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Abstract

Let 2 be a bounded pseudoconvex domain in C” with smooth boundary. The
purpose of this paper is to give another proof of the following well known Kohn’s
global regularity theorem:

THEOREM. Suppose that a € Céq (2) is a smooth (0, g)— form with da=0. Then
there is a smooth solution v € Cq-1y(2) to the equation dv=a.

The proof proceeds for the most part along the proof of Kohn[5]. Instead of the
estimate obtained by Kohn[5], we use the estimate obtained by Catlin[1].

1. Kohn solution in pseudoconvex domains. We denote by L%,q) (£2) the space of
all (0, ¢)~forms f such that fo [f?dV < oo. For A €C=(Q), t real, and ¢, ¢ € L}, (2),
we define

{@, Pr=<9, e "¢>
[6= <, #0r= [ |#Pe2av,

where <, > is the usual inner product in L%,q (£2).
For ¢ €Ci.0 (2), we define

(9¢:;/;%de’ (9t¢:etﬂl9(e—t/l¢).
Let o be a defining function for the domain £2. Define the space D,C C%,q) (2) by

Dq={¢e Co.0 (2): éqﬁjxggf:() on 4% for all K}

Then we have, for ¢ €D,, ¢ €C%q (2),

K9¢, ¢>=L¢, 0¢>, <, >r=X¢, P>
The Hilbert space adjoints of d with respect to <, > and <, > are denoted by * and
0%, respectively. We define Q:: Dy X D~ C by

Q:($, $)=38, 9>ty +<0up, Oh>(o)
We denote by D, the Hilbert space obtained by completing D, under the norm {Q:(¢,
&)+ ol?1. Then we have for ¢, ¢ € Dy,



2 Z E &, =

P, Py=X¢, e "¢, JFp=e"T*(e ).
We define ,
H.={¢ED : dp=3*$=0}.
Let H,:L*> H, be the projection. By Hormander[3], we have

LEMMA 1. Let 2 be a bounded pseudoconvex domain in C* with smooth boundary
and let A be a C= strictly plurisubharmonic function in 2. Then for t >0 we have
(1.1) tlAR < et f1E + 10719,
where f € D,.
Proof. By Hormander[3], we have for f € D,

134712 + 1371 = (55, [ fFugimemoaV
¢/ 7 3o 52,02,
’ fi 12 _a 4 7 azp -8
+ [ e v+ R g [l e tas

>t [) IfZe=2aV = te| £z

Taking the limit, we have lemma 1.
We set

O.,=ddf+dfa.
Then we have

Dom(0,)={¢pED : 3¢= Dom(3*), o*¢p< Dom(3)).
For ¢ € Dom(0.), we have

IglE < clagli+10:lD = c<T b, $>r < cllOllel ¢l
Therefore we have

lgll: < clo.gl for ¢ < Dom(D.).
Hence RO: is closed and isomorphic to (H:)*. For @ € (H:)*, there exists a unique ¢
€ (H:)* such that e=0.p. We define Nva=¢. If a<= H;, we define N;a=0. Then the
bounded operator N, : L°— L7 satisfies the following.

N:O,=0N,=I—H; N:.d=0N, N:9f=23¢N:.
Hence if @ € LZ%0,q) () satisfies that de=0 and H.e=0, then v= 0¥ N.a is a solution of
the equation dv=a. Now we prove the following. '

PROPOSITION 1. Let 2 be a bounded pseudoconvex domain in C" with smooth
boundary. If a € Liq (R) is a 9 closed form, then v=0¢Nw is a solution of dv=a.

Proof. By Hormander[4], there exists 8 € Lk,q-1 (2) such that a=3d8. Let
f € H:, then we have 0ff=e%3*(e~*f)=0. Thus we have 9*(¢”#f)=0. On the other
hand we have '

<a, Hry=Xa, e *f>=<a3p, e f>=<(B,,0*(e"*f)>=0

Thus we have @ € H#, which proves that v=3.* N is a solution of Jv=q.

We consider the complex
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Lioan(Q) %0051 [3,,(2) 909 L204:(Q).

We set T=00,q-1 and S= do,¢ and denote by 7* and S* adjoint operators of T and S
with respect to <, >, respectively. Then we have the following.

PROPOSITION 2. Let Q be a bounded pseudoconvex domain in C" with smooth
boundary and let f be a C(0, g)-form in @ with df=0. Then it holds that
(1.2) INAE < cOIFI
Proof. It follows from lemma 1 that
HNAE < | T*NS: I T*NAE < | TT*NofN: = cllfIE
Thus we obtain (1.2).

2. The estimates. The results in this section are ‘essentially given by Catlin[1].

But we give the proof for the reader’s convenience. For ¢ C%,q (2), define

l@lme= 3 (D¢l

lal<m

lal
ox®t---0xsi”
functions on a set of parameters S, we use the notation A < B to mean that for some
¢ > 0,]A(0)| < ¢|B(0)| for all 6 € S. Further, we denote by A? a tangential differen-
tial operator of order m. Then we have the following.

Here a refers to We use some convenient notation. If A and B are

PROPOSITION 3. For large t, we have
m—1
21 ol e <10 e+ cnt) 23 huclle,
where u< Dom(0 )N Ci.q) (2).

Proof. Suppose that A7 is supported in the interior of 2. Then we have in view
of (1.1) and the method of Kohn[5],
(2.2) HAZu|?< Qe(ATu, ATu)<| O wuls.+ wgmllD’ull‘H ()l ul|-1.

