Supplement to L^{2} Estimates for the $\bar{\partial}$ Operator on a Stein Manifold

Hiroshi Kajimoto
Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki 852 / Japan
(Received Feb. 29, 1992)

Abstract

A revised version of the L^{2} estimate of my previous note and an alternative proof of the approximation theorem on a Stein manifold are given.

1. Review of the $\bar{\partial}$ equation.

The setting is the same as my previous note [1], so we review briefly. Let Ω be a Stein manifold of complex dimension n. Let $\left\{\eta_{\nu}\right\}$ be a sequence of functions in C_{c}^{∞} (Ω) such that $0 \leq \eta_{\nu} \leq 1$ and $\eta_{\nu}=1$ on any compact subset of Ω when ν is large. Choose a Hermitian metric $d s^{2}=h_{j \bar{k}} d z^{j} d \bar{z}^{k}$ on Ω so that $\left|\bar{\partial} \eta_{\nu}\right| \leq 1$ for $\nu=1,2, \cdots$. Denote by $d V$ the volume element defined by $d s^{2}$. Let φ be a real valued continuous function on Ω and let $L_{(p, q)}^{2}(\Omega, \varphi)$ be the weighted L^{2} space of (p, q) forms such that

$$
\|f\|_{\varphi}^{2}=\int|f|^{2} e^{-\varphi} d V<\infty
$$

where $|\cdot|$ denotes the length with respect to $d s^{2}$. The $\bar{\partial}$ operator defines linear. closed, densely defined operators on these spaces.

$$
L_{\langle p, q\rangle}^{2}(\Omega, \varphi) \xrightarrow{T} L_{(p, q+1)}^{2}(\Omega, \varphi) \xrightarrow{S} L_{(p, q+2)}^{2}(\Omega, \varphi)
$$

In my previoius note we give a C^{∞} function Ψ on Ω which satisfies
(a) Ψ is strictly plurisubharmonic
(b) $\Psi \geq 0$ on Ω
(c) $\Omega_{c}=\{z \varepsilon \Omega \mid \Psi(z)<c\} \subset \subset \Omega$ for every $c \in R$
(d) $\|f\|_{\Psi}^{2} \leq\left\|T^{*} f\right\|_{\Psi}^{2}+\|S f\|_{\Psi}^{2} \quad f \in D_{(p, q+1)}(\Omega)$.

And then we have the following existense theorem.

ThEOREM 1 [1]. Let φ be any plurisubharmonic function on Ω. For every $g \in L_{(p, q+1)}^{2}$
(Ω, φ) with $\bar{\partial} g=0$, there exists a solution $u \in L_{(p, q)}^{2}(\Omega, l o c)$ of the equation $\bar{\partial} u=g$ such that

$$
\int|u|^{2} e^{-\varphi-\Psi} d V \leq \int|g|^{2} e^{-\varphi} d V
$$

2. Results

Denote by $A=A(\Omega)$ the space of all entire holomorphic functions on Ω with the Frechet topology of uniform convergence on all compact sets. The following is a revised version of Theorem 2 in [1].

Theorem 2 (Revised). Let φ be any plurisubharmonic function on Ω and denote by A_{φ} the set of entire holomorphic functions u such that for some real number N,

$$
\int|u|^{2} e^{-\varphi-N \Psi} d V<\infty
$$

Then the closure $\operatorname{cl} A_{\varphi}$ of A_{φ} in A contains all $u \in A$ such that $|u|^{2} e^{-\varphi}$ is locally integrable, and $\operatorname{cl} A_{\varphi}$ is equal to A if and only if $e^{-\varphi}$ is locally integrable.

