$\bar{\partial}$ Problem on Weakly q-Convex Domains with Non-Smooth Boundary in C^{n}

Kenzō Adachi and Hiroshi Kajimoto
Department of Mathematics, Faculty of Education Nagasaki University, Nagasaki 852 Japan
(Received Feb. 29, 1992)

Abstract

In this paper we study the $\bar{\partial}$ problem on weakly q-convex domains and extend the results of Ho to unbounded q-convex domains with non-smooth boundary.

Introduction. Fischer and Lieb[1], Schmalz[4] obtained the uniform and Hölder estimates for the solution of $\bar{\partial}$ problem on strictly q-convex domains by applying the Cauchy-Fantappie integral formula. Recently Ho[2] defined the weakly q-convex domain and obtained L^{2} estimates for solutions of the $\bar{\partial}$ problem for ($0, r$)forms, r $\geq \mathrm{q}$. In this paper we shall extend the definition of the weakly q -convex domain to unbounded domains with non-smooth boundary and obtain the L^{2} estimate for the solution of the $\bar{\partial}$-problem.

I. Weakly q-convex domains with non-smooth boundary.

Definition 1. Let Ω be an open set in C^{n}. We say that $u: \Omega \rightarrow[-\infty, \infty]$ is $q-$ subharmonic if u satisfies the following (a) and (b):
(a) u is upper semicontinuous on Ω.
(b) Let D be a q-dimensional polydisc in Ω and let f be an analytic polynomial in D such that $u \leq \operatorname{Ref}$ on ∂D. Then $u \leq \operatorname{Ref}$ in D.

Remark. A q-subharmonic function is ($q+1$)-subharmonic.
Let $\mathrm{B}(\mathrm{z} ; \mathrm{r})$ be a ball in C^{n} with center z and radius r . Let $\varphi(\zeta)$ be a radial function satisfying $\int \varphi(\zeta) \mathrm{d} \lambda(\zeta)=1, \varphi(\zeta) \geq 0$ and supp $\varphi \subset \subset \mathrm{B}(0 ; 1)$, where $\mathrm{d} \lambda$ is the Lebesgue measure in C^{n}.

Lemma 1. Let $\mathrm{u} \in \mathrm{C}^{2}(\Omega)$ be subharmonic in Ω. Define
$\Phi_{\varepsilon}(\mathrm{z})=\int \mathrm{u}(\mathrm{z}-\varepsilon \zeta) \varphi(\zeta) \mathrm{d} \lambda(\zeta)$. Then $\Phi_{\epsilon} \downarrow \mathrm{u}$ when $\varepsilon \downarrow 0$.
Proof. Define for $z \in \Omega$

$$
N(r)=\int_{|w|=1} u(z+r w) d S(w)
$$

where $d S$ is the surface measure on $|w|=1$. Then we have

$$
\begin{gathered}
0 \leq \int_{|w|=1} \triangle u(z+r w) d S(w)=\int_{|w|=1}\left(\left(\frac{\partial}{\partial r}\right)^{2}+\frac{2 n-1}{r} \frac{\partial}{\partial r}+\triangle_{s}\right) u(z+r w) d S(w) \\
\quad=\left(\left(\frac{\partial}{\partial r}\right)^{2}+\frac{2 n-1}{r} \frac{\partial}{\partial r}\right) N(r)=\frac{1}{r^{2 n-1}}\left(r^{2 n-1} N^{\prime}(r)\right) .
\end{gathered}
$$

Thus $N(r)$ is increasing with respect to r. On the other hand we have

$$
\Phi_{\varepsilon}(z)=\int_{0}^{\infty} \int_{|w|=1} u\left(z-\varepsilon_{r w}\right) \varphi(r) r^{2 n-1} \operatorname{drdS}(w)=\int_{0}^{\infty} N(\varepsilon r) \varphi(r) r^{2 n-1} d r .
$$

Thus $\Phi_{\varepsilon}(z)$ is increasing with respect to ε, which completes the proof of lemma 1 .
For any unitary coordinates $w=\left(w_{1}, \ldots, w_{n}\right)$, we set

$$
\Delta_{w}^{q}=\frac{\partial^{2}}{\partial w_{1} \partial \bar{w}_{1}}+\ldots+\frac{\partial^{2}}{\partial \bar{w}_{9} \partial \bar{w}_{q}}
$$