The above inequality is still valid for every tangential differential operator A7. Since

2
O, is elliptic and the second order terms are independent of ¢, % is written in the

following form

Fu d 1 2 1 9
S abaut CZWAbu +cAdu+c(t)(cAbu+ G ut Celt).
Therefore we obtain for 2 < k< m

_ 0" m=-1
JAE G2 < |0 el +I AT S+ | ABul+ () S e

On the other hand we have

FZAzulf < JAZul + QAT 'u, AZ~'u)

< NAzult + 10 aulfoms + lulfoose +, 3 1D%ulf + (Bl



Thus we have

k
@3 1ArLrult < 10wl HATuli+ | 2 1Dl (Ol

Together with (2.2) and (2.3), we obtain

m * e
t“u”?nt < t||AZ”u||3+kZ=]0tH—(,),7;Ab ”ul[%

m~—1
< O alie + ol e+ c(8) Z llecle.
=)

For sufficiently large #, we obtain the desired inequality.
Now we are going to prove the following.

PROPOSITION 4. Let 2 be a bounded psendoconvex domain in C" with smooth
boundary. Then we have ‘
(2.4) IT*wllf,e +|Sele < cm(8)0 selle,e +l2]?),
where u & Dom(0 )N C0,q) (2).
Proof. We assume that A7 is supported in the interior of 2. Then we have
IAZ T*uli+ | A7 Sul?
=(AP0wm, AZu)+ ([T, AP T*u, ATu)+(APT*u, [AT, T*lu)
+([S*, AT]1Su, Afu)+(A7Su, [AZ, Sulu)

) m—1
<O ez e+ 2l + c(e)|wl e + el T* 2|2, + ec(t)jg | T* 2.

m—1 m—1
+ce) Zllulfe+el Sulf.+ ec(t) Z||Sul.e.

Thus we have
(2.5) lAZT* w3+ AZSul? < | 0wl + (| T*wlz.: + | Seell.)

m—1 m—1
+ C(E)nglull'%z,t +ec(t)j2:0(|| T*ulb e+ Sul.e).

(2.5) is still valid for every AZ. Since the complex d @ 07 is elliptic, and its first order
terms are independent of ¢, % T*u can be written in terms of the components of
0T*u of ALT*u and of the components of 7*u. Further, coefficients of the first
order terms are independent of ¢. Therefore 2= T*u can be written in terms of the
components of %A},T*u,% T*u, 2ia<t DO, and Ay T*u. Further, coefficients
of the second order terms are independent of ¢. Thus we have

ak 2 ak—z 32 5
|Az* 5 T*u”t:”A?"kE:r—z“WT*u“t
k—1
<AL Tt () D teomre 1 T*eelfaore)

or*!
<IAET* ulf+ 1 A5 T*ulit (O Tl
By Kohn[5], we have
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"8 AP T*ul? € QAR T*u, A7 T*u) +| AP T*ul?

SOl H I T*uli-re+ c(ON T* welon-2,0.
Hence we have

(2.6) |AZ 5 a o Trullt < AT uli+( O alfntc(2)] T*ulf-s
Similarly we have

ps 0"
en 1A

P < NARSuli+110 aclie + (O Self-r,e.
Therefore we have, together with (2.6) and (2.7)
m—1
1 T* el e +1Seelfne < 10 e+ c(e) Z Nuldet el T*ulne 1 Suln.e)

m—1
+ec(t) Z T ulfe +1Suli.).
We have, for € > 0 small
m—1
(2.8) 1 T* el + Sl < N0 adlfetc() Z (ol +1 T2l +11Seel )

Repeating (2.8), we have the desired inequality.
Now we are going to prove the main estimate.

PROPOSITION 5. Let 2 be a bounded pseudoconvex domain in C" with smooth
boundary and let @ be a 3 closed (0, g)-form in Q. Then v=20fN. is a solution of the
equation dv=a and satisfies

(2.9) "U”%nt < Cm(f)”d“?n,t

Proof. In view of proposition 1, T*N.« is a solution of dv=a. It follows from (2.

1) that

INw@al? < c(t)lal.
We obtain from (2.4)

| T* Nealn.e < (| 0 eNeal.e + | NeallD) < ea( )] @,
which completes the proof of proposition 5.

3. Proof of the theorem. Let H; be the Sobolev space of order ;. It suffices to find

a sequence of solutions #; € H, such that
(3.1) logje1—25); < 27°.

Suppose that z, -, un-1 have already been chosen to satisfy (2.9) and (3.1) and we
have a solution #, satisfing (2.9). For each P € oR2 there is a coordinate neighbor-
hood U and an #n-tuple (ai, -+, @) such that for e sufficiently small @(2)=(z1+¢ca, -+,
Zz+ean) € Q whennever (z, -+, z,) € UN Q.

Let {U}, 7=1, ---, v, be a covering of 422 by open coordinate neighborhoods of the
above type and denote the corresponding transformations by @% Let U, be an open
subset of 2 such that {U;} is a covering of 2 and {0;} a C® partition of unity on 2



subordinate to {U;}. We set 2=dtn—un-1 and h(@%z2))=hiz). Define

Ve(2)=2 p:(2) i z) — we(2),

where we determine we later. Suppose 3 Ve(z)=0. Then we have

5we=25¢ojhé=23_pj(hje— h)

We can choose we € Hn such that

”Weum < Crrz(t)" gpj(hé_ h)"m

Hence we have lime.o||we|==0. Further we have lime.o||2— Ve|n1=0. We take

Um

=1%n— Ve. Then we have

”um_um——lllm—l = "72711_ Ve"um—lllm—l = ”h_ Vs”m—l < 2—m’

which completes the proof of the theorem.
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