Hölder Estimates for the $\bar{\jmath}$-Problem in some Convex Domains with Real Analytic Boundary

Kenzō Adachi
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852, Japan
(Received Oct. 31, 1990)

Abstract

Let Ω be a convex domain which is a generalized type of the real ellipsoid. Then there is a solution for the $\bar{\partial}$-problem in Ω that satisfies the Hölder estimates.

1. Introduction. Let D be a real ellipsoid, i.e.,
$D=\left\{x+i y \in C^{N}: \sum_{1}^{N} x_{i}^{2 n_{i}}+\sum_{1}^{N} y_{i}^{2 m_{i}}<1\right\}$
where $n_{1}, \ldots \ldots, n_{N}, m_{1}, \ldots \ldots, m_{N}$ are positive integers. Then Diederich-Fornaess -Wiegerinck [3] obtained $\frac{1}{q}$ Hölder estimates for solutions of $\bar{\partial}$-problem in D, where $q=\max _{j} \min \left\{2 n_{j}, 2 m_{j}\right\}$. On the other hand, Range[4] obtained $\left(\frac{1}{p}-\varepsilon\right)$-Hölder estimates, $\varepsilon>0$, in the complex ellipsoid E, i.e.,

$$
\mathrm{E}=\left\{z: \sum_{1}^{N}\left|z_{j}\right|^{2 n_{j}}<1\right\}
$$

where $p=\max _{j} 2 n_{j}$. In the paper[3], it is shown that Range's solution satisfies $\frac{1}{\mathrm{p}}$-Hölder estimates. Further, Bruna-Castillo[2] generalized Range's results to more general convex domains. In the present paper, we shall prove the existence of a solution that satisfies Hölder estimates in the domain Ω which is a somewhat generalized type of the real ellipsoid.

Finally we shall adopt the convention of denoting by c any positive constant which does not depend on the relevant parameters in the estimate.

2. Preliminaries.

Let $\mathrm{s}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right), \mathrm{t}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots \ldots, \mathrm{~N}$, be real analytic functions on $[0, \mathrm{a}]$. We set

$$
\phi_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{s}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}^{2}\right), \phi_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}\right)=\mathrm{t}_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}}^{2}\right)
$$

Suppose that $\phi_{i}, \psi_{i}, i=1$, N , satisfy the following conditions (i), (ii), (iii);
(i) $\phi_{1}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right) \geqq 0, \phi_{1}^{\prime \prime}\left(\mathrm{y}_{\mathrm{i}}\right) \geqq 0$
(ii) $\phi_{i}(0)=\psi_{i}(0)=0, \phi_{i}(\mathrm{a})>1, \phi_{i}(\mathrm{a})>1$
(iii) $\phi_{1}^{\prime \prime}\left(\mathrm{x}_{\mathrm{i}}\right)+\phi_{1}^{\prime \prime}\left(\mathrm{y}_{\mathrm{i}}\right)>0$ for $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \neq(0,0)$.

We set

$$
\begin{aligned}
& \rho_{j}\left(z_{j}\right)=\phi_{j}\left(x_{j}\right)+\psi_{j}\left(y_{j}\right) \text { for } z_{j}=x_{j}+y_{j} \\
& \rho(z)=\sum_{j=1}^{N} \rho_{j}\left(z_{j}\right) \text { for } z=\left(z_{1}, \ldots \ldots, z_{N}\right),
\end{aligned}
$$

and

$$
\Omega=\{z: \rho(z)<0\} .
$$

For $\eta>0$ sufficiently small, we define

$$
\Omega_{\eta}=\{z: \rho(z)<\eta\} .
$$

Then Ω, Ω_{η} are convex domains in C^{N} with real analytic boundary. We define

$$
h_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}, \xi_{\mathrm{j}}\right)=\rho_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)-\rho_{\mathrm{j}}\left(\xi_{\mathrm{j}}\right)-\rho_{\mathrm{j}}^{\prime}\left(\xi_{\mathrm{j}}\right)\left(\mathrm{x}_{\mathrm{j}}-\xi_{\mathrm{j}}\right)
$$

Then we have

Lemma 1. There exists $\varepsilon>0$ such that

(1) $\mathrm{h}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}, \xi_{\mathrm{j}}\right)>0$ for $\left|\mathrm{x}_{\mathrm{j}}\right|<\varepsilon,\left|\xi_{\mathrm{j}}\right|<\varepsilon, \mathrm{x}_{\mathrm{j}} \neq \xi_{\mathrm{j}}$.

