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Abstract

In this paper we study the ) problem on weakly q—convex domains and extend

the results of Ho to unbounded q—convex domains with non—smooth boundary.

Introduction. Fischer and Lieb[1], Schmalz[4] obtained the uniform and Holder
estimates for the solution of & problem on strictly gq—convex domains by applying
the Cauchy—Fantappie integral formula. Recently Ho[2] defined the weakly q—convex
domain and obtained L2 estimates for solutions of the O problem for (0,r)forms, r
>=q. In this paper we shall extend the definition of the weakly g—convex domain to
unbounded domains with non—smooth boundary and obtain the L2 estimate for the

solution of the é—problem.

|. Weakly q—convex domains with nhon—smooth boundary.
Definition 1. Let £ be an open set in C". We say that u:Q — [—co,©] is q—

subharmonic if u satisfies the following (a) and (b):

(a) u is upper semicontinuous on £},
(b) Let D be a q—dimensional polydisc in £ and let f be an analytic polynomial in
D such that u<Re f on @D. Then u<Ref in D.

Remark. A g—subharmonic function is (q+1)—subharmonic.

Let B(z;r) be a ball in C" with center z and radius r. Let ¢ (¢ ) be a radial

function satisfying S¢(C)d/\(§)=1,‘f’(§)20 and supp ¢ CC B(0;1), where dA is

the Lebesgue measure in C".

LeMMA 1. Let u € C2%(Q) be subharmonic in . Define



12 Kenzo ADACHI and Hiroshi KaJjiMoTo

®.(2) = Su(z—emo(:)duc). Then ®. ) u when €} 0.

PRrooF. Define for ze{)
N(r)zg u(z+rw)dS(w),
lwli=1
where dS is the surface measure on |wl| =1. Then we have
el 2n—1 2
0< Slw‘:IAu(z+rw)dS(w)=S (GRS S+ ulztrw)dS(w)

lwl

1
r 2n—1

Thus N(r) is increasing with respect to r. On the other hand we have

®.(z)= Sj&l Ly uzmerw) g (e dedS(w) = | Ner)g ()r#tdr.

=G+ 221 SN =

r

(r2»=IN'(r)).

Thus ®.(z) is increasing with respect to &, which completes the proof of lemma 1.
For any unitary coordinates w=(wi,...,w,), we set

A a2 a2

ST ewiew T dwdw,

Lemma 2. If u e L} (Q) satisfies for any ve D(Q), v=0, and any unitary coord”

inates w=(wy,...,w,),
gumv da = 0,

then there exists a q—subharmonic function U in Q such that U=u a.e..

| Proor. Define for & >0, Q;= {z:dist(z,CQ)>d} and
us(2)= {uz=00)9 (HANE) for 2 € 0.
Then we have us e C*(Q;). Moreover we have
Sua(z)A‘,},v(z)dk(z)'—" S( S u(z—08)ALv(2)dA(2) ¢ (§)dA(E)=0.

In view of theorem 1.4 of Ho[2],us is q—subharmonic in Q;.

From lemma 1, we have
fuste—e:0)p0)ar)= [us—ele (D) for e<e,,
Since us —+ u in L},.(Q), we have by letting § — 0,

[un—at)e aa)= [uz—et)p ()aa(0),

Thus we have proved u¢, < u., for €,<¢,. Define U(z) =81im us(z). Since the limit
10

of a decreasing sequence of g—subharmonic functions is q—subharmonic, U(z) is q—

subharmonic in . Both u and U are limits of {u;} in L} (Q), we have u=U a.e.,

loc

which completes the proof of lemma 2.
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Defipition 2. Let o be an open set in C". We say that {} is weakly gq—convex if
there exists a continuous q—subharmonic function ® on  such that for every ceR,
Q.={ze Q:P(z)<c}CCO.

Remark. In the case when Q is a bounded domain with a smooth boundary, a weakly
g—convex domain in the definition of Ho[2] is weakly q—convex in our definition.

