An Approximation Theorem on Some Convex Domains

Kenzō Adachi
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852, Japan
(Received Feb. 28, 1991)

Abstract

Let Ω be a convex domain with real analytic boundary which is a generalized type of the complex ellipsoid. Then the approximation theorem in the H^{p}-sense holds in Ω.

Introduction. Let G be a bounded strictly pseudoconvex domain in C^{n} with smooth boundary. Then Stout[3] proved that the approximation theorem in the H^{p}-sense, 1 $\leq \mathrm{p}<\infty$, holds in G. Beatrous[1] studied the approximation theorem in a weighted Bergman space.

In the present paper, we shall prove that the results of Stout are also true for some convex domain Ω with real analytic boundary. That is, the following theorem holds.

Theorem. If $\mathrm{f} \in \mathrm{H}^{\mathrm{P}}(\Omega), 1 \leq \mathrm{p}<\infty$, then there exists a sequence $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ in $\mathrm{O}(\bar{\Omega})$ that converges in the H^{p}-sense to f .

Finally we shall adopt the convention of denoting by c any positive constant which does not depend on the relevant parameters in the estimate.

1. Preliminaries. Let $\mathrm{s}_{\mathrm{i}}, 1 \leqq \mathrm{i} \leqq \mathrm{n}$, be real analytic functions in an interval [$\left.0, \mathrm{a}_{\mathrm{i}}\right]$ such that
(i) $s_{1}^{\prime}(t) \geqq 0, s_{1}^{\prime}(t)+2 t s_{1}^{\prime \prime}(t)>0$ for $0<t<a_{1}$
(ii) $\mathrm{s}_{\mathrm{i}}(0)=0, \mathrm{~s}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}\right)>1$.

Let Ω be a bounded domain in C^{n} of the type

$$
\Omega=\{z: \rho(z)<0\}
$$

where

$$
\rho(z)=\sum_{i=1}^{\mathrm{n}} \mathrm{~s}_{\mathrm{i}}\left(\left|z_{\mathrm{i}}\right|^{2}\right)-1 \text { for } z=\left(z_{1}, \ldots \ldots, z_{\mathrm{n}}\right) .
$$

For example,

$$
D^{(m)}=\left\{z: \sum_{i=1}^{n}\left|z_{i}\right|^{m_{i}}<1\right\}
$$

is one of the above domains, where mis are positive even integers. Bruna and Castillo [2] proved the following fundamental inequality.
(1) $\rho(z)-\rho(\zeta)+2 \operatorname{ReF}(\zeta, z) \geqq c\left(L_{\rho}(\zeta)(\zeta-z)^{2}+|\zeta-z|^{m}\right)(\zeta, z \in \bar{\Omega})$
where m is a positive integer,

$$
\mathrm{F}(\zeta, z)=\sum_{i=1}^{\mathrm{n}} \frac{\partial \rho}{\partial \zeta_{\mathrm{i}}}(\zeta)\left(\zeta_{\mathrm{i}}-z_{\mathrm{i}}\right)
$$

and

$$
L_{\rho}(\zeta)(\zeta-z)^{2}=\sum_{1, j=1}^{n} \frac{\partial^{2} \rho}{\partial \zeta_{i} \partial \bar{\zeta}_{j}}(\zeta)\left(\zeta_{i}-z_{i}\right)\left(\bar{\zeta}_{j}-\bar{z}_{j}\right) .
$$

We set

$$
H(\zeta, z)=\frac{(-1)^{\mathrm{n}(n-1) / 2}}{(\mathrm{n}-1)!} \frac{\partial \rho(\zeta) \wedge(\bar{\partial} \partial \rho(\zeta))^{\mathrm{n}-1}}{\mathrm{~F}(\zeta, z)^{\mathrm{n}}} .
$$

Let f^{*} be the boundary value of $f \in H^{p}(\Omega), 1 \leqq p<\infty$. Then $f^{*} \in L^{p}(\partial \Omega)$. Now we have (2) $\mathrm{f}(\mathrm{z})=\int_{\partial \Omega} \mathrm{f}^{*}(\zeta) \mathrm{H}(\zeta, z) \quad(z \in \Omega)$.