Proof. In some neighborhood of $0, \phi_{j}\left(\mathrm{x}_{\mathrm{j}}\right)$ can be written in the following form.

$$
\phi_{j}\left(x_{j}\right)=b_{i}^{(j)} x_{j}^{2 n_{j}}+b_{2}^{(j)} x_{j}^{2 n_{j}+2}+\ldots \ldots\left(b_{j}^{(j)}>0 ; n_{j} \geqq 1\right)
$$

Therefore we have for some $\varepsilon>0$,

$$
\phi_{j}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)>0, \phi_{\mathrm{j}}^{\prime \prime}\left(\mathrm{x}_{\mathrm{j}}\right)>0 \text { for } 0<\left|\mathrm{x}_{\mathrm{j}}\right|<\varepsilon .
$$

Thus we obtain the equality (1).
In view of lemma 2 of Adachi[1], we have the following.
Lemma 2. Let $\zeta_{\mathrm{j}}=\xi_{\mathrm{j}}+\mathrm{i} \eta_{\mathrm{j}}, \mathrm{z}_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}}+\mathrm{i}_{\mathrm{j}}$. Then there exist positive constant ε and c such that
(2) $\phi_{j}\left(\mathrm{x}_{\mathrm{j}}\right)-\phi_{\mathrm{j}}\left(\xi_{\mathrm{j}}\right)-\phi_{\mathrm{j}}^{\prime}\left(\xi_{\mathrm{j}}\right)\left(\mathrm{x}_{\mathrm{j}}-\xi_{\mathrm{j}}\right)$

$$
\geqq c\left[\phi_{\mathrm{j}}^{\prime \prime}\left(\xi_{\mathrm{j}}\right)\left(\mathrm{x}_{\mathrm{j}}-\xi_{\mathrm{j}}\right)^{2}+\left(\mathrm{x}_{\mathrm{j}}-\xi_{\mathrm{j}}\right)^{2 \mathrm{n}_{\mathrm{j}}}\right]
$$

(3) $\psi_{j}\left(\mathrm{y}_{\mathrm{j}}\right)-\psi_{\mathrm{j}}\left(\eta_{\mathrm{j}}\right)-\psi_{j}^{\prime}\left(\eta_{\mathrm{j}}\right)\left(\mathrm{y}_{\mathrm{j}}-\eta_{\mathrm{j}}\right)$

$$
\begin{aligned}
& \geqq c\left[\psi_{j}^{\prime \prime}\left(\eta_{\mathrm{j}}\right)\left(\mathrm{y}_{\mathrm{j}}-\eta_{\mathrm{j}}\right)^{2}+\left(\mathrm{y}_{\mathrm{j}}-\eta_{\mathrm{j}}\right)^{2 \mathrm{~m}_{\mathrm{i}}}\right] \\
& \quad \text { for }\left|\zeta_{\mathrm{j}}\right|<\varepsilon,\left|z_{j}\right|<\varepsilon .
\end{aligned}
$$

We set

$$
q=\max _{\mathrm{j}} \min \left\{2 \mathrm{n}_{\mathrm{j}}, 2 \mathrm{~m}_{\mathrm{j}}\right\} .
$$