Definition 3. For a (0,r)form w=§"deZJ, we define |w|2=§"|wJI2,

Definition 4. We say that a real valued function f€ C23(Q) is strictly g—subharmonic
if there exists a constant ¢ such that
2
> > *ai( Ywikwik =clwl? for all ze 2 and for all (0,q)—form
K j.k 92,07,

w=23 ‘w;dz’.
J

Remark. A strictly q—subharmonic function is q—subharmonic by theorem 1.4 of

Ho[2] and a strictly q—subharmonic function is strictly (q+1)—subharmonic.

THEOREM 1. Let Q be a weakly q—convex domain in C". Then there exisis a C*
strictly q—subharmonic function v such that for every ce R, {ze Q:v(z)<c CCAQ.

ProofF. By definition 1, there exists a continuous q—subharmonic function
® such that Q.= {ze Q:®(z2)<c}TCA. For a sufficiently small constant & >0,

define
2=, @®)e(PTHe () +eiar,
where @ (z) is the function defined before lemma 1. Then ®;€ C*(C"). For zeﬁj,

if we choose € >0 small, then we have

®,(z)= SB(O1)®(z—ew)§0(w)d/\(w)+€IzI2.
Therefore ®; is strictly gq—subharmonic in 51 and satisfies ® < ®, <®+1 on a
neighborhood of Q;. We choose a convex function X € C*(R) such that X (t)=0 for

t<0 and X (t)>0 for t>0. Define u;=X (®;+2—j). Then we have

- azu)' _ . . h o0d.
Z' Z' (Z)WiKWkK:X (@,+2—])Z’ | Z =L Wi](|2

K l,k 8ziafk ': aZ,*
o2, _
+X (Q +2—])Z Z ( )W;}(Wk](.
i,k az,azk

Since ®;+2—j>0 on Q;l Q;_,, u; satisfies the following (i),(ii) and (iii):
(i) ujis q—subharmonic in a neighborhood of Q;
(ii) uj is strictly q—subnarmonic in a neighborhood of ﬁjlﬁj_l
(ii1) u; >0 in a neighborhood of Q;1Q;_;

Since @y is strictly q—subharmonic in a neghborhood of (—20 and satisfies ® < @,
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<P +1 on -(_20, we have for a sufficiently large constant a;, ®o+a;u1>® in a

neighborhood of Q| Q,. On the oher hand ,there exist positive constants ci,c; such
that

2
%E{ aé;(z)iog—%l—u*])Wikaxz—cllw [24+ajcylwl2,

Thus if we choose a; >0 sufficiently large, vi=®,+aju; is strictly q—subharmonic

in a neighborhood of Q, and satisfies vi>® on Q. In the same way, if we choose

az >0 sufficiently large, then v;=®,+aju;+azuz is strictly q—subharmonic in a

neighborhood of Q and satisfies v4>® on ;. Repeating this process, we obtain the

sequence {v,} such that v, is strictly q—subharmonic in a neighborhood of . and

v >® in Q,. In the case when r,s>j+2, we have
r jt2
v,=®,+ 3 aui=®o+ 3 aui=v,

i=1 i=1

Therefore if we define v=lim v,, then ve C*(Q), v is strictly q—subharmonic in
m—o0

Q) and v=® on Q. Thus we have
{ze Q:v(z)<ctCQ.CC O,

which completes the proof of theorem 1.

2. 9 —problem on weakly q—convex domains.
By following the method of section 4.2 of Hormander[3], we obtain the following

lemmas.

LEMMA 3. Let Q be a weakly q—convex domain in C". Let r=q. Then there exisis

a positive continuous function m(z) on Q such that

L yE 22p()
K j,k 9z;907,

wikWikk >m(z)Iwl? for ze Q and (0,r)— form w= Z' wydz?, where

p (z) is a C® strictly q—subharmonic function in @ which satisfies for any ce R,
iz e Q:plz)<ctCC Q.