Lemma 2. If $\mathrm{u} \in \mathrm{L}_{\ell \circ c}^{1}(\Omega)$ satisfies for any $\mathrm{v} \in D(\Omega), \mathrm{v} \geq 0$, and any unitary coord ${ }^{-}$ inates $\mathrm{w}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right)$,

$$
\int \mathrm{u} \triangle_{w}^{q} v \mathrm{~d} \lambda \geq 0,
$$

then there exists a q-subharmonic function U in Ω such that $\mathrm{U}=\mathrm{u}$ a.e..
Proof. Define for $\delta>0, \Omega_{\delta}=\{\mathrm{z}: \operatorname{dist}(\mathrm{z}, \mathrm{C} \Omega)>\delta\}$ and

$$
\mathrm{u}_{\delta}(\mathrm{z})=\int \mathrm{u}(\mathrm{z}-\delta \zeta) \varphi(\zeta) \mathrm{d} \lambda(\zeta) \quad \text { for } \mathrm{z} \epsilon \Omega_{\delta}
$$

Then we have $u_{\delta} \in \mathrm{C}^{\infty}\left(\Omega_{\delta}\right)$. Moreover we have

$$
\int u_{\delta}(z) \triangle_{w}^{q} v(z) d \lambda(z)=\int\left(\int u(z-\delta \zeta) \triangle_{w}^{q} v(z) d \lambda(z)\right) \varphi(\zeta) d \lambda(\zeta) \geq 0
$$

In view of theorem 1.4 of $\mathrm{Ho}[2], \mathrm{u}_{\delta}$ is $\mathrm{q}-$ subharmonic in $\Omega_{\hat{\delta}}$.
From lemma 1, we have

$$
\int u_{\delta}\left(z-\varepsilon_{1} \zeta\right) \varphi(\zeta) \mathrm{d} \lambda(\zeta) \leq \int u_{\delta}\left(z-\varepsilon_{2} \zeta\right) \varphi(\zeta) \mathrm{d} \lambda(\zeta) \text { for } \varepsilon_{1}<\varepsilon_{2} .
$$

Since $\mathrm{u}_{\delta} \rightarrow \mathrm{u}$ in $\mathrm{L}_{1 \mathrm{loc}}^{1}(\Omega)$, we have by letting $\delta \rightarrow 0$,

$$
\left.\int u(z)-\varepsilon_{1} \zeta\right) \varphi(\zeta) \mathrm{d} \lambda(\zeta) \leq \int u\left(z-\varepsilon_{2} \zeta\right) \varphi(\zeta) \mathrm{d} \lambda(\zeta) .
$$

Thus we have proved $u_{\varepsilon_{1}} \leqslant u_{\varepsilon_{2}}$ for $\varepsilon_{1} \leq \varepsilon_{2}$. Define $U(z)=\lim _{\delta \downarrow 0} u_{\delta}(z)$. Since the limit of a decreasing sequence of q-subharmonic functions is q-subharmonic, $U(z)$ is $q-$ subharmonic in Ω. Both u and U are limits of $\left\{u_{\delta}\right\}$ in $L_{1 \text { oc }}^{1}(\Omega)$, we have $u=U$ a.e., which completes the proof of lemma 2.

Definition 2. Let Ω be an open set in C^{n}. We say that Ω is weakly q-convex if there exists a continuous q-subharmonic function Φ on Ω such that for every $c \varepsilon R$, $\Omega_{c}=\{\mathrm{z} \in \Omega: \Phi(\mathrm{z})<\mathrm{c}\} \subset \subset \Omega$.

Remark. In the case when Ω is a bounded domain with a smooth boundary, a weakly q-convex domain in the definition of $\mathrm{Ho}[2]$ is weakly q-convex in our definition.