We define

$$
\alpha_{j}(\zeta)=\frac{\partial^{2} \rho(\zeta)}{\partial \zeta_{j} \partial \bar{\zeta}_{j}} .
$$

They by the fundamental inequality (1), we obtain

$$
\frac{a_{j}(\zeta)}{|\bar{F}(\zeta, z)|} \leqq \frac{c}{|\rho(z)|+\left|\zeta_{j}-z_{j}\right|^{2}+|\operatorname{ImF}(\zeta, z)|+|\zeta-z|^{m}} .
$$

Let γ be a C^{∞} function in $\bar{\Omega}$, and $\mathrm{g} \in \mathrm{L}^{\mathrm{P}}(\partial \Omega), 1 \leqq \mathrm{p}<\infty$.
We set

$$
\operatorname{Tg}(z)=\int_{\partial \Omega} g(\zeta)(\gamma(\zeta)-\gamma(z)) \mathrm{H}(\zeta, z)
$$

Then we have the following.
Proposition 1. If $\mathrm{g} \in \mathrm{L}^{\mathrm{p}}(\partial \Omega), 1 \leqq \mathrm{p}<\infty$, then

$$
\sup _{\mathrm{r}<} \int_{\rho=\mathrm{r}}|\operatorname{Tg}(z)|^{\mathrm{p}} \mathrm{~d} \sigma(z)<\infty,
$$

where $\mathrm{d} \sigma$ is the surface measure on $\{\rho=\mathrm{r}\}$.

Proof. First we prove that Tg is bounded, provided g is bounded. We set

$$
\begin{aligned}
& \rho(\mathrm{z})=\mathrm{t}_{1}, \operatorname{Im} \mathrm{~F}(\zeta, \mathrm{z})=\mathrm{t}_{2}, \\
& \mathrm{t}_{2 \mathrm{j}-1}+\mathrm{it}_{2 \mathrm{j}}=\zeta_{\mathrm{j}}-z_{\mathrm{j}}, \mathrm{j}=2, \ldots \ldots, \mathrm{n}, \\
& \mathrm{t}^{\prime}=\left(\mathrm{t}_{3}, \ldots \ldots, \mathrm{t}_{2 \mathrm{n}}\right), \mathrm{dt}^{\prime}=\mathrm{dt}_{3} \ldots \ldots \mathrm{dt}_{2 \mathrm{n}} .
\end{aligned}
$$

Then it holds that $|\zeta-z| \approx\left|t_{1}\right|+\left|t_{2}\right|+\left|t^{\prime}\right|$.
We denote by $\mathrm{b}(\zeta, z)$ each coefficient of $\mathrm{H}(\zeta, z)$. Then we have

$$
|\mathrm{Tg}(z)| \leqq \mathrm{c} \int_{\partial \Omega}|\mathrm{b}(\zeta, z)||\zeta-\mathrm{z}| \mathrm{d} \sigma(\zeta)
$$

$$
\begin{aligned}
& \leqq c \int_{\substack{\left|t_{2}\right| \leq \delta_{0} \\
| |^{\prime} \mid \leq \delta_{0}}} \frac{\left(t_{1}+\left|t_{2}\right|+\left|t^{\prime}\right|\right) \alpha_{1_{1}}(\zeta) \ldots \alpha_{i_{n-1}}(\zeta) \mathrm{dt}_{2} \mathrm{dt}^{\prime}}{|F(\zeta, z)|^{n}} \\
& \leqq c \int_{\substack{t_{2}\left|\leq \delta_{0}\\
\right| t^{\prime} \leq \leq \delta_{0}}} \frac{\left(t_{1}+\left|t_{2}\right|+\left|t^{\prime}\right|\right) d t_{2} d t^{\prime}}{\left(t_{1}+\left|t_{2}\right|+\left.\left|t^{\prime}\right|\right|^{m}\right) \prod_{j=2}^{n}\left(t_{1}+\left|t_{2}\right|+t_{2 j-1}^{2}+t_{2 j}^{2}+\left.\left|t^{\prime}\right|\right|^{m}\right)}
\end{aligned}
$$

We set $\mathrm{w}_{\mathrm{j}}=\mathrm{t}_{2 \mathrm{j}-1}+\mathrm{it}_{2 \mathrm{j}}$. We choose $\delta(0<\delta<1)$ so small that $\mathrm{nm} \delta<1$. We set

$$
P(t)=\left(t_{1}+\left|t_{2}\right|+\left|t^{\prime}\right|^{m}\right) \prod_{j=2}^{n}\left(t_{1}+\left|t_{2}\right|+\left|w_{j}\right|^{2}+\left|t^{\prime}\right|^{m}\right)
$$