Let $\mathrm{f}=\Sigma \mathrm{f}_{\nu}(\mathrm{z}) \mathrm{d} \bar{z}_{\nu}$ be a $(0,1)$-form on Ω, and u be a function on Ω. We define

$$
\|\mathrm{f}\|_{L^{\infty}(\Omega)}=\max _{\nu} \sup _{z \in \Omega}\left|\mathrm{f}_{\nu}(z)\right|,\|\mathrm{u}\|_{\alpha, \Omega}=\sup _{\substack{\mathrm{x}+\mathrm{y}^{2} \\ \mathrm{x}, \mathrm{y} \in \Omega}} \frac{|\mathrm{u}(\mathrm{x})-\mathrm{u}(\mathrm{y})|}{|\mathrm{x}-\mathrm{y}|^{a}}
$$

Then we shall prove the following.
Theorem. Let Ω and q be as above. Then there exists a constant c such that for every bounded $\bar{\partial}$-closed $(0,1)$ form f on Ω, there exists a $\frac{1}{\mathrm{q}}$-Hölder continuous function u on Ω such that

$$
\bar{\partial} \mathrm{u}=\mathrm{f} \text { and }\|\mathrm{u}\|_{\frac{1}{\mathrm{q}}}, \Omega \leqq \mathrm{c}\|\mathrm{f}\|_{\mathrm{L}_{\infty}(\Omega)} .
$$

3. Proof of the theorem. It is sufficient to prove the theorem for $\mathrm{f} \varepsilon \mathrm{C}_{(0,1)}^{1}(\bar{\Omega})$. We assume $m_{i} \leqq n_{i}$ for $i=1, \ldots \ldots ., N$. We set for $\zeta_{j}=\xi_{j}+i \eta_{j}, z_{j}=x_{j}+i y_{j}$, $\mathrm{p}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, Z_{\mathrm{j}}\right)=2 \frac{\partial \rho_{\mathrm{j}}}{\partial \zeta_{\mathrm{j}}}\left(\zeta_{)}\right)+\gamma\left[\left(\phi_{\mathrm{j}}^{\prime \prime}\left(\eta_{\mathrm{j}}\right)-\phi_{\mathrm{j}}^{\prime \prime}\left(\xi_{\mathrm{j}}\right)\right)\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right)+\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right)^{2 \mathrm{~m}_{\mathrm{j}}-1}\right]$
and

$$
\mathrm{F}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)=\mathrm{p}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right) .
$$

Taking account of the equalities (2), (3), if we choose $\gamma>0$ sufficiently small, we have (see Adachi[1]),

$$
\begin{aligned}
& (4) \quad-\rho_{\mathrm{j}}\left(\zeta_{\mathrm{j}}\right)+\rho_{\mathrm{j}}\left(z_{j}\right)+\operatorname{Re} F_{j}\left(\zeta_{\mathrm{j}}, z_{j}\right) \geqq \mathrm{c}\left[\left(\phi_{\mathrm{j}}^{\prime \prime}\left(\zeta_{j}\right)+\phi_{\mathrm{j}}^{\prime \prime}\left(\eta_{\mathrm{j}}\right)\right)\left|z_{j}-\zeta_{\mathrm{j}}\right|^{2}+\left|z_{j}-\zeta_{j}\right|^{2 m_{j}}\right] \\
& \quad \text { for }\left|\zeta_{j}\right|<\varepsilon,\left|z_{j}\right|<\varepsilon, j=1, \ldots \ldots, \mathrm{~N} .
\end{aligned}
$$

We set

$$
F(\zeta, z)=\sum_{j=1}^{N} F_{j}\left(\zeta_{j}, z_{j}\right) \text { for } \zeta=\left(\zeta_{1}, \ldots \ldots, \zeta_{N}\right), z=\left(z_{1}, \ldots \ldots, z_{N}\right) .
$$

Thus we obtain from the equalities (4),

$$
\text { (5) } \begin{aligned}
- & \rho(\zeta)+\rho(z)+\operatorname{ReF}(\zeta, z) \\
& \geqq c \sum_{j=1}^{N}\left\{\left(\phi_{j}^{\prime \prime}\left(\xi_{j}\right)+\phi_{j}^{\prime \prime}\left(\eta_{\mathrm{j}}\right)\right)\left|z_{j}-\zeta_{j}\right|^{2}+\left|z_{j}-\zeta_{\mathrm{j}}\right|^{2 m_{j}}\right\} \\
& \quad \text { for }|\zeta|<\varepsilon,|z|<\varepsilon .
\end{aligned}
$$