Definition 3. For a $(0, r)$ form $w=\sum_{J} w_{J} d \bar{z}^{J}$, we define $|w|^{2}=\sum_{J}\left|w_{J}\right|^{2}$.
Definition 4. We say that a real valued function $\mathrm{f} \epsilon \mathrm{C}^{2}(\Omega)$ is strictly q -subharmonic if there exists a constant c such that

$$
\begin{aligned}
& \sum_{K} \sum_{j, k} \frac{\partial^{2} f}{\partial z_{j} \partial \bar{z}_{k}}(z) w_{j K} \bar{w}_{k K} \geq c|w|^{2} \text { for all } z \in \Omega \text { and for all }(0, q) \text {-form } \\
& w=\sum_{J} w_{J} d \bar{z}^{J} .
\end{aligned}
$$

Remark. A strictly q-subharmonic function is q-subharmonic by theorem 1.4 of $\mathrm{Ho}[2]$ and a strictly q -subharmonic function is strictly $(\mathrm{q}+1)$-subharmonic.

THEOREM 1. Let Ω be a weakly q-convex domain in C^{n}. Then there exists a C^{∞} strictly q-subharmonic function v such that for every $\mathrm{c} \epsilon \mathrm{R},\{\mathrm{z} \in \Omega: \mathrm{v}(\mathrm{z})<\mathrm{c} \subset \subset \Omega$.

Proof. By definition 1 , there exists a continuous q-subharmonic function Φ such that $\Omega_{\mathrm{c}}=\{\mathrm{z} \in \Omega: \Phi(\mathrm{z})<\mathrm{c}\} \subset \subset \Omega$. For a sufficiently small constant $\varepsilon>0$, define

$$
\Phi_{\mathrm{j}}(\mathrm{z})=\int_{\Omega_{\mathrm{j}+1}} \Phi(\zeta) \varphi\left(\frac{\mathrm{z}-\zeta}{\varepsilon}\right) \varepsilon^{-2 \mathrm{n}} \mathrm{~d} \lambda(\zeta)+\varepsilon|\mathrm{z}|^{2}
$$

where $\varphi(\mathrm{z})$ is the function defined before lemma 1 . Then $\Phi_{\mathrm{j}} \in \mathrm{C}^{\infty}\left(\mathrm{C}^{n}\right)$. For $\mathrm{z} \in \bar{\Omega}_{\mathrm{j}}$, if we choose $\varepsilon>0 \mathrm{small}$, then we have

$$
\Phi_{\mathrm{j}}(\mathrm{z})=\int_{\mathrm{B}(0,1)} \Phi(\mathrm{z}-\varepsilon \mathrm{w}) \varphi(\mathrm{w}) \mathrm{d} \lambda(\mathrm{w})+\varepsilon|\mathrm{z}|^{2}
$$

Therefore Φ_{j} is strictly $\mathrm{q}-$ subharmonic in $\bar{\Omega}_{\mathrm{j}}$ and satisfies $\Phi \leq \Phi_{\mathrm{j}}<\Phi+1$ on a neighborhood of $\bar{\Omega}_{j}$. We choose a convex function $\chi \in \mathrm{C}^{\infty}(\mathrm{R})$ such that $\chi(\mathrm{t})=0$ for $\mathrm{t}<0$ and $\chi^{\prime}(\mathrm{t})>0$ for $\mathrm{t}>0$. Define $\mathrm{u}_{\mathrm{j}}=\chi\left(\Phi_{\mathrm{j}}+2-\mathrm{j}\right)$. Then we have

$$
\begin{aligned}
\sum_{K} \sum_{i, k} \frac{\partial^{2} u_{j}}{\partial z_{i} \partial \bar{z}_{k}}(z) w_{i K} \bar{w}_{k K} & =\left.\chi^{\prime}\left(\Phi_{j}+2-j\right) \sum_{K} \sum_{i=1}^{n} \frac{\partial \Phi_{j}}{\partial z_{i}} w_{i K}\right|^{2} \\
& +\chi^{\prime}\left(\Phi_{j}+2-j\right) \sum_{K} \sum_{i, k} \frac{\partial^{2} \Phi_{j}}{\partial z_{j} \partial \bar{z}_{k}}(z) w_{i K} \bar{w}_{k K}
\end{aligned}
$$

Since $\Phi_{\mathrm{j}}+2-\mathrm{j}>0$ on $\bar{\Omega}_{\mathrm{j}} \mid \bar{\Omega}_{\mathrm{j}-2}, \mathrm{u}_{\mathrm{j}}$ satisfies the following (i),(ii) and (iii):
(i) u_{j} is q-subharmonic in a neighborhood of $\bar{\Omega}_{j}$
(ii) u_{j} is strictly q-subnarmonic in a neighborhood of $\bar{\Omega}_{j} \mid \bar{\Omega}_{j-1}$
(iii) $u_{j}>0$ in a neighborhood of $\bar{\Omega}_{j} \mid \Omega_{j-1}$.

