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Dynamic Stability of a flat sag cable subjected to an axial periodic 
force is investigated. The equation of motion of the cable is solved by 
the G酔lerkin間 thod. Unstable regions are presented first for various 
sag-to-span ratios and ratios of wave speeds. Amplltudes of unstable 
motions are obtained using the nonlinear cable theory. 

I. lNTR∞UCTl倒

Dynamic stability problem of structures subjected to a periodic load has been 
studied by many researchers. ，.. " Recently. Kovacs" pointed out that dynamic 
instability of a cable employed as a tension 町田mberof a cable stayed bridge or 
a guy tower may occur under the axial periodic load due to bending vibration of 
the tower or the girder of bridges.He treated dynamic instabllity of the string 
which has no sag and discussed the control of this unstable vibration by using 
a vibration absorber.However.Kovacs neglected the sag of the cable which 
influences the dynamic properties of the cable. Takahashi 副司dKonishi・， analyzed 
unstable out-of-plane vibrations of cables under inplane forcing by the 
刷 ltipledegrees-of-freedom approach. 

ln thls paper. theoretical solutlons are reported for the dynamic stability of 
a flat-sag cable under an臥 ialsinusoidally ti鵬 -varyingload. This problem is 
solved by using the harmonic balance method described first by Bolotin" 釦 d
lately extended by the author." 

After presenting the problem in the eigenvalue form.nun帽 rical resuJts are 
presented for dynamic unstable regions of the cable with various sag-to-span 
ratios and ratio of wave speeds. and second for amplitudes of unstable 町田tions 
by using ti冊 responseanalysis based upon nonlinear theory of cables. 

D. EQUATION OF附 'TI倒

If a uniform flat-sag suspended cable anchored on the supports at the same 
level as shown in Fig. 1 is given a longitudinal time-varying load 
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Fig. 1. Geometry of the cable. 
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H， cosQt. the equation of motion" describing the vertical component is reduced 

to f I...¥_rn.a:tw .1 /8f ¥2 EA r...A... IU .u ~...~n...\atw L(w)=吋tT-+(守τ)'~Jwdx-(H. +H， cosQt)五';:-=0 (1) 

where.w is the vertical deflection of the cable. x is the co-ordinate in the 
horizontal direction. t is the time. Q is the span length between the supports. m 
is mass of the cable per unit length.E is Young's modulus.A is the cross-
sectional area. 1...=且(1+8f'/量り. H. is the horizontal component of the static 
cable tension due to the own weight of the cable per unit length.H， is the 
amplitude of the horizontal component of cable tension due to the support 
excitation. and Q is the radian frequency of the applied load. 

The second term (8f/且)'Jwdx shows the restoring force due to the additional 
horizontal component of cable tension. This term is zero in the case of the 
anti-symmetric vibration because Jwdx is zero. Eq. (1) is reduced to that of the 
string. Then.dynamic stability of the anti-symmetric vibration of the cable with 
flat-sag is estimated by using that of the string which has no sag. ，. 

田. METH∞OF SOLUTI倒

The solution of Eq. (1) is assumed to be the form 

w=且ET，(t)W， (x) (2) 

where T， (t) is an unknown function of the time and W， (x) is the space variable 
satisfying the geometric boundary conditions for the associated iinear problem 
def i ned as" 

ト Ha4sin叫 s-cos刷 'S (3) 

where s=x/2. 叫 =n. 且~ is the nondimensional natural frequency of the i-th 
symmetric in-plane mode which is obtained by the following transendental 
equation 

tan午弓」tr(E2L)S (4) 

where λ'=64r' k' / (1+8γ， ).γ=f/Q is the sag-to-span ratio.k={EAJA.=c，フ芯 isthe 
ratio of the wave propagation. c，. ={町フ百 isthe speed of transverse wave 
propagation. c， =.fFJVin is the speed of longi tudinal wave propagation and n， is 
the natural circular frequency of the cable. 
Upon applying a Galerkin method to Eq. (1) by considering orthogonality 

condi tion of the vibration mode. the following equation of motion for time 
variable is obtained as 

T.+ω127i+L羽tcos~τ」-EBiJT』 =0
1t'T 1¥， I 

where宵‘ =H包 /H..w=Q/n，". n， 0 i s the f i rst natural ci rcular frequency of the 
string. and 

dW. dW. . 
A" =J¥V， 'dξ. and B， J =J:1手当量当主

Eq. (5) is rewritten by using matrix notations as 

(1] (I'l+(E] (T)+百f cosW'τ(F] (Tl={Ol 

(5) 

(6) 
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Here. [1] is the uni t matrix. [E] is the diagonal matrix and [F] 
is the coefficient matrix which defines kinds and widths of the par町netric
resonances. 

