Sci. Bull. Fac. Educ., Nagasaki Univ., No.47, pp. 11~17(1992)

Problem on Weakly q-Convex Domains with Non-Smooth Boundary in Cⁿ

Kenzō ADACHI and Hiroshi KAJIMOTO

Department of Mathematics, Faculty of Education Nagasaki University, Nagasaki 852 Japan (Received Feb. 29, 1992)

Abstract

In this paper we study the $\overline{\partial}$ problem on weakly q-convex domains and extend the results of Ho to unbounded q-convex domains with non-smooth boundary.

Introduction. Fischer and Lieb[1], Schmalz[4] obtained the uniform and Hölder estimates for the solution of $\overline{\partial}$ problem on strictly q-convex domains by applying the Cauchy-Fantappie integral formula. Recently Ho[2] defined the weakly q-convex domain and obtained L² estimates for solutions of the $\overline{\partial}$ problem for (0,r)forms, r \geq q. In this paper we shall extend the definition of the weakly q-convex domain to unbounded domains with non-smooth boundary and obtain the L² estimate for the solution of the $\overline{\partial}$ -problem.

I. Weakly q-convex domains with non-smooth boundary.

Definition 1. Let Ω be an open set in C^n . We say that $u: \Omega \to [-\infty, \infty]$ is q- subharmonic if u satisfies the following (a) and (b):

(a) u is upper semicontinuous on Ω .

(b) Let D be a q-dimensional polydisc in Ω and let f be an analytic polynomial in D such that $u \leq \operatorname{Re} f$ on ∂D . Then $u \leq \operatorname{Re} f$ in D.

Remark. A q-subharmonic function is (q+1)-subharmonic.

Let B(z;r) be a ball in C^n with center z and radius r. Let $\varphi(\zeta)$ be a radial function satisfying $\int \varphi(\zeta) d\lambda(\zeta) = 1, \varphi(\zeta) \ge 0$ and supp $\varphi \subset \subset B(0;1)$, where $d\lambda$ is the Lebesgue measure in C^n .

LEMMA 1. Let $u \in C^2(\Omega)$ be subharmonic in Ω . Define

$$\Phi_{\varepsilon}(z) = \int u(z - \varepsilon \zeta) \varphi(\zeta) d\lambda(\zeta). \quad Then \ \Phi_{\varepsilon} \downarrow u \ when \ \varepsilon \downarrow 0$$

Proof. Define for $z \in \Omega$

$$N(\mathbf{r}) = \int_{|\mathbf{w}|=1} \mathbf{u}(\mathbf{z}+\mathbf{r}\mathbf{w}) d\mathbf{S}(\mathbf{w}),$$

where dS is the surface measure on |w| = 1. Then we have

$$0 \leq \int_{|w|=1} \triangle u(z+rw) dS(w) = \int_{|w|=1} \left(\left(\frac{\partial}{\partial r} \right)^2 + \frac{2n-1}{r} \frac{\partial}{\partial r} + \triangle_s \right) u(z+rw) dS(w)$$
$$= \left(\left(\frac{\partial}{\partial r} \right)^2 + \frac{2n-1}{r} \frac{\partial}{\partial r} \right) N(r) = \frac{1}{r^{2n-1}} \left(r^{2n-1} N'(r) \right)^2.$$

Thus N(r) is increasing with respect to r. On the other hand we have

$$\Phi_{\epsilon}(z) = \int_{0}^{\infty} \int_{|w|=1}^{\infty} u(z - \epsilon r w) \varphi(r) r^{2n-1} dr dS(w) = \int_{0}^{\infty} N(\epsilon r) \varphi(r) r^{2n-1} dr.$$

Thus $\Phi_{\epsilon}(z)$ is increasing with respect to ϵ , which completes the proof of lemma 1. For any unitary coordinates $w = (w_1, \dots, w_n)$, we set

$$\triangle_{w}^{q} = \frac{\partial^{2}}{\partial w_{1} \partial \overline{w}_{1}} + \ldots + \frac{\partial^{2}}{\partial w_{q} \partial \overline{w}_{q}}.$$