ProoF. For a (0,r) form w=2"w;dz’, w0, define
J

L3
Pu(2) =3 % 2B () Mk
K j’k azjaik IW|2

Then ¢,{(z) is continuous with respect to z. If we set m(z)= igng ¢.(z), then m(z)
: w

is a positive continuous function in Q and satisfies (1), which completes the proof

of lemma 3.
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Let {K;} be a sequence of compact subsets of Q satisfying K; CC K;1; CC

and Q =_OL?1K,-. Let 7, € D(Q) be functions such that 7;=1 on K;-;, supp 7; CK;
]:
and 0<7,;<1. Then there exists ¢ ¢ C*()) such that

% 27;

2
-1 < ef (j=1,2,...).
k=1'9%

Then we have the following.

LEmMMA 4. Let Q be a weakly q—convex domain in C® and r=q. Then there exsists
a ¢ e C°(Q) such that

2
2z x 22
K ik 9207,

() wikWik= 2( 13 ¢1% +e?) Iwl?

for any (0,r)—form w=2, wydz’.
J

PRrooF. Let X € C*(R) be an increasing convex function. Let p(z) be the function

in lemma 3. Define ¢ =) (p). Then we have

. o2
>y -=E
K jvk aZjaZk

(z) wikwik = X (p(2z))m(z) w2,

Let Ki={ze Q:p(z)<t}. If we choose X in such a way that

X (t)=sup{2( 10¢(2)12+e?P)m(z) 1}
zek,

Then we obtain (2), which completes the proof of lemma 4.

Define
p1=¢ —2¢, p2=¢ —¢, p3=9¢.
By Hoérmander[3], we have for fe D n(Q), r=q,
d%¢

(3) 21 T* iy, 2+ 11Sflly,2 2g > — fixfe ?dA
? X j,k 929z
) of, |2
+S PPN e~dA —zg fI219¢ 2e-7dA .
oy oz o

Thus we obtain the basic estimate:
2IT* il 2+ 11 Sfll 2= 11 fll 4, 2.
Therefore we have proved the following Sobolev argument of Hérmander[3]:

THEOREM 2. Let  be a weakly g—convex domain C". Then for all r=q, the
equation du=f has a solution u € C%0.:-1)(Q) with fe C%0,n(Q) and 3f=0.
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By following the proof of lemma 4.4.1 of Hormander[3], we have

LeEMMA 5. Let Q be o weakly g—convex domain in C" and r=q. Let ¢ be a real
valued function in C2(Q) such that

. 9?2 _
22 q’_(Z)WjKWkKZ c(z) Iwl? for z € O,
K ]7k aziazk
where ¢ is a positive continuous function in Q and w=2 "w;dz’ is a (0,r)—form in

. J
Q. If g€ L%.(Q,9) and dg=0, then one can find u € L%, 1,(Q,9) with du=
g and

. 1
[ juzevar= 2l tgrertaa,

Next we prove the following which generalizes the result of Ho[2] to the unbounded

domain with non—smooth boundary.

THEOREM 3. Let Q) be a weakly g—convex domain in C" and ¢ any q—subharmonic
function in Q. For every g € L%, (Q,9) with 0g=0, r=q, there is a solution
u € L%o.—1(Q,loc) of the equation du=g such that

Sn lul2e™? (14 1z12)72dA < Sﬂlglze"”d/l.

ProoF. If ¢ € C%(Q)), then we can prove the theorem by using lemma 5. In the
general case we choose a C® strictly q—subharmonic function s in Q such that
Q.,={ze Q:s5(z)<a}CcC
for every a € R. There exist C® q—subharmonic functions ¢. defined in Q¢ such
that ¢ | ¢ and a(e)—o0 as € | 0. We can find a form uc € L% ,—1)(Que), @) so
that Quc.=g in Q) and

S qulze‘%(l-l-lzlz)‘zd/lgg lgl?e™?dA.
Qa(e) o)

There exist a sequence {¢j} such that {uc} converges weakly in Q, for every a to
a limit u in L2 1) (Q,loc). For every € > 0 and a € R, if we choose j such that
€;<e and a(e;)> a, then we have

Sna'Ue;'zeXP(-%) (1+1z1%)2da< Saam,'“e"'zexp(_’o“)(l + 12 12)72dA
Letting j— oo we obtain

SO luife (14 1z12)72dA < Sn|g|2e_"dl,

which completes the proof of theorem 3.
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