Since we cannot construct the support function $\Phi(\zeta, z)$ which depends holomorphically on z, we apply the same method as the proof of Bruna-Castillo[2]. We set

$$
\mathrm{G}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)=-2 \frac{\partial \rho_{\mathrm{j}}}{\partial \zeta_{\mathrm{j}}}\left(\zeta_{\mathrm{j}}\right)\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right)-\frac{\partial^{2} \rho_{\mathrm{j}}}{\partial \zeta_{\mathrm{j}}^{2}}\left(\zeta_{\mathrm{j}}\right)\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right)^{2}
$$

Then from the condition (iii), we have for some $\delta>0$,
(6) $-\rho_{\mathrm{j}}\left(\zeta_{\mathrm{j}}\right)+\rho_{\mathrm{j}}\left(z_{\mathrm{j}}\right)+\operatorname{Re} \mathrm{G}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right) \geqq \mathrm{c}\left|\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right|^{2}$

$$
\text { for }|\zeta| \geqq \frac{\varepsilon}{2},|z-\zeta|<\delta
$$

Let $\phi(\zeta)$ be a C^{∞} function in the complex plane with the properties that, $0 \leqq \phi \leqq 1$, $\phi(\zeta)=1$ for $|\zeta|<\frac{\varepsilon}{2}, \phi(\zeta)=0$ for $|\zeta| \geqq \frac{2 \varepsilon}{3}$. We define

$$
\tilde{F}_{j}\left(\zeta_{j}, z_{j}\right)=\phi\left(\zeta_{j}\right) F_{j}\left(\zeta_{j}, z_{j}\right)+\left(1-\phi\left(\zeta_{j}\right)\right) G_{j}\left(\zeta_{j}, z_{j}\right)
$$

and

$$
\tilde{P}_{j}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)=\phi\left(\zeta_{\mathrm{j}}\right) \mathrm{P}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, Z_{\mathrm{j}}\right)+\left(1-\phi\left(\zeta_{\mathrm{j}}\right)\right)\left(-2 \frac{\partial \rho_{\mathrm{j}}}{\partial \zeta_{\mathrm{j}}}\left(\zeta_{\mathrm{j}}\right)-\frac{\partial^{2} \rho_{\mathrm{j}}}{\partial \zeta_{\mathrm{j}}^{2}}\left(\zeta_{\mathrm{j}}\right)\left(\zeta_{\mathrm{j}}-z_{\mathrm{j}}\right)\right)
$$

Then we have
(7) $\quad \tilde{F}_{j}\left(\zeta_{j}, z_{j}\right)=\tilde{P}_{j}\left(\zeta_{j}, z_{j}\right)\left(\zeta_{j}-z_{j}\right)$,
(8) $-\rho_{\mathrm{j}}\left(\zeta_{\mathrm{j}}\right)+\rho_{\mathrm{j}}\left(z_{\mathrm{j}}\right)+\operatorname{Re} \tilde{\mathrm{F}}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)$

$$
\begin{aligned}
& \geqq c\left[\left(\phi_{j}^{\prime \prime}\left(\xi_{j}\right)+\psi_{j}^{\prime \prime}\left(\eta_{j}\right)\right)\left|z_{j}-\zeta_{j}\right|^{2}+\left|z_{j}-\zeta_{j}\right|^{2 m_{j}}\right] \\
& \quad \text { for }\left|\zeta_{j}-z_{j}\right|<\delta .
\end{aligned}
$$

We define

$$
\tilde{F}(\zeta, z)=\sum_{j=1}^{N} \tilde{F}_{j}\left(\zeta_{j}, z_{j}\right) \text { for }(\zeta, z) \varepsilon \Omega \times \Omega .
$$