Proof. Given an entire function U such that $|U|^{2} e^{-\varphi}$ is locally integrable we shall approximate U uniformly in a relatively compact set $\Omega_{R}=\{z \in \Omega \mid \Psi(z)<R\}$ by functions in A_{φ}. To do so we choose a cut function $\chi \in C_{c}^{\text {© }}(\Omega)$ so that $\chi=1$ on Ω_{R+1} and $\chi=0$ on $\Omega \backslash \Omega_{R+2}$. Set $V=\chi U$. Then

$$
V=U \text { on } \Omega_{R} \text { and } \bar{\partial} V=U \bar{\partial} \chi=0 \text { on } \Omega_{R+1} \cup\left(\Omega \backslash \Omega_{R+2}\right)
$$

To make norms small we set weight functions φ_{t} for $t>0$ as

$$
\varphi_{\iota}(z)=\varphi(z)+\max \{0, t(\Psi(z)-R-1)\}
$$

Then φ_{t} is plurisubharmonic and

$$
\begin{aligned}
& \int|\bar{\partial} V|^{2} e^{-\varphi_{t}} d V=\int_{\Omega_{R+2} \backslash \Omega_{R+1}}|U|^{2}|\bar{\partial} \chi|^{2} e^{-\varphi-t(\Psi-R-1)} d V \\
& \leq \sup _{\Omega_{R+2}}|\bar{\partial} \chi|^{2} \int_{\Omega_{R+2} \backslash \Omega_{R+1}}|U|^{2} e^{-\varphi} e^{-t(\Psi-R-1)} d V \longrightarrow 0 \text { as } t \longrightarrow 0
\end{aligned}
$$

since $|U|^{2} e^{-\varphi} \in L_{\text {loc }}^{1}$. It follows from Theorem 1 that we can find a function U_{t} with $\bar{\partial} u_{t}=\bar{\partial} V$ and

$$
\int\left|u_{t}\right|^{2} e^{-\varphi_{t}-\Psi} d V \leq \int|\bar{\partial} V|^{2} e^{-\varphi_{t}} d V \longrightarrow 0 \text { as } t \longrightarrow \infty
$$

In particular $\bar{\partial} u_{t}=0$ on Ω_{R+1} i.e. u_{t} is holomorphic in Ω_{R+1}, and

$$
\begin{aligned}
\int_{\Omega_{R-1}}\left|u_{t}\right|^{2} d V & =\int_{\Omega_{R+1}}\left|u_{t}\right|^{2} e^{-\varphi-\Psi} e^{\varphi+\Psi} d V \\
& \leq \sup _{\Omega_{R+1}} e^{\varphi+\Psi} \int\left|u_{t}\right|^{2} e^{-\varphi_{t}-\Psi} d V \longrightarrow 0
\end{aligned}
$$

since $\varphi_{t}=\varphi$ on Ω_{R+1}. Hence

$$
\begin{aligned}
& \sup \left|u_{t}\right| \leq C \int_{\Omega_{R-1}}\left|u_{t}\right|^{2} d V \longrightarrow 0, \text { i.e. } \\
\Omega_{R} \longrightarrow & 0 \text { uniformly on } \Omega_{R} . \text { We know that }
\end{aligned}
$$

$$
V=\left(V-u_{t}\right)+u_{t} \text { and } \bar{\partial}\left(V-u_{t}\right)=0 .
$$

And we have

$$
\int\left|V-u_{t}\right|^{2} e^{-\varphi-N \Psi} d V \leq 2 \int|V|^{2} e^{-\varphi-N \Psi} d V+2 \int\left|u_{t}\right|^{2} e^{-\varphi-N \Psi} d V .
$$

The 1 -st term in the right hand side converges since $|U|^{2} e^{-\varphi} \in L_{\text {loc }}^{1}$. For the 2 -nd term put $N=1+t$. Then $\varphi_{t}+\Psi=\varphi+\Psi$

$$
\begin{aligned}
& \leq \varphi+(1+t) \Psi \text { on } \Omega_{R+1} \text { and } \varphi_{t}+\Psi=\varphi+(1+t) \Psi-t(R+1) \\
& \leq \varphi+(1+t) \Psi \text { on } \Omega \backslash \Omega_{R+1} \text { and so } \\
& \quad \int\left|u_{t}\right|^{2} e^{-\varphi-(1+t) \Psi} d V \leq \int\left|u_{t}\right|^{2} e^{-\varphi_{t}-\Psi} d V<\infty .
\end{aligned}
$$