Equat ion (6) i s coupled Mathi eu equat ions. for mul t i ple-degree-of-freedom 
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systems. which have been studied by Bolotin.'・Hsu" and Nayfeh and Mook." The 
solut ion of Eq. (6) is now sought in the form'" 5' 

昨 e'.中b，.)+E( (a.) sin倫+(bk ) coskwτ) ) (7) 

where (b，). (a.) and (b.J are vectors that are independent of the time variable. 
Substituting Eq. (7) into Eq. (6) and applying the harmor】icbalance method 

yield a set of homogeneous algebraic equations as 

( [M.]ーλ[M，]ーが[M， ]) (x) ~ (0) (8) 

in which [M.]. [M，] and [M.] are coefficient matrices of the zeroth (constant). 
first and second powers ofλrespectively. and (x) is the column vector 
consisting of (bo)， (b.) and (a.). 

The eigen-valueλcan be obtained by solving a double sized matrix as an 
eigenvalue problem." If the eigenvalues of Eq. (7) are distinct. then the 
necessary and sufficient conditions for stability are that real roots and the 
real parts of the complex roots should be negative or zero. 

The par副netersof the cable in the present. analysis are the sag-to-span ratio 
r and ratio of wave speeds k. 

From the information wi th respect to the coupled Mathieu Eq. (6). the unstable 
regions are the simple par副netric resonance near w~2仙 /q (q~ 1. 2. . . . . ) and the 
combination resonance w~(ωt 士ω， )/q in which the positive sign corresponds to the 
sum type and the negative sign corresponds to the difference type. The principal 
unstable region is called that for q~l and the second region that for q~2 and 
so on.As the signs of e'j and ej' are the same. the combination resonance of the 
sum type exists only and that of difference type does not exist. 

1¥'. NU阻 RICALRESULTS 

(l)Free Vibrations 
Free vibrations with symmetric modes of the cable anchored on the supports at 

the Sa/田 levelare shown in Fig.2. These results were obtained by Irvine and 
Caughey." and Yamaguchi and Ito." 
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Fig.2. Nondimensional frequency ωvs sag-to span ratio r 
for cables wi th k~30 and 60. 
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The effect of the sag-to-span ratio is considerable:that is. a modal crossover 
occurs from one symmetric vibration to the next for a certain sag-to-span ratio 
and then the frequency increases. The sag-to-span ratio where modal crossover 
occurs changes dependently of the order of vibration and ratio of wave 
speeds. These results give influence upon widths of unstable regions. 

(2)Unstable Regions 
Figure 3-7 shows unstable regions of the cables with various sag-to・span

ratios r and ratio of the wave speeds k. respectively. In these figures. the 
ordinate IT， denotes the amplitude of the periodic cable tension normalized to 
the corresponding initial axial tension. which w is the excitation frequency 
normalized to the lowest natural frequency.Further. the cross-hatched portions 
represent the regions of various types of instability. The narrow regions of 
instability withωless than 0.2 when R =0.5 are omi tted in the figures. 
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Fig.3. Unstable regions of a cable with k=30阻 dr=O. 001 
under sy間関tricforcing. 
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Fig.4. Unstable regions of a cable with k=30副 dr=0.02 
under symr肥 tricforcing. 
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Fig.5. Unstable regions of a cable with k=30 and γ=0. 04 
under symmetric forcing. 
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Fig.6. Unstable regions of a cable with k=30 and r=0.06 
under symmetric forcing. 
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Fig.7. Unstable regions of a cable with k=30 and γ=0.01 
under symmetric forcing. 
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Normalized natural frequenciesω， (i=l. 2. 3) for each case are given in Table 
1. 

Table 1. Nondimensional frequency ω， of cables. 

k:ratio of wave speeds. r:sag-to-span ratio and i:mode number. 

Wide unstable regions of simple para皿etricresonances in the vicinity of 2w， 
are obtained and the width of unstable regions beco即 broadwith increase of 
order of vibration. The second unstable regions of the simple resonance such as 
ωI are also obtained and widths of these'unstable regions are narrower than 
those of the principal unstable regions such as 2ω，. The widths of unstable 
regions of the combination resonances are narrow in the case of the 
string.However. The width of the combination resonance becomes of larger width 
wi th increase in the sag-to-span ratio. Kovacs" discussed the principal 
unstable region of the first n回deof the string i.e.. 2ω， shown 1 n Fig. 3. 

Figure 8 and 9 summarlzes the relation between the frequency ratioωwhen 
H. =0. 5 and the sag-to-span ratlo r for ratios of wave speeds k=30 and 60. The 
width of the principal unstable region of the simple resonance changes with the 
increase of the sag-to-span ratio. 