Then it holds from (8) that

$$
\begin{aligned}
& -\rho(\zeta)+\rho(z)+\operatorname{Re} \tilde{F}(\zeta, z) \\
& \geqq c \sum_{j=1}^{N}\left\{\left(\phi_{j}^{\prime \prime}\left(\xi_{j}\right)+\psi_{j}^{\prime \prime}\left(\eta_{j}\right)\right)\left|z_{j}-\zeta_{j}\right|^{2}+\left|z_{j}-\zeta_{j}\right|^{2 m i}\right\} \\
& \quad \text { for }|\zeta-z|<\delta .
\end{aligned}
$$

To complete the Hölder estimates, we apply the elementary methods by Range[5] in order to construct the integral solution operator for the $\bar{\delta}$-problem. Choose $\chi \varepsilon \mathrm{C}^{\infty}\left(\mathrm{C}^{N}\right.$ $\left.\times \mathrm{C}^{N}\right)$ such that, $0 \leqq \chi \leqq 1, \chi(\zeta, z)=1$ for $|\zeta-z| \leqq \frac{\delta}{2}$, and $\chi(\zeta, z)=0$ for $|\zeta-z| \geqq \delta$. For $j=1, \ldots \ldots, N$, we define

$$
\mathrm{Q}_{\mathrm{j}}\left(\zeta_{\mathrm{j}}, z_{\mathrm{j}}\right)=\chi \tilde{\mathrm{P}}_{\mathrm{j}}\left(\dot{\zeta}_{\mathrm{j}}, z_{\mathrm{j}}\right)+(1-\chi)\left(\bar{\zeta}_{\mathrm{j}}-\bar{z}_{\mathrm{j}}\right)
$$

and

$$
\Phi(\zeta, z)=\sum_{j=1}^{N} Q_{j}\left(\zeta_{j}, z_{j}\right)\left(\zeta_{j}-z_{j}\right) .
$$

Then, from the equality (7), we have

$$
\Phi(\zeta, z)=\chi \tilde{\mathrm{F}}(\zeta, z)+(1-\chi)|\zeta-z|^{2} .
$$

There exist positive numbers η and c such that

$$
|\Phi(\zeta, z)| \geqq \mathrm{c} \text { for } \zeta \varepsilon \partial \Omega, \rho(z)<\eta,|\zeta-z| \geqq \frac{\delta}{2} .
$$

For $\mathrm{t} \varepsilon[0,1]$ and $\zeta \varepsilon \partial \Omega$, we set

$$
\mathrm{w}_{\mathrm{j}}(\zeta, \mathrm{z}, \mathrm{t})=\mathrm{t} \frac{\mathrm{Q}_{\mathrm{j}}(\zeta, \mathrm{z})}{\Phi(\zeta, z)}+(1-\mathrm{t}) \frac{\bar{\zeta}_{j}-\bar{z}_{\mathrm{j}}}{|\zeta-\mathrm{z}|^{2}}
$$

and

$$
W=\sum_{j=1}^{N} W_{j} d \zeta_{j} .
$$

Then $w_{j}(\zeta, z, t)$ is well defined for

$$
z \varepsilon \Omega \cup\left\{z: \rho(z) \leqq \eta,|z-\zeta| \geqq \frac{\delta}{2}\right\} .
$$

For $\mathrm{q}=0,1$, and $\mathrm{f} \varepsilon \mathrm{C}_{(0,1)}^{1}(\bar{\Omega})$, define