Then we have

$$
\begin{aligned}
& \int_{\substack{\left|t_{2}\right| \leq \delta_{0} \\
\mid t^{\prime} \leq \delta_{0}}} \frac{\left|t^{\prime}\right|}{\mathrm{P}(\mathrm{t})} \mathrm{dt}_{2} \mathrm{dt}^{\prime} \\
& \leqq c \int_{\substack{t_{12}\left|\leq \leq \delta_{0}\\
\right| t^{\prime} \leq \delta o}} \frac{\left|t^{\prime}\right| d t_{2} d t^{\prime}}{\left|t_{2}\right|^{1-\delta}\left|t^{\prime}\right|^{\delta m} \prod_{j=2}^{n}\left|w_{j}\right|^{2(1-\delta)}\left|t^{\prime}\right|^{\delta m}} \\
& \leqq c \int_{\left|t_{2}\right| \leqq \delta_{0}}\left|\mathrm{t}_{2}\right|^{\delta-1} \mathrm{dt}_{2} \int_{\left|\mathrm{r}^{\prime}\right| \leqq \delta_{0}} \frac{\left|\mathrm{t}^{\prime}\right|^{1-n m \delta}{ }_{j=2}^{n}\left|\mathrm{w}_{\mathrm{j}}\right|^{2(1-\delta)}}{} \\
& \leqq c \prod_{j=2}^{n} \int_{1 \mathrm{t}^{\prime} 1 \leq \delta 0} \frac{\mathrm{dt}_{2 j-1} \mathrm{dt}_{2 j}}{\left|\mathrm{w}_{\mathrm{j}}\right|^{2(1-\delta)}}<\infty \text {. } \\
& \int_{\substack{\left|t_{1}\right| \leq \delta_{0} \\
\left|t^{\prime}\right| \leq \delta_{0}}} \frac{\mathrm{t}_{1}+\left|\mathrm{t}_{2}\right|}{\mathrm{P}(\mathrm{t})} \mathrm{dt}_{2} \mathrm{dt}^{\prime} \leqq \mathrm{c} \int_{\substack{\left|t_{2}\right| 2\left|\leq \delta_{0}\\
\right| t^{\prime} \leq \delta_{0}}} \frac{\mathrm{dt}_{2} \mathrm{dt}^{\prime}}{\prod_{j=2}^{n}\left|\mathrm{w}_{j}\right|^{2(1-\delta)}\left|\mathrm{t}_{2}\right|^{\delta}}
\end{aligned}
$$

Therefore $\operatorname{Tg}(z)$ is bounded. Next we prove proposition 1 when $p=1$. By the Fubini's theorem, we have

$$
\int_{\rho=\mathrm{r}}|\operatorname{Tg}(z)| \mathrm{d} \sigma(\mathrm{z}) \leqq \mathrm{c} \int_{\partial \Omega}|\mathrm{g}(\zeta)|\left(\int_{\rho=\mathrm{r}}|\mathrm{~b}(\zeta, z)||\zeta-z| \mathrm{d} \sigma(z)\right) \mathrm{d} \sigma(\zeta) .
$$

On the other hand we have

$$
\begin{aligned}
& \int_{\rho=\mathrm{r}}|\mathrm{~b}(\zeta, z)||\zeta-z| \mathrm{d} \sigma(z) \\
& \leqq c \int_{\substack{\left|t_{2}\right| \leq\left.\delta_{0}\right|_{1} \mid \leq \delta_{0}}} \frac{\left(\mathrm{r}+\left|\mathrm{t}_{2}\right|+\left|\mathrm{t}^{\prime}\right|\right) \mathrm{dt}_{2} \mathrm{dt}^{\prime}}{\left(\mathrm{r}+\left|\mathrm{t}_{2}\right|+\left|\mathrm{t}^{\prime}\right|^{m}\right) \prod_{j=2}^{n}\left(\mathrm{r}+\left|\mathrm{t}_{2}\right|+\left|\mathrm{w}_{\mathrm{j}}\right|^{2}+\left|\mathrm{t}^{\prime}\right|^{\mathrm{m}}\right)}
\end{aligned}
$$

By the estimate above, we have

$$
\sup _{r<0} \int_{\rho=\mathrm{r}}|\mathrm{~b}(\zeta, z)||\zeta-z| \mathrm{d} \sigma(z)<\infty
$$

Thus we obtain

$$
\sup _{\mathrm{r}<0} \int_{\rho=\mathrm{r}}|\mathrm{Tg}(z)| \mathrm{d} \sigma(z) \leqq \mathrm{c} \int_{\partial \Omega}|\lg (\zeta)| \mathrm{d} \sigma(\zeta) .
$$

For $\mathrm{r}<0$ near 0 , let $\Omega_{\mathrm{r}}=\{\mathrm{z}: \rho(z)<\mathrm{r}\}$, and let $\mathrm{T}^{(\mathrm{r})}: \mathrm{L}^{1}(\partial \Omega) \rightarrow \mathrm{C}\left(\partial \Omega_{\mathrm{r}}\right)$ be the linear operator
 r such that
$\left\|\mathrm{T}^{(\mathrm{r})} \mathrm{g}\right\|_{\mathrm{L} \times\left(\partial \Omega_{\mathrm{r}}\right)} \leqq \mathrm{c}\|\mathrm{g}\|_{\mathrm{L} \times(\partial \Omega)}$,
$\left\|\mathrm{T}^{(\mathrm{r})} \mathrm{g}\right\|_{\mathrm{L}^{\prime}\left(\partial \Omega_{\mathrm{r}}\right)} \leqq \mathrm{c}\|\mathrm{g}\|_{\mathrm{L}^{1}(\partial \Omega)}$.