LEMMA 2. If $u \in L^1_{loc}(\Omega)$ satisfies for any $v \in D(\Omega)$, $v \ge 0$, and any unitary coordinates $w = (w_1, ..., w_n)$,

$$\int \mathbf{u} \triangle_{\mathbf{w}}^{\mathbf{q}} \mathbf{v} \, \mathrm{d} \lambda \geq 0,$$

then there exists a q-subharmonic function U in Ω such that U=u a.e..

Proof. Define for $\delta > 0$, $\Omega_{\delta} = \{z: dist(z, C\Omega) > \delta\}$ and

$$\mathbf{u}_{\delta}(\mathbf{z}) = \int \mathbf{u}(\mathbf{z} - \delta \boldsymbol{\zeta}) \boldsymbol{\varphi}(\boldsymbol{\zeta}) d\lambda(\boldsymbol{\zeta}) \quad \text{for } \mathbf{z} \ \boldsymbol{\epsilon} \ \boldsymbol{\Omega}_{\delta}.$$

Then we have $u_{\delta} \in C^{\infty}(\Omega_{\delta})$. Moreover we have

$$\int u_{\delta}(z) \triangle_{w}^{q} v(z) d\lambda(z) = \int (\int u(z - \delta\zeta) \triangle_{w}^{q} v(z) d\lambda(z)) \varphi(\zeta) d\lambda(\zeta) \ge 0.$$

In view of theorem 1.4 of Ho[2], u_δ is q-subharmonic in $\Omega_\delta.$ From lemma 1, we have

$$\int u_{\delta}(z-\varepsilon_{1}\zeta)\varphi(\zeta)d\lambda(\zeta) \leq \int u_{\delta}(z-\varepsilon_{2}\zeta)\varphi(\zeta)d\lambda(\zeta) \quad \text{for } \varepsilon_{1} < \varepsilon_{2}.$$

Since $u_{\delta} \rightarrow u$ in $L^{1}_{loc}(\Omega)$, we have by letting $\delta \rightarrow 0$,

$$\int \mathbf{u}(z) - \boldsymbol{\varepsilon}_1 \boldsymbol{\zeta} \, \boldsymbol{\varphi} \, (\boldsymbol{\zeta}) \mathrm{d} \boldsymbol{\lambda} \, (\boldsymbol{\zeta}) \leq \int \mathbf{u}(z - \boldsymbol{\varepsilon}_2 \boldsymbol{\zeta}) \, \boldsymbol{\varphi} \, (\boldsymbol{\zeta}) \mathrm{d} \boldsymbol{\lambda} \, (\boldsymbol{\zeta}) \, \boldsymbol{\varepsilon}_2$$

Thus we have proved $u_{\epsilon_1} \le u_{\epsilon_2}$ for $\epsilon_1 \le \epsilon_2$. Define $U(z) = \lim_{\delta \downarrow 0} u_{\delta}(z)$. Since the limit

of a decreasing sequence of q-subharmonic functions is q-subharmonic, U(z) is q-subharmonic in Ω . Both u and U are limits of $\{u_{\delta}\}$ in $L^{1}_{loc}(\Omega)$, we have u=U a.e., which completes the proof of lemma 2.

Definition 2. Let Ω be an open set in \mathbb{C}^n . We say that Ω is weakly q-convex if there exists a continuous q-subharmonic function Φ on Ω such that for every $c \in \mathbb{R}$, $\Omega_c = \{z \in \Omega : \Phi(z) < c\} \subset \subset \Omega$.

Remark. In the case when Ω is a bounded domain with a smooth boundary, a weakly q-convex domain in the definition of Ho[2] is weakly q-convex in our definition.

Definition 3. For a (0,r)form $w = \sum_{J} [w_{J} d\overline{z}^{J}]$, we define $|w|^{2} = \sum_{J} |w_{J}|^{2}$.