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{q}}(\mathrm{~W})=(2 \pi \mathrm{i})^{-\mathrm{N}}\binom{\mathrm{~N}-1}{\mathrm{q}} \mathrm{~W} \wedge\left(\bar{\partial}_{\xi, \lambda} \mathrm{W}\right)^{\mathrm{N}-\mathrm{q}-1} \wedge\left(\bar{\partial}_{2} \mathrm{~W}\right)^{\mathrm{q}}, \\
& \mathrm{~T}_{0} \mathrm{f}=\int_{\partial \Omega \times\{0,1]} \mathrm{f} \wedge \mathrm{~K}_{0}(\mathrm{~W})-\int_{\Omega \times\{0\}} \mathrm{f} \wedge \mathrm{~K}_{0}(\mathrm{~W}), \\
& \mathrm{Ef}=\int_{\partial \Omega \times\{1\}} \mathrm{f} \wedge \mathrm{~K}_{1}(\mathrm{~W}) .
\end{aligned}
$$

Then we have
(9) $\mathrm{f}=\mathrm{Ef}+\bar{\partial} \mathrm{T}_{\mathrm{o}} \mathrm{f}$.

Moreover Ef has the following properties (see Range[5]).
(a) Ef is C^{∞} on $\bar{\Omega}_{\eta}$
(b) $\|E f\|_{L^{\infty}\left(\Omega_{7}\right)} \leqq c\|f\|_{L^{\circ}(\Omega)}$.

For $(\zeta, z) \varepsilon \partial \Omega_{\eta} \times \Omega_{\eta}$, we define

$$
\Gamma(\zeta, z)=\sum_{k=1}^{N} \frac{\partial \rho}{\partial \zeta_{k}}(\zeta)\left(\zeta_{k}-z_{k}\right) .
$$

Then the convexity of Ω_{η} implies

$$
\Gamma(\zeta, z) \neq 0 \text { for }(\zeta, z) \varepsilon \partial \Omega_{\eta} \times \Omega_{\eta}
$$

Define

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{j}}(\zeta, z)=\frac{\partial \rho}{\partial \zeta_{\mathrm{j}}}(\zeta), \\
& \mathrm{u}_{\mathrm{j}}(\zeta, z, \lambda)=\lambda \frac{\mathrm{S}_{\mathrm{j}}(\zeta, z)}{\Gamma(\zeta, z)}+(1-\lambda) \frac{\bar{\zeta}_{\mathrm{j}}-\bar{z}_{\mathrm{j}}}{\zeta-\left.\right|^{2}} \\
& \quad \text { for }(\zeta, z, \lambda) \varepsilon \partial \Omega_{\eta} \times \Omega_{\eta} \times[0,1], \\
& \mathrm{U}= \\
& \sum_{j=1}^{N} \mathrm{u}_{\mathrm{j}} \mathrm{~d} \zeta_{\mathrm{j}} .
\end{aligned}
$$

Since S_{j} is holomorphic in z, we have $\mathrm{K}_{1}(\mathrm{u})=0$. We define for $\mathrm{g} \varepsilon \mathrm{C}_{(0,1)}^{1}\left(\bar{\Omega}_{\eta}\right)$,
(10) $\mathrm{T}_{n} \mathrm{~g}=\int_{\partial \Omega_{\eta} \times[0,1]} \mathrm{g} \wedge \mathrm{K}_{0}(\mathrm{U})-\int_{\partial \Omega_{\eta} \times(0)} \mathrm{g} \wedge \mathrm{K}_{0}(\mathrm{U})$

Then we have $\bar{\partial}\left(\mathrm{T}_{n} \mathrm{~g}\right)=\mathrm{g}$ provided $\mathrm{g} \in \mathrm{C}_{(0,1)}^{1}\left(\bar{\Omega}_{\eta}\right), \bar{\partial} \mathrm{g}=0$. We define the operator (11) $\mathrm{S}=\mathrm{T}_{n} \mathrm{E}+\mathrm{T}_{0}$.

Then, for $\mathrm{f} \varepsilon \mathrm{C}_{(0,1)}^{1}(\bar{\Omega})$ with $\bar{\partial} \mathrm{f}=0$, we have from the equality (9), (11),
(12) $\bar{\partial}(\mathrm{Sf})=\mathrm{f}$.