Since Φ_{0} is strictly q-subharmonic in a neghborhood of $\bar{\Omega}_{0}$ and satisfies $\Phi \leq \Phi_{0}$
$<\Phi+1$ on $\bar{\Omega}_{0}$, we have for a sufficiently large constant $\mathrm{a}_{1}, \Phi_{0}+\mathrm{a}_{1} \mathrm{u}_{1}>\Phi$ in a neighborhood of $\bar{\Omega}_{1} \mid \bar{\Omega}_{0}$. On the oher hand , there exist positive constants c_{1}, c_{2} such that

$$
\sum_{K} \sum_{i, k} \frac{\partial^{2}\left(\Phi_{0}+\mathrm{a}_{1} \mathrm{u}_{1}\right)}{\partial \mathrm{z}_{\mathrm{i}} \partial \overline{\mathrm{z}}_{j}} \mathrm{w}_{\mathrm{iK}} \overline{\mathrm{w}}_{\mathrm{kK}} \geq-\mathrm{c}_{1}|\mathrm{w}|^{2}+\mathrm{a}_{1} \mathrm{c}_{2}|\mathrm{w}|^{2} .
$$

Thus if we choose $a_{1}>0$ sufficiently large, $v_{1}=\Phi_{0}+a_{1} u_{1}$ is strictly q-subharmonic in a neighborhood of $\bar{\Omega}_{1}$ and satisfies $\mathrm{v}_{1}>\Phi$ on $\bar{\Omega}_{1}$. In the same way, if we choose $\mathrm{a}_{2}>0$ sufficiently large, then $\mathrm{v}_{2}=\Phi_{0}+\mathrm{a}_{1} \mathrm{u}_{1}+\mathrm{a}_{2} \mathrm{u}_{2}$ is strictly $\mathrm{q}-$ subharmonic in a neighborhood of $\bar{\Omega}_{2}$ and satisfies $v_{2}>\Phi$ on $\bar{\Omega}_{2}$. Repeating this process, we obtain the sequence $\left\{\mathrm{v}_{\mathrm{m}}\right\}$ such that v_{m} is strictly q -subharmonic in a neighborhood of $\bar{\Omega}_{\mathrm{m}}$ and $\mathrm{v}_{\mathrm{m}}>\Phi$ in $\bar{\Omega}_{\mathrm{m}}$. In the case when $\mathrm{r}, \mathrm{s}>\mathrm{j}+2$, we have

$$
v_{r}=\Phi_{0}+\sum_{i=1}^{r} a_{i} u_{i}=\Phi_{0}+\sum_{i=1}^{j+2} a_{i} u_{i}=v_{s}
$$

Therefore if we define $\mathrm{v}=\lim _{\mathrm{m} \rightarrow \infty} \mathrm{v}_{\mathrm{m}}$, then $\mathrm{v} \in \mathrm{C}^{\infty}(\Omega)$, v is strictly q -subharmonic in Ω and $v \geq \Phi$ on Ω. Thus we have

$$
\{\mathrm{z} \in \Omega: \mathrm{v}(\mathrm{z})<\mathrm{c}\} \subset \Omega_{\mathrm{c}} \subset \subset \Omega,
$$

which completes the proof of theorem 1 .
2. $\bar{\partial}$-problem on weakly q-convex domains.

By following the method of section 4.2 of Hörmander[3], we obtain the following lemmas.

Lemma 3. Let Ω be a weakly q-convex domain in C^{n}. Let $\mathrm{r} \geq \mathrm{q}$. Then there exists a positive continuous function $\mathrm{m}(\mathrm{z})$ on Ω such that
(1) $\sum_{K} \sum_{j, k} \frac{\partial^{2} p(z)}{\partial z_{j} \partial \bar{z}_{k}} w_{j K} \bar{w}_{k K} \geq m(z)|w|^{2}$ for $z \in \Omega$ and $(0, r)-$ form $w=\sum_{J} w_{J} d \bar{z}^{J}$, where $\mathrm{p}(\mathrm{z})$ is a C^{∞} strictly q -subharmonic function in Ω which satisfies for any $\mathrm{c} \epsilon \mathrm{R}$, $\{z \in \Omega: p(z)<c\} \subset \subset \Omega$.

