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                              Abstract 

   Let  (2 be a convex domain with real analytic boundary which is a generalized type 

of the complex ellipsoid. Then the approximation theorem in the  Hr-sense holds in  O. 

   Introduction. Let G be a bounded strictly pseudoconvex domain in  C" with smooth 

boundary. Then  Stout  [3] proved that the approximation theorem in the  Hr-sense, 1 

 �p<co, holds in G. Beatrous[1] studied the approximation theorem in a weighted 

Bergman space. 

   In the present paper, we shall prove that the results of Stout are also true for some 

convex domain  S2 with real analytic boundary. That is, the following theorem holds. 

   THEOREM. If f  E  HP(n),  1  p<  co, then there exists a sequence  {fn} in  0(C2) that 

converges in the  Hr-sense to f. 

   Finally we shall adopt the convention of denoting by c any positive constant which 

does not depend on the relevant parameters in the estimate. 

 1 Preliminaries. Let  si,  1  i  n, be real analytic functions in an interval [0,  ad 

such that 

 ( i)  s;(t)  0,  s;(t)+  2ts7(t)  >0 for  0  <  t< 

(ii)  si(0)  =  0,  si(ai)  >1. 

   Let (2 be a bounded domain in  C" of the type 

 r2={z:  p(z)< 

where 

    P(z)=isi(lzi  12)-1 for z=(zi,  ,  zn). 
For example,
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D(*)={z: ~ lzi l~'< 1} 

i=1 

is one of the above domains, where m;s are positive even integers. Bruna and Castillo 

[2] proved the following fundamental inequality. 

(1) p(z)-p(~+2ReF(~,z)~c(Lp(~)(~-z)2+ l~ z I~)(~ ze ~) 

where m is a positive integer, 

" ap F( ~, z) = ~ ( ~)( ~i - zi) 
i=1 a~i 

and 

" a2 p 
Lp(~)(~-z)2= ~ - (~ (~i-zi) (~i-~j). 

i, j=1 a~ia~j 

We set 
*(* l)12 H z ~ (~1) - ap(~A(aap(~)"~1 (~' )~ (n 1)f " ' - 

Let f* be the boundary value of fe HP(~), 1<=P<oo. Then f* e LP(a~). Now we have 

(2) f(z)=fsf*(~H(~, z) (ze~). 

We define 
a2 p( ~) 

a(i( ~) = - . 
a~a ~j 

They by the fundamental inequality (1), we obtain 

a:i( ~ c T~~)T<= p(z) + ~J-
' j 2+ IrnF(~,z) + ~- ' z~ 

Let y be a C" function in ~, and g e LP(a~), 1~p< oo. 

We set 
Tg(z) = fa9g( ~)( y( ~ - 7(z))H( ~, z) 

Then we have the following. 

PROPOSITION 1. If g e LP(a~), 1~p<oo, then 

s.u<~ fp =. ITg(z) IPdo(z)< oo, 

where do is the surface measure on {p=r}. 

PROOF. First we prove that Tg is bounded, provided g is bounded. We set 

p(z) = tl' Im F( ~, z) =t2, 

t2j-1 + it2j = ~i - zi, i = 2, ... ..., n, 

t'= (t3, "" ", t2*), dt'= dt3"""dt2*' 

Then it holds that l~-z l~ Itl l+ It2 l+ It' I. 

We denote by b(~, z) each coefficient of H(~, z). Then we have 

ITg(z) I ~cL Ib(~, z) I l~-z IdcT(~) 
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~ C id~L~~~~~~) . ~' a"~- I ( ~)dt2dt' j 

It21~60 ~~~n~~Trr t'l~ao 

~c (tl+ It2 1 + It' I)dt2dt' j 

It'l~60 " It'l~6' (tl+ It2 l+ It' l~)Jrl2(tl+ It2 1 +t~j-1+t2J+ It l~) 

We set w t2J l+it2j' We choose 6(0<6<1) so small that nm6<1. We set 

P(t)=(tl+ It2 I+ It' l~) fi(tl+ It2 I+ Iwi 12+ It' l~). 