Y 

Fig.8. Variations of unstable regions with the sag-to-span 
ratio:H. =0. 5 and k=60. 
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Fig.9. Variations of unstabte regions with the sag-to-span 
ratio:H屯 =0.5 and k=30. 
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Its width at first becomes narrow near the sag-to-span ratio where the modal 
cross-over is producing.next beco耐 swider again and finally approaches to the 
next unstable region (2w，場 2剖， . 2ω，，， 2曲，) for more greater sag-to-span ratio 
川leremodal crossover is finished.Width of the combination resonance becomes 
wide when natural frequencies of the unstable motions are closed to each 
other. that Is.ω， +叫 (w，功 叫 ) and ω， +叫 (ωs司 ω，).

Unstable regions of the anti-sy岡田tricvibration are shown in Fig. 10. This 
result is efflcient for all sag-to-span ratios under the assumption of the flat 
sag cable.Unstable regions of simple par剖netricresonances are obtained only 
because the anti-sy問問tricvibrations are not affected by the sag-to-span ratio 
where a parabolic proflle is valid. 
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Fig.l0. Unstable regions of a cabte with k=30 
under anti-symmetric forcing. 
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V. NONLINEAR TlME RESPONSE 

The amplitude of the unstable region becomes infinite under the assumption of 
the small deflection theory. However. the ampli tude is bounded because of the 
stretching of the axial tension of the cable. ~rom this fact. the amplitude of 
the unstable motion must be estimated by the nonlinear theory of the cable.The 
basic equations for large amplitude free vibrations of a cable subjected to an 
axial periodic load can be written as" 

がw. Bf EA ， 8f I'___...I__.1，.，dw ¥.! ...J__' _ _ _;0，.， .d3w 
L (W}=1T「 +1TE一{可i-fwdx+吉I(ETYdx}ー(H.+H， cosQt)百T

EA ， 8f ，..."...1， ，ow 温 o'w 
~(-iT-fwdx+~J(ð~ )'dx)百五r-=O (9) 

Assuming the same solution as Eq. (2) and applying the Galerkin method. we 
obtain the following differentlal equation for the ti鵬 variable

T， +"" 'T，→1l co出 E!了品川 +D，伸 広 丸 山 ‘C，市民G民 C.，

守ET，T， B" ET. B.， ) =0 (10) 

1 k' 1 
where D， -.. o_. R. A • C， =fW， dx 

l+t!r'π1. A， I 

Time variable T， is integrated numerically by using the Runge-Kutta-Gill 
method. The purpose of the present analysis is to determine the amplitude of the 
unstable 町田tionwhich occurs under the assumptions of the small deflection 
theory. Therefore. the initial condition5 for tlme variable5 are T， =T，=O.O and 
T， =T，=O. 001 to 5ati5fy the 5mall amplitude vibration. 

Nonlinear time re5pon5e5 of the cable with various sag-to-span ratio5 for the 
simple par回国tricresonance 2w， are shown in Fig. 11. Amplitudes are bounded due 
to the nonl1near terms effect which is caused by axial force due to stretching 
of the cable.Beating can be seen in the' nonlinear parw田 tricdynamic syste~ The 
effect of quadratic nonlinear terms which is caused by the sag of the cable is 
found in the particular sag-to-span rat io as can be seen in Fig. 11. 
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Nonlinear time responses for the combinatiotl resonanceωI +W2 are shown i n 
Fig. 12. Ampl i tudes of the combinat ion resonance are smaller than these of the 
simple resonance. 
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Fig. 12. Wave forms of the combination resonance ω，tω， : 1主=0.5 and k=30. 

明. CONCLUSIONS 

Dynamlc stability of cables subjected to an axial periodic load has been 
presented in this paper. The results of numerical examples lead to the following 
conc 1 us ions. 
(I)Unstable regions of the cable consist of the simple par副田lricresonance 

with one mode and the co聞Ibinationresonance of sum type with two modes. 
(2)Unstable reglons of the simple paran昭 tricresonances are wider than those 

of the combination resonances. 
(3)Width of the unstable regions changes dependently of the sag-to-span ratio 

of the cable. Unstable regions of the simple parametric resonances beco町田 narrow 
where modal crossover is producing and become wide again to approach the 
unstable region of the next 即 de.
(4)Unstable regions of the combination resonance become wide near the sag-to-

span ratio where modal crossover of the lower mode is finished and that of the 
higher mode does not change yet. 
(5)Amplitudes of unstable motion of the cable are bounded due to nonlinearity 

of cable. 
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