Proof. For a $(0, r)$ form $w=\sum_{J} w_{J} d \bar{z}^{J}, w \neq 0$, define

$$
\varphi_{w}(z)=\sum_{K} \sum_{j, k} \frac{\partial^{2} p}{\partial z_{j} \partial \bar{z}_{k}}(z) \frac{w_{j K} \bar{w}_{k K}}{|w|^{2}} .
$$

Then $\varphi_{w}(z)$ is continuous with respect to z. If we set $m(z)=\inf _{w \neq 0} \varphi_{w}(z)$, then $m(z)$ is a positive continuous function in Ω and satisfies (1), which completes the proof of lemma 3 .

Let $\left\{\mathrm{K}_{\mathrm{j}}\right\}$ be a sequence of compact subsets of Ω satisfying $\mathrm{K}_{\mathrm{j}} \subset \subset \mathrm{K}_{\mathrm{j}+1} \subset \subset \Omega$ and $\Omega=\bigcup_{\mathrm{j}=1}^{\infty} \mathrm{K}_{\mathrm{j}}$. Let $\eta_{\mathrm{i}} \in D(\Omega)$ be functions such that $\eta_{\mathrm{j}}=1$ on $\mathrm{K}_{\mathrm{j}-1}$, supp $\eta_{\mathrm{j}} \subset \mathrm{K}_{\mathrm{j}}$ and $0 \leq \eta_{\mathrm{j}} \leq 1$. Then there exists $\psi \in \mathrm{C}^{\infty}(\Omega)$ such that

$$
\sum_{k=1}^{n}\left|\frac{\partial \eta_{\mathrm{j}}}{\partial \bar{z}_{\mathrm{k}}}\right|^{2} \leq \mathrm{e}^{\psi}(\mathrm{j}=1,2, \ldots)
$$

Then we have the following.
Lemma 4. Let Ω be a weakly q-convex domain in C^{n} and $\mathrm{r} \geq \mathrm{q}$. Then there exsists $a \varphi \in \mathrm{C}^{\infty}(\Omega)$ such that
(2) $\sum_{K} \sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(z) w_{j K} \bar{w}_{k K} \geq 2\left(|\bar{\partial} \psi|^{2}+e^{\psi}\right)|w|^{2}$
for any $(0, \mathrm{r})-$ form $w=\sum_{\mathrm{J}} \mathrm{w}_{\mathrm{J}} \mathrm{d} \bar{z}^{\mathrm{J}}$.
Proof. Let $\chi \in \mathrm{C}^{\infty}(\mathrm{R})$ be an increasing convex function. Let $\mathrm{p}(\mathrm{z})$ be the function in lemma 3. Define $\varphi=\chi(p)$. Then we have

$$
\sum_{K} \sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{\mathrm{i}} \partial \bar{z}_{\mathrm{k}}}(\mathrm{z}) \mathrm{w}_{\mathrm{j} K} \bar{w}_{\mathrm{kK}} \geq \chi^{\prime}(\mathrm{p}(\mathrm{z})) \mathrm{m}(\mathrm{z})|\mathrm{w}|^{2} .
$$

Let $\mathrm{K}_{\mathrm{t}}=\{\mathrm{z} \in \Omega: \mathrm{p}(\mathrm{z}) \leq \mathrm{t}\}$. If we choose χ in such a way that

$$
\chi(\mathrm{t}) \geq \sup _{\mathrm{z} \in \mathrm{k}_{\mathrm{t}}}\left\{2\left(|\bar{\partial} \psi(\mathrm{z})|^{2}+\mathrm{e}^{\psi(z)}\right) \mathrm{m}(\mathrm{z})^{-1}\right\}
$$

Then we obtain (2), which completes the proof of lemma 4.
Define

$$
\varphi_{1}=\varphi-2 \psi, \varphi_{2}=\varphi-\psi, \varphi_{3}=\varphi .
$$