The Riesz-Thorin theorem implies that if $g \in L^{p}(\partial \Omega), 1<p<\infty$, then $\left\|\mathrm{T}^{(\mathrm{r})} \mathrm{g}\right\|_{\mathrm{L}\left(\partial \Omega_{r}\right)} \leqq \mathrm{c}\|\mathrm{g}\|_{\mathrm{LP}(\partial \Omega)}$.
Therefore proposition 1 is proved.

Proposition 2. If $\mathrm{f} \in \mathrm{H}^{\mathrm{p}}(\Omega), 1 \leqq \mathrm{p}<\infty$, and if γ is a C^{∞} function on C^{n}, then function defined by

$$
\tilde{\mathrm{f}}(z)=\int_{\partial \Omega} \mathrm{f}^{*}(\zeta) \gamma(\zeta) \mathrm{H}(\zeta, z)
$$

belongs to $\mathrm{H}^{\mathrm{P}}(\Omega)$.
Proof. From the formula (2), we have

$$
\tilde{\mathrm{f}}(z)=\int_{\partial \Omega} \mathrm{f}^{*}(\zeta)(\gamma(\zeta)-\gamma(\mathrm{z})) \mathrm{H}(\zeta, \mathrm{z})+\gamma(\mathrm{z}) \mathrm{f}(\mathrm{z})
$$

We write in the form $\tilde{f}(z)=f_{1}(z)+f_{2}(z)$, say. Then in view of proposition 1 ,

$$
\left.\left(\int_{\partial \Omega_{\mathrm{r}}}|\hat{\mathrm{f}}(z)|^{\mathrm{p}} \mathrm{~d} \sigma(z)\right)^{\frac{1}{p}} \leqq\left(\int_{\partial \Omega_{\mathrm{r}}}\left|\mathrm{f}_{1}\right|^{\mathrm{p}} \mathrm{~d} \sigma(z)\right)^{\frac{1}{p}+(} \int_{\partial \Omega_{\mathrm{r}}}\left|\mathrm{f}_{2}\right|^{\mathrm{p}} \mathrm{~d} \sigma(z)\right)^{\frac{1}{p}} \leqq \mathrm{c} .
$$

Therefore $\tilde{f} \in H^{p}(\Omega)$, which completes the proof.
2. Proof of the theorem. The proof of the theorem can be obtained by following proofs of Stout[3]. But we sketch the proof briefly. Let $U=\left\{U_{1}, \ldots \ldots, U_{q}\right\}$ be an open cover of $\partial \Omega$ such that if $P_{j} \in \mathrm{U}_{\mathrm{j}}$ and ν_{j} is unit outward normal to $\partial \Omega$ at P_{j}, then $z-\varepsilon v_{\mathrm{j}}$ approach z nontangentially through Ω as $\varepsilon \rightarrow 0+$. Let $\left\{\gamma_{1}, \ldots \ldots, \gamma_{q}\right\}$ be a smooth partition of unity on $\partial \Omega$ that is subordinate to U, and let

$$
\mathrm{f}_{\mathrm{j}}(\mathrm{z})=\int_{\partial \Omega} \mathrm{f}^{*}(\zeta) \gamma_{\mathrm{j}}(\zeta) \mathrm{H}(\zeta, z) .
$$

Then, by proposition 2, we have $f_{j} \in H^{p}(\Omega)$. Moreover, f_{j} is holomorphic on a neighborhood of the compact set $\partial \Omega \mid U_{j}$ and satisfies $f=f_{1}+\ldots+f_{q}$. Define

$$
\mathrm{f}_{\mathrm{j}}^{(\varepsilon)}(z)=\mathrm{f}_{\mathrm{j}}\left(\mathrm{z}-\varepsilon v_{\mathrm{j}}\right) .
$$

Then it holds that $f_{j}^{(\varepsilon)} \in O(\bar{\Omega})$ and

$$
\lim _{\varepsilon \rightarrow 0} \int_{\partial \Omega}\left|\mathrm{f}_{\mathrm{j}}-\mathrm{f}_{\mathrm{j}}^{(\varepsilon)}\right|^{\mathrm{P}} \mathrm{~d} \sigma=0
$$

This completes the proof of the theorem.

References

[1] F. Beatrous, L^{p} estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
[2] J. Bruna and J. del Castillo, Hölder and L^{p} estimates for the ∂ equation in some convex domains with real analytic boundary, Math. Ann. 269 (1984), 527-539.
[3] E.L. Stout, H^{p}-functions in strictly pseudoconvex domains, Amer. J. Math. 98 (1976), 821-852.