Definition 4. We say that a real valued function $f \in C^2(\Omega)$ is strictly q-subharmonic if there exists a constant c such that

$$\begin{split} &\sum_{K}\sum_{j,k}\frac{\partial^{2}f}{\partial z_{j}\partial\overline{z}_{k}}\left(z\right)w_{jK}\overline{w}_{kK}\geq c\left|w\right|^{2} \ \text{for all } z\in\Omega \ \text{and for all } (0,q)-\text{form} \\ &w=&\sum_{J}w_{J}d\bar{z}^{J}. \end{split}$$

Remark. A strictly q-subharmonic function is q-subharmonic by theorem 1.4 of Ho[2] and a strictly q-subharmonic function is strictly (q+1)-subharmonic.

THEOREM 1. Let Ω be a weakly q-convex domain in \mathbb{C}^n . Then there exists a \mathbb{C}^{∞} strictly q-subharmonic function v such that for every $c \in \mathbb{R}$, $\{z \in \Omega : v(z) \le c \subset \subset \Omega$.

PROOF. By definition 1, there exists a continuous q-subharmonic function Φ such that $\Omega_c = \{z \in \Omega : \Phi(z) \le c\} \subset \subset \Omega$. For a sufficiently small constant $\varepsilon > 0$, define

$$\Phi_{j}(z) = \int_{\Omega_{j+1}} \Phi(\zeta) \varphi(\frac{z-\zeta}{\varepsilon}) \varepsilon^{-2n} d\lambda(\zeta) + \varepsilon |z|^{2},$$

where $\varphi(z)$ is the function defined before lemma 1. Then $\Phi_i \in C^{\infty}(C^n)$. For $z \in \Omega_i$, if we choose $\varepsilon > 0$ small, then we have

$$\Phi_{j}(z) = \int_{B(0,1)} \Phi(z - \varepsilon w) \varphi(w) d\lambda(w) + \varepsilon |z|^{2}$$

Therefore Φ_j is strictly q-subharmonic in Ω_j and satisfies $\Phi \le \Phi_j < \Phi + 1$ on a neighborhood of $\overline{\Omega}_j$. We choose a convex function $\chi \in C^{\infty}(\mathbb{R})$ such that $\chi(t)=0$ for t<0 and $\chi(t)>0$ for t>0. Define $u_j=\chi(\Phi_j+2-j)$. Then we have

$$\begin{split} \sum_{K} \sum_{i,k} \frac{\partial^2 u_i}{\partial z_i \partial \overline{z}_k} (z) w_{iK} \overline{w}_{kK} &= \chi^{(i)} (\Phi_j + 2 - j) \sum_{K} \sum_{i=1}^{n} \frac{\partial \Phi_j}{\partial z_i} w_{iK} |^2 \\ &+ \chi^{(i)} (\Phi_j + 2 - j) \sum_{K} \sum_{i,k} \frac{\partial^2 \Phi_j}{\partial z_i \partial \overline{z}_k} (z) w_{iK} \overline{w}_{kK} .\end{split}$$

Since $\Phi_j+2-j>0$ on $\overline{\Omega}_j|$ $\overline{\Omega}_{j-2}$, u_j satisfies the following (i),(ii) and (iii): (i) u_j is q-subharmonic in a neighborhood of $\overline{\Omega}_j$

(ii) u_i is strictly q-subnarmonic in a neighborhood of $\overline{\Omega}_i | \overline{\Omega}_{i-1}$

(iii) $u_j > 0$ in a neighborhood of $\overline{\Omega}_j | \Omega_{j-1}$.