By Hörmander[3], we have for $\mathrm{f} \in D_{(0, \mathrm{r})}(\Omega), \mathrm{r} \geq \mathrm{q}$,
(3) $2\left\|\mathrm{~T}^{*} \mathrm{f}\right\|_{\varphi_{1}}{ }^{2}+\|S f\|_{\varphi_{3}}{ }^{2} \geq \int_{\Omega} \sum_{\mathrm{K}} \sum_{\mathrm{j}, \mathrm{k}} \frac{\partial^{2} \varphi}{\partial \mathrm{z}_{\mathrm{j}} \partial \overline{\mathrm{z}}_{\mathrm{k}}} \mathrm{f}_{\mathrm{jK}} \bar{f}_{\mathrm{kK}} \mathrm{e}^{-\varphi} \mathrm{d} \lambda$

$$
+\int_{\Omega} \sum_{\mathrm{J}} \sum_{\mathrm{i}}\left|\frac{\partial \mathrm{f}_{\mathrm{J}}}{\partial \bar{z}_{\mathrm{i}}}\right|^{2} \mathrm{e}^{-\varphi} \mathrm{d} \lambda-2 \int_{\Omega}|\mathrm{f}|^{2}|\partial \psi|^{2} \mathrm{e}^{-\varphi} \mathrm{d} \lambda
$$

Thus we obtain the basic estimate:

$$
2\left\|\mathrm{~T}^{*} \mathrm{f}\right\|_{\varphi_{1}}{ }^{2}+\|\mathrm{Sf}\|_{\varphi_{3}}{ }^{2} \geq\|f\|_{\varphi_{2}}{ }^{2} .
$$

Therefore we have proved the following Sobolev argument of Hörmander[3]:

Theorem 2. Let Ω be a weakly q-convex domain C^{n}. Then for all $\mathrm{r} \geq \mathrm{q}$, the equation $\bar{\partial}_{\mathrm{u}}=\mathrm{f}$ has a solution $\mathrm{u} \in \mathrm{C}_{(0, \mathrm{r}-1)}^{\infty}(\Omega)$ with $\mathrm{f} \in \mathrm{C}_{(0, \mathrm{r})}^{\infty}(\Omega)$ and $\bar{\partial} \mathrm{f}=0$.

By following the proof of lemma 4.4.1 of Hörmander[3], we have

Lemma 5. Let Ω be a weakly q-convex domain in C^{n} and $\mathrm{r} \geq \mathrm{q}$. Let φ be a real valued function in $\mathrm{C}^{2}(\Omega)$ such that

$$
\sum_{K} \sum_{j, k} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \bar{z}_{k}}(z) w_{j K} \bar{w}_{k K} \geq c(z)|w|^{2} \quad \text { for } z \in \Omega
$$

where c is a positive continuous function in Ω and $\mathrm{w}=\sum_{\mathrm{J}} \mathrm{w}_{\mathrm{J}} \mathrm{d} \bar{z}^{\mathrm{J}}$ is $a(0, \mathrm{r})$-form in Ω. If $\mathrm{q} \in \mathrm{L}_{(0, \mathrm{r})}^{2}(\Omega, \varphi)$ and $\bar{\partial} \mathrm{g}=0$, then one can find $\mathrm{u} \in \mathrm{L}_{(0, \mathrm{r}-1)}^{2}(\Omega, \varphi)$ with $\bar{\partial} \mathrm{u}=$ g and

$$
\int_{\Omega}|u|^{2} \mathrm{e}^{-\varphi} \mathrm{d} \lambda \leq 2 \int_{\Omega}|\mathrm{g}|^{2} \mathrm{e}^{-\varphi} \frac{1}{\mathrm{c}} \mathrm{~d} \lambda
$$

Next we prove the following which generalizes the result of $\mathrm{Ho}[2]$ to the unbounded domain with non-smooth boundary.

