the frequency ratio w when
H.=0.5 and the sag-to-span ratio v for ratios of wave speeds k=30 and 60. The
width of the principal unstable region of the simple resonance changes with the
increase of the sag-to-span ratio.
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Fig.8. Variations of unstable regions with the sag-to-span
ratio:H =0.5 and k=60
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Fig. 9.

ratio:H,=0.5 and k=30.

Variations of unstable regions with the sag-to-span

Its width at first becomes narrow near the sag-to-span ratio where the modal
cross-over is producing, next becomes wider again and finally approaches to the
next unstable region (2w:=» 2w, 2w,» 2w,) for more greater sag-to-span ratio
where modal crossover is finished. Width of the combination resonance becomes
wide when natural frequencies of the unstable motions are closed to each
other, that is, w; +w; (02 @) &and : +ws (W22 s ).

Unstable regions of the anti-symmetric vibration are shown in Fig. 10. This
result is efficient for all sag-to-span ratios under the assumption of the flat
sag cable.Unstable regions of simple parametric resonances are obtained only
because the anti-symmetric vibrations are not affected by the sag-to-span ratio
where a parabolic profile is valid.
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Fig. 10

Unstable regions of a cable with k=30
under anti-symmetric forcing.
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V. NONLINEAR TIME RESPONSE

The amplitude of the unstable region becomes infinite under the assumption of
the small deflection theory. However, the amplitude is bounded because of the
stretching of the axial tension of the cable.From this fact, the amplitude of
the unstable motion must be estimated by the nonlinear theory of the cable. The
basic equations for large amplitude free vibrations of a cable subjected to an
axial periodic load can be written as*’®

z 2
L (w) gtf" 3t E&-( 81 dex+é—[(g+)‘dx}—(H. +H, coth)g—x,‘!
i
B sl

Assuming the same solution as Eq. (2) end applying the Galerkin method. we
aobtain the following differential equation for the time variable

Ty vw 0 T 4=, T, cosﬁtAI—ZB‘ T, 4Dy (47T, T, B, . C: +87LT. C, ET, C, .
T 11

+§zm‘. T, B, ET, B, ) =0 (10)

2
where D, ‘—'T%!Tl;r#. Cy =fW, dx

Time variable T, is integrated numerically by using the Runge-Kutta-Gill
method. The purpose of the present analysis is to determine the amplitude of the
unstable motion which occurs under the assumptions of the small deflection
theory. Therefore, the initial conditions for time variables are T,=T,;=0.0 and
T, =T, =0. 001 to satisfy the small amplitude vibration

Nonlinear time responses of the cable with various sag-to-span ratios for the
simple parametric resonance 2w, are shown in Fig. 11. Amplitudes are bounded due
to the nonlinear terms effect which is caused by axial force due to stretching
of the cable.Beating can be seen in the nonlinear parametric dynamic system. The
effect of quadratic nonlinear terms which is caused by the sag of the cable is
found in the particular sag-to-span ratio as can be seen in Fig. 11.
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Fig. 11. Wave forms of the simple parametric resonance 2w, :H. =0.5 and k=30.
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Nonlipear time responses for the combination resonance w, +w; are shown in
Fig. 12. Amplitudes of the combination resonance are smaller than these of the
simple resonance.
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Fig. 12. Wave forms of the combination resonance o, +w, :H: =0. 5 and k=30.

Vi. CONCLUSICNS

Dynamic stability of cables subjected to an axial periodic load has been
presented in this paper. The results of numerical examples lead to the following
conclusions.

(1)Unstable regions of the cable consist of the simple parametric resonance
with one mode and the combination resonance of sum type with two modes

{(2)Unstable regions of the simple parametric resonances are wider than those
of the combination resonances.

(3)Width of the unstable regions changes dependently of the sag-to-span ratio
of the cable. Unstable regions of the simple parametric resonances become narrow
where modal crossover is producing and become wide again to approach the
unstable region of the next mode.

(4)Unstable regions of the combination resonance become wide near the sag-to-
span ratio where modal crossover of the lower mode is finished and that of the
higher mode does not change yet.

(5)Amplitudes of unstable motion of the cable are bounded due to nonlinearity
of cable.

REFERENCES

1)Bolotin. V. V., The Dynamic Stability of Eiastic Systems. Holden-Day. Inc.. San
Fransisco(1964).

2)Nayfeh, A. H., and Mook, D. T., Nonlinear QOscillations. New York:John Wiley &
Sons (1979).

3)Kovacs. 1.. Leonhardt, A., und Partner.G. . Bautechnik. 59, H10. Zur Frage der
Seilschwingugen und der Seildampfung(1982).

4)Takahashi. K. . and Konishi,Y.,Nonlinear vibrations of cables in three
dimensions, Part 0.Journal of Sound and Vibration 118{1988), pp. 85-97

5)Takahashi. K., An approach to investigate the instability of the multiple-
degree-of ~-freedom parametric dynamic systems, Journal of Sound and Vibration



218 K. TakaHAsH! and H. Icuinose

78(1981). pp. 519-528.
6)Irvine,H. M., Cable Structures, The MIT Press(1981), pp. 87-399
7)Hsu, C. 5., 0On the parametric excitation of a dynamic system having multiple-
degrees of freedom Journal of Applied Mechanics 30(1963). pp. 367-372
8)Irvine, H. M., and Caughey, T. K., The linear theory of free vibrations of a
suspended cable. Proceedings of the Royal Society, London 341(1974), pp. 299-315.
9)Yamaguchi.H..and Ito, M. . Linear theory of free vibraticns of an inclined cable
in three dimensions. Proceedings of Japan Society of Civil Engineers
286 (1979), pp. 29-38.