Since Φ_0 is strictly q-subharmonic in a neghborhood of $\overline{\Omega}_0$ and satisfies $\Phi \leq \Phi_0$

 $<\Phi+1$ on $\overline{\Omega}_0$, we have for a sufficiently large constant a_1 , $\Phi_0 + a_1 u_1 > \Phi$ in a neighborhood of $\overline{\Omega}_1 | \overline{\Omega}_0$. On the oher hand ,there exist positive constants c_1, c_2 such that

$$\sum_{K}\sum_{i,k}\frac{\partial^2(\Phi_0+a_1u_1)}{\partial z_i\partial \overline{z}_j}w_{iK}\overline{w}_{kK} \ge -c_1|w|^2 + a_1c_2|w|^2.$$

Thus if we choose $a_1 > 0$ sufficiently large, $v_1 = \Phi_0 + a_1 u_1$ is strictly q-subharmonic in a neighborhood of $\overline{\Omega}_1$ and satisfies $v_1 > \Phi$ on $\overline{\Omega}_1$. In the same way, if we choose $a_2 > 0$ sufficiently large, then $v_2 = \Phi_0 + a_1 u_1 + a_2 u_2$ is strictly q-subharmonic in a neighborhood of $\overline{\Omega}_2$ and satisfies $v_2 > \Phi$ on $\overline{\Omega}_2$. Repeating this process, we obtain the sequence $\{v_m\}$ such that v_m is strictly q-subharmonic in a neighborhood of $\overline{\Omega}_m$ and $v_m > \Phi$ in $\overline{\Omega}_m$. In the case when r, s > j+2, we have

$$v_r = \Phi_0 + \sum_{i=1}^r a_i u_i = \Phi_0 + \sum_{i=1}^{j+2} a_i u_i = v_s.$$

Therefore if we define $v = \lim_{m \to \infty} v_m$, then $v \in C^{\infty}(\Omega)$, v is strictly q-subharmonic in

 Ω and v $\geq \! \Phi$ on $\Omega.$ Thus we have

$$\{z \in \Omega : v(z) < c\} \subset \Omega_c \subset \subset \Omega$$
,

which completes the proof of theorem 1.

2. $\overline{\partial}$ -problem on weakly q-convex domains.

By following the method of section 4.2 of Hörmander[3], we obtain the following lemmas.

LEMMA 3. Let Ω be a weakly q-convex domain in C^n . Let $r \ge q$. Then there exists a positive continuous function m(z) on Ω such that

$$(1) \sum_{K} \sum_{j,k} \frac{\partial^2 p(z)}{\partial z_j \partial \overline{z_k}} w_{jK} \overline{w_{kK}} \ge m(z) |w|^2 \text{ for } z \in \Omega \text{ and } (0,r) - \text{form } w = \sum_{J} w_J d\bar{z}^J, \text{ where } u = \sum_{j} w_J d\bar{z}^J = 0$$

p(z) is a C^{∞} strictly q-subharmonic function in Ω which satisfies for any c ϵ R, $\{z \in \Omega : p(z) < c\} \subset \subset \Omega$.

PROOF. For a (0,r) form $w = \sum_{J} w_{J} d\bar{z}^{J}$, $w \neq 0$, define $\varphi_{w}(z) = \sum_{K} \sum_{j,k} \frac{\partial^{2} p}{\partial z_{j} \partial \bar{z}_{k}} (z) \frac{w_{jK} \overline{w}_{kK}}{|w|^{2}}$.

Then $\varphi_w(z)$ is continuous with respect to z. If we set $m(z) = \inf_{w \neq 0} \varphi_w(z)$, then m(z)

is a positive continuous function in Ω and satisfies (1), which completes the proof of lemma 3.

Let $\{K_i\}$ be a sequence of compact subsets of Ω satisfying $K_j \subset \subset K_{j+1} \subset \Omega$ and $\Omega = \bigcup_{j=1}^{\infty} K_j$. Let $\eta_i \in D(\Omega)$ be functions such that $\eta_j = 1$ on K_{j-1} , supp $\eta_j \subset K_j$ and $0 \leq \eta_j \leq 1$. Then there exists $\psi \in C^{\infty}(\Omega)$ such that

$$\sum_{k=1}^{n} \left| \frac{\partial \eta_{j}}{\partial \bar{z}_{k}} \right|^{2} \!\!\! \leq e^{\psi} \ (j \!= \! 1, 2, \ldots).$$

Then we have the following.