j=2 

Then we have 

It' I . jlt'l~s' p t~dt2dt 
t' ~s' ( / 

~ c It' Idt2dt' j 

It'I~s' I Il alt'lamfi lw I - It'l 
- It'f~~' It 

i=2 

~ c It' Il-*~8dt' r It2 I~-Idt2 f t 
Jl t' I ~8' I ~&' fi lwj 12(1-6) 

j=2 

dt2j-Idt2i <cfi r <oo =' ' ~F~r J=2 Jl t I ~6' wi 2(1 &) ' 

irlLL dt2dt' ~ ~ _ dt2dt'~c It'l=a' " It'l<s' p t It'l=&' ( ) ~ ~ 
_ 

t'l~6' n2 Iwj 12(1-a) It2 18 

f -6 " f _ 2 2 . = dt2j _ Idt2 j It I dtn <=c < oo. J 2 l~'1~a'l~'r~ It'l=~* 

Therefore Tg(z) is bounded. Next we prove proposition I when p=1. By the Fubini's 

theorem, we have 

f =. ITg(z) Ido(z)~~c f Q Ig(~) l( f =, Ib(~, z) I I ~-z Ido(z))do(~). 

On the other hand we have 

f =. Ib(~, z) I I~ z Ido(z) 

~c (r+ It2 1 + It' Ddt2dt' j 

It'l~a' " ( + It l+ It' I~)H(r+ It2 l+ Iw' 12+ It' l~) 

It'i~&' r 2 J j=2 

By the estimate above, we have 

sup fp lb(~, z) I I ~-z Id6(z)< oo. 

*<0 p =* 

Thus we obtain 

sup fp [Tg(z) IdrT(z) ~c fa9 Ig(~) Ido(~). 

'<0 p =' 

For r< O near O, Iet ~'= {z: p(z) < r}, and let T(') : Ll(a~)~' C(a~') be the linear operator 

defined by T(')g=Tg las2" From the above proof, there is a constant c, independent of 

r such that 

llT(')g ll ~cllg llL"(a9) 
L"(ai2*) - ' 

IIT(')g llL,(ag2') ~cllg llL,(a9)' 
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The Riesz-Thorin theorem implies that if g e LP(a~), I <p< oo, then 

llT(')g llL"(as2.) ~ cllg llL"(a9). 

Therefore proposition I is proved. 

PROPOSITION 2. If fe HP(~), 1~p<oo, and if r is a C" functron on C then 

function defined by 

f~(z) = f ~?f *( ~ 7( ~)H( ~, z) 

belongs to HP(~). 

PROOF. From the formula (2), we have 

~(z) = fa 9f*( ~) ( 7( ~) - 7(z))H( ~, z) + 7(z)f(z). 

We write in the form 7(z)=fl(z)'~f2(z), say. Then in view of proposition 1, 

(f9 I~(z) I d(7(z))p<(f9 If I d6(z))~+(f9, If2 IPdo(z))p~c 

Therefore 7 e HP(~), which completes the proof 

2 . Proof of the theorem. The proof of the theorem can be obtained by following 

proofs of Stout[3] . But we sketch the proof briefly. Let U= {Ul, ......, Uq} be an open 

cover of a~ such that if Pj e Uj and ~/j is unit outward normal to a~ at Pi, then z - eL'i 

7q} be a smooth approach z nontangentially through ~ as e->0+. Let {71' """' 

partition of unity on a~ that is subordinate to U, and let 

f j(z) = f 9f *( ~) 7i( ~)H( ~, z). 

Then, by proposition 2, we have fj e HP(~). Moreover, fj is holomorphic on a neighbor-

hood of the compact set a~ IUj and satisfies f=fl+ "' +fq. Define 

f i ')(z) = f j(z - evj). 

Then it holds that f(') e O(~) and 

limfa ifj-fj(<) IPd0=0. 

'-o a9 

This completes the proof of the theorem. 
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