Theorem 3. Let Ω be a weakly q-convex domain in C^{n} and φ any q-subharmonic function in Ω. For every $\mathrm{g} \in L_{(0, \mathrm{r})}^{2}(\Omega, \varphi)$ with $\bar{\partial} \mathrm{g}=0, \mathrm{r} \geq \mathrm{q}$, there is a solution $\mathrm{u} \in \mathrm{L}^{2}{ }_{(0, \mathrm{r}-1)}(\Omega, \mathrm{loc})$ of the equation $\bar{\partial} \mathrm{u}=\mathrm{g}$ such that

$$
\int_{\Omega}|u|^{2} e^{-\varphi}\left(1+|z|^{2}\right)^{-2} d \lambda \leq \int_{\Omega}|g|^{2} e^{-\varphi} d \lambda
$$

Proof. If $\varphi \in \mathrm{C}^{2}(\Omega)$, then we can prove the theorem by using lemma 5 . In the general case we choose a C^{∞} strictly q-subharmonic function s in Ω such that

$$
\Omega_{\mathrm{a}}=\{\mathrm{z} \in \Omega: \mathrm{s}(\mathrm{z})<\mathrm{a}\} \subset \subset \Omega
$$

for every a \in R. There exist $\mathrm{C}^{\infty} \mathrm{q}$-subharmonic functions φ_{ε} defined in $\Omega_{\mathrm{a}(\varepsilon)}$ such that $\varphi_{\varepsilon} \downarrow \varphi$ and $\mathrm{a}(\varepsilon) \rightarrow \infty$ as $\varepsilon \downarrow 0$. We can find a form $\mathrm{u}_{\varepsilon} \in \mathrm{L}^{2}{ }_{(0, \mathrm{r}-1)}\left(\Omega_{\mathrm{a}(\varepsilon)}, \varphi_{\varepsilon}\right)$ so that $\bar{\partial}_{\mathrm{u}_{\varepsilon}}=\mathrm{g}$ in $\Omega_{\mathrm{a}(\varepsilon)}$ and

$$
\int_{\Omega_{\mathrm{a}(\varepsilon)}}\left|\mathrm{u}_{\varepsilon}\right|^{2} \mathrm{e}^{-\varphi_{\varepsilon}}\left(1+|\mathrm{z}|^{2}\right)^{-2} \mathrm{~d} \lambda \leq \int_{\Omega}|\mathrm{g}|^{2} \mathrm{e}^{-\varphi} \mathrm{d} \lambda .
$$

There exist a sequence $\left\{\varepsilon_{j}\right\}$ such that $\left\{u_{\varepsilon_{j}}\right\}$ converges weakly in Ω_{a} for every a to a limit u in $L_{(0, r-1)}^{(}(\Omega, l o c)$. For every $\varepsilon>0$ and a ϵR, if we choose j such that $\varepsilon_{\mathrm{j}}<\varepsilon$ and $\mathrm{a}\left(\varepsilon_{\mathrm{j}}\right)>\mathrm{a}$, then we have

$$
\int_{\Omega_{\mathrm{a}}}\left|\mathrm{u}_{\varepsilon_{\mathrm{j}}}\right|^{2} \exp \left(-\varphi_{\varepsilon}\right)\left(1+|\mathrm{z}|^{2}\right)^{-2} \mathrm{~d} \lambda \leq \int_{\Omega_{\mathrm{a}\left(\varepsilon_{\mathrm{j}}\right)}}\left|\mathrm{u}_{\varepsilon_{\mathrm{j}}}\right|^{2} \exp \left(-\varphi_{\varepsilon_{\mathrm{j}}}\right)\left(1+|\mathrm{z}|^{2}\right)^{-2} \mathrm{~d} \lambda
$$

Letting $\mathrm{j} \rightarrow \infty$ we obtain

$$
\int_{\Omega}|\mathrm{u}|^{2} \mathrm{e}^{-\varphi}\left(1+|\mathrm{z}|^{2}\right)^{-2} \mathrm{~d} \lambda \leq \int_{\Omega}|\mathrm{g}|^{2} \mathrm{e}^{-\varphi} \mathrm{d} \lambda
$$

which completes the proof of theorem 3 .

References

[1] W. Fischer and I. Lieb, Lokale Kerne und beschränkte Lösungen für den $\bar{\partial}-$ Operator auf q-konvexen Gebieten, Math. Ann., 208 (1974), 249-265.
[2] L. Ho, $\bar{\partial}$-problem on weakly q-convex domains, Math. Ann., 290 (1991), 3 -18 .
[3] L. Hörmander, An introduction to complex analysis in several variables, North -Holland, 1990.
[4] G. Schmalz, Solution of the $\bar{\partial}$-equation with uniform estimates on strictly q-convex domains with nonsmooth boundary, Math. Z., 202 (1989), 409-430.