LEMMA 4. Let Ω be a weakly q-convex domain in C^n and $r \ge q$. Then there exsists a $\varphi \in C^{\infty}(\Omega)$ such that

(2)
$$\sum_{K} \sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} (z) w_{jK} \overline{w}_{kK} \ge 2(|\overline{\partial} \psi|^2 + e^{\psi}) |w|^2$$

for any (0,r)-form $w = \sum_{J} w_{J} d\bar{z}^{J}$.

PROOF. Let $\chi \in C^{\infty}(\mathbb{R})$ be an increasing convex function. Let p(z) be the function in lemma 3. Define $\varphi = \chi(p)$. Then we have

$$\sum_{K} \sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} (z) w_{jK} \overline{w}_{kK} \ge \chi (p(z)) m(z) |w|^2.$$

Let $K_t = \{ z \in \Omega : p(z) \le t \}$. If we choose χ in such a way that

$$\chi(t) \ge \sup \left\{ 2(|\overline{\partial} \psi(z)|^2 + e^{\psi(z)}) m(z)^{-1} \right\}$$

z ϵk_t

Then we obtain (2), which completes the proof of lemma 4.

Define

$$\label{eq:phi} \begin{split} \varphi_1 &= \varphi - 2\,\psi\;,\;\; \varphi_2 = \varphi - \psi\;,\;\; \varphi_3 = \varphi\;.\\ \text{By Hörmander[3], we have for f} \in D_{(0,r)}(\Omega\;),\;\; r \geq q, \end{split}$$

$$(3) 2 \| T^* f \|_{\varphi_1}^2 + \| S f \|_{\varphi_3}^2 \ge \int_{\Omega} \sum_{K} \sum_{j,k} \frac{\partial^2 \varphi}{\partial z_j \partial \overline{z}_k} f_{jK} \overline{f}_{kK} e^{-\varphi} d\lambda + \int_{\Omega} \sum_{J} \sum_{i} \left| \frac{\partial f_J}{\partial \overline{z}_i} \right|^2 e^{-\varphi} d\lambda - 2 \int_{\Omega} |f|^2 |\partial \psi|^2 e^{-\varphi} d\lambda.$$

Thus we obtain the basic estimate:

 $2 || T^* f ||_{\varphi_1}^2 + || S f ||_{\varphi_3}^2 \ge || f ||_{\varphi_2}^2.$

Therefore we have proved the following Sobolev argument of Hörmander[3]:

THEOREM 2. Let Ω be a weakly q-convex domain C^n . Then for all $r \ge q$, the equation $\overline{\partial}u = f$ has a solution $u \in C^{\infty}_{(0,r-1)}(\Omega)$ with $f \in C^{\infty}_{(0,r)}(\Omega)$ and $\overline{\partial}f = 0$.

By following the proof of lemma 4.4.1 of Hörmander[3], we have

LEMMA 5. Let Ω be a weakly q-convex domain in C^n and $r \ge q$. Let φ be a real valued function in $C^2(\Omega)$ such that

$$\sum_{K}\sum_{j,k}\frac{\partial^{2}\varphi}{\partial z_{j}\partial\overline{z}_{k}}(z) w_{jK}\overline{w}_{kK} \geq c(z) |w|^{2} \quad for \ z \ \epsilon \ \Omega ,$$

where c is a positive continuous function in Ω and $w = \sum_{J} w_J d\bar{z}^J$ is a (0,r)-form in Ω . If $q \in L^2_{(0,r)}(\Omega, \varphi)$ and $\bar{\partial}g = 0$, then one can find $u \in L^2_{(0,r-1)}(\Omega, \varphi)$ with $\bar{\partial}u = g$ and

$$\int_{\Omega} |\mathbf{u}|^2 e^{-\varphi} d\lambda \leq 2 \int_{\Omega} |\mathbf{g}|^2 e^{-\varphi} \frac{1}{c} d\lambda .$$

Next we prove the following which generalizes the result of Ho[2] to the unbounded domain with non-smooth boundary.