Since the first integral in (10) is C^{∞} in Ω_{η} and the kernel of the second integral is the Bochner-Martinelli kernel, we have
(13) $\left\|\mathrm{T}_{\eta}(\mathrm{Ef})\right\|_{\phi, \Omega} \leqq \mathrm{c}(\alpha)\|\mathrm{Ef}\|_{L^{\infty}\left(\Omega_{\eta}\right)}$ for $\alpha<1$.

Therefore Sf is the desired solution of the theorem if we can prove the following inequality.
(14) $\left\|\mathrm{T}_{0 \mathrm{f}}\right\|_{\frac{1}{\mathrm{q}}, \Omega} \leqq \mathrm{C}\|\mathrm{f}\|_{\mathrm{L}^{\infty}(\Omega)}$.

Since the denominator of $K_{0}(W)$ does not vanish for $\zeta \neq z$, it is sufficient to estimate the integral near the diagonal. If $|\zeta-z|<\frac{\delta}{2}$, then $\mathrm{Q}_{\mathrm{i}}(\zeta, z)=\tilde{P}_{\mathrm{i}}(\zeta, z)$. Therefore if we take

$$
L_{j}=\frac{\partial \rho}{\partial \bar{z}_{N}} \frac{\partial}{\partial \bar{z}_{j}}-\frac{\partial \rho}{\partial \bar{z}_{j}} \frac{\partial}{\partial \bar{z}_{N}} \quad(j=1, \ldots \ldots, N-1)
$$

as a base for the $(0,1)$ tangential vector fields on $\partial \Omega \cap \mathrm{B}, \mathrm{B}$ being a small ball with center on $\partial \Omega$, we have for $i, j=1, \ldots \ldots, N-1$,

$$
\begin{aligned}
& \left|\mathrm{L}_{\mathrm{j}} \mathrm{Q}_{\mathrm{i}}\right| \leqq \delta_{\mathrm{ji}} \mathrm{c}\left[\phi_{\mathrm{i}}^{\prime \prime}\left(\xi_{\mathrm{i}}\right)+\phi_{\mathrm{i}}^{\prime \prime}\left(\eta_{\mathrm{i}}\right)+\left(\left|\psi_{1}^{\prime \prime \prime}\left(\eta_{\mathrm{i}}\right)\right|+\left|\phi_{1}^{\prime \prime \prime}\left(\xi_{\mathrm{i}}\right)\right|\right)\left|z_{\mathrm{i}}-\zeta_{\mathrm{i}}\right|\right) \\
& \left|\mathrm{L}_{\mathrm{j}} \mathrm{Q}_{\mathrm{N}}\right| \leqq \mathrm{c}\left(\left|\xi_{\mathrm{j}}\right|^{2 \mathrm{n}_{\mathrm{j}}-1}+\left|\eta_{\mathrm{j}}\right|^{2 \mathrm{~m}_{\mathrm{j}}-1}\right) .
\end{aligned}
$$

By the estimate in lemma 4 of Adachi[1], we can prove that $T_{\text {of }}$ satisfies the inequality
(14), which completes the proof of the theorem.

References

[1] K. Adachi, Extending H^{p} functions from subvarieties to real ellipsoids, Trans. Amer. Math. Soc., 317 (1990), 351-359.
[2] J. Bruna and J. Castillo, Holder and L ${ }^{\text {p}}$-estimates for the ∂ equation in some convex domains with realanalytic boundary, Math. Ann., 269 (1984), 527-539.
[3] K. Diederich, J.E. Fornaess and J. Wiegerinck, Sharp Hölder estimates for $\bar{\partial}$ on ellipsoids, Manuscripta Math., 56 (1986), 399-417.
[4] R.M. Range, Hölder estimates for $\bar{\partial} u=\mathrm{f}$ on weakly pseudoconvex domains, Proc. Int. Conf. Cortona, Italy 1976-77, (1978), 247-267.
[5] R.M. Range, An elementary integral solution operator for the Cauchy-Riemann equations on pseudoconvex domains in C^{n}, Trans. Amer. Math. Soc., 274(1982), 809-816.