Hence $V-u_{t} \in A_{\varphi}$. This proves the first assertion. For the second assertion we note that every function in A_{φ} must vanish at z if $e^{-\varphi}$ is not integrable in any neighborhood of z. Because if $u \in A_{\varphi}$ and $u(z) \neq 0$ then there exists a neighborhood W of z such that $|u| \geq \delta>0$ on W and a contradiction that

$$
\int|u|^{2} e^{-\varphi-N \Psi} d V \geq \delta^{2} \inf _{W} e^{-N \Psi} \int_{W} e^{-\varphi} d V=\infty
$$

follows. From this it is easy to see that $\mathrm{c} 1 A_{\varphi}=A$ implies $e^{-\varphi} \in L_{\text {loc }}^{1}$.
The same argument gives an alternative proof of the following approximation theorem on a Stein manifold.

Theorem([4],5.2.8). Let Ω be a complex manifold and φ a strictly plurisubharmonic C^{∞} function on Ω such that

$$
K_{c}=\{z \in \Omega \mid \varphi(z) \leq c\} \subset \subset \Omega \text { for every real number c. }
$$

Every function which is holomorphic in a neighborhood of K_{0} can then be approximated uniformly on K_{0} by entire functions in Ω.

Proof. Let U be a holomorphic function in $K_{c}(c>0)$. choose a cut function $\chi \in$ $C_{c}^{\infty}(\Omega)$ so that $\chi=1$ on $K_{c / 2}$ and $\chi=0$ on $\Omega \backslash K_{c}$. Set $V=\chi U$ and

$$
\varphi_{l}(z)=\varphi(z)+\max \{0, t(\Psi(z)-c / 2)\}
$$

Then φ_{t} is plurisubharmonic and

$$
\begin{aligned}
& V=U \text { on } K_{0}, \quad \bar{\partial} V=U \bar{\partial} \chi=0 \text { on } K_{c / 2} \cup\left(\Omega \backslash K_{c}\right) \\
& \int|\bar{\partial} V|^{2} e^{-\varphi_{t}} d V=\int_{K_{c} \backslash K_{c} / 2}|\bar{\partial} V|^{2} e^{-\varphi-t(\Psi-c / 2)} d V \longrightarrow 0 \text { as } t \longrightarrow \infty
\end{aligned}
$$

It then follows from Theorem 1 that we find a function u_{t} such that $\bar{\partial} u_{t}=\bar{\partial} V$ and

$$
\int\left|u_{t}\right|^{2} e^{-\varphi_{t}-\Psi} d V \leq \int|\bar{\partial} V|^{2} e^{-\varphi_{t}} d V \longrightarrow 0
$$

In particular $\bar{\partial} u_{t}=0$ on $K_{c / 2}$ i.e. u_{t} is holomorphic there and

$$
\int_{K_{c / 2}}\left|u_{t}\right|^{2} d V \longrightarrow 0
$$

so $u_{t} \longrightarrow 0$ uniformly on K_{0}. Since $V=\left(V-u_{t}\right)+u_{t}$ and $\bar{\partial}\left(V-u_{t}\right)=0, U$ is uniformly approximated on K_{0} by entire functions $V-u_{t}$.

At this juncture we correct some errata in my previous note [1]. In Theorem 2, and $2^{\prime},[1]$, the assumption that $\varphi \in C^{2}(\Omega)$ is dropped. In the proof of Therem 2 , p.8, line 10 , "We may assume that $\varphi \in C^{2}(\Omega)$ " should be "must not". The case when φ is not in C^{2} is treated in this supplement.

References

[1] H. Kajimoto, A Note on L^{2} Estimates for the $\bar{\partial}$ Operator on a Stein manifold, Sci. Bull. Fac. Ed., Nagasaki Univ., No.43(1990), 5-10.
[2] K. Adachi and H. Kajimoto, On the extension of Lipschitz functions from boundaries of subvarieties to strongly pseudo-convex domains, to appear in Pacific J. Math.
[3] L.H. Ho, $\bar{\partial}$-problem on weakly q-convex domains, Math. Ann. 290 (1991), 318.
[4] L. Hörmander, An introduction to complex analysis in several complex variables, Van Northland, 1990.