THEOREM 3. Let Ω be a weakly q-convex domain in Cⁿ and φ any q-subharmonic function in Ω . For every $g \in L^{2}_{(0,r)}(\Omega, \varphi)$ with $\overline{\partial}g=0$, $r\geq q$, there is a solution $u \in L^{2}_{(0,r-1)}(\Omega, \operatorname{loc})$ of the equation $\overline{\partial}u=g$ such that

$$\int_{\Omega} |u|^{2} e^{-\varphi} (1+|z|^{2})^{-2} d\lambda \leq \int_{\Omega} |g|^{2} e^{-\varphi} d\lambda.$$

PROOF. If $\varphi \in C^2(\Omega)$, then we can prove the theorem by using lemma 5. In the general case we choose a C^{∞} strictly q-subharmonic function s in Ω such that $\Omega_a = \{z \in \Omega : s(z) < a\} \subset \subset \Omega$

for every $a \in R$. There exist $C^{\infty} q$ -subharmonic functions φ_{ϵ} defined in $\Omega_{a(\epsilon)}$ such that $\varphi_{\epsilon} \downarrow \varphi$ and $a(\epsilon) \rightarrow \infty$ as $\epsilon \downarrow 0$. We can find a form $u_{\epsilon} \in L^{2}_{(0,r-1)}(\Omega_{a(\epsilon)}, \varphi_{\epsilon})$ so that $\overline{\partial} u_{\epsilon} = g$ in $\Omega_{a(\epsilon)}$ and

$$\int_{\Omega_{a(\varepsilon)}} \mid u_{\varepsilon} \mid^2 e^{-\varphi_{\varepsilon}} \, (1+\mid z \mid^2)^{-2} \, d\lambda \leq \int_{\Omega} \mid g \mid^2 e^{-\varphi} \, d\lambda \, .$$

There exist a sequence $\{\varepsilon_i\}$ such that $\{u_{\varepsilon_i}\}$ converges weakly in Ω_a for every a to a limit u in $L^2_{(0,r-1)}(\Omega, loc)$. For every $\varepsilon > 0$ and a ε R, if we choose j such that $\varepsilon_j < \varepsilon$ and $a(\varepsilon_j) > a$, then we have

$$\int_{\Omega_{a}} |\mathbf{u}_{\epsilon_{j}}|^{2} \exp(-\varphi_{\epsilon}) (1+|\mathbf{z}|^{2})^{-2} d\lambda \leq \int_{\Omega_{a}(\epsilon_{j})} |\mathbf{u}_{\epsilon_{j}}|^{2} \exp(-\varphi_{\epsilon_{j}}) (1+|\mathbf{z}|^{2})^{-2} d\lambda$$

Letting $j \rightarrow \infty$ we obtain

$$\int_{\Omega} |u|^2 e^{-\varphi} (1+|z|^2)^{-2} d\lambda \leq \int_{\Omega} |g|^2 e^{-\varphi} d\lambda,$$

which completes the proof of theorem 3.

References

- [1] W. Fischer and I. Lieb, Lokale Kerne und beschränkte Lösungen für den $\overline{\partial}$ -Operator auf q-konvexen Gebieten, Math. Ann., 208 (1974), 249-265.
- [2] L. Ho, $\overline{\partial}$ -problem on weakly q-convex domains, Math. Ann., 290 (1991), 3 -18.
- [3] L. Hörmander, An introduction to complex analysis in several variables, North -Holland, 1990.
- [4] G. Schmalz, Solution of the $\overline{\partial}$ -equation with uniform estimates on strictly q-convex domains with nonsmooth boundary, Math. Z., 202 (1989), 409-430.