Continuation of Bounded Holomorphic Functions on Stein Manifolds

Kenzō Adachi

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852, Japan (Received Feb. 28, 1990)

Abstract

Let D be a weakly pseudoconvex domain in a submanifold in C^n and V be a subvariety in D which intersects ∂D transversally. If ∂V consists of strongly pseudoconvex boundary points of D, then any bounded holomorphic function in V can be extended to a bounded holomorphic function in D.

Introduction. Let Δ be an open subset in some complex manifold. We denote by $H^{\infty}(\Delta)$ the spece of all bounded holomorphic functions in Δ . We also denote by $A(\Delta)$ the space of all holomorphic functions in Δ which are continuous on $\overline{\Delta}$. Let G be a bounded strongly pseudoconvex domain in C^n with C²-boundary and \widetilde{M} be a submanifold in a neighborhood of \overline{G} which intersects ∂G transversally. Let $M = \widetilde{M} \cap G$. Then Henkin [3] proved the following.

THEOREM A. There exists a continuous linear operator $E: H^{\infty}(M) \to H^{\infty}(G)$ satisfying $Ef|_{M} = f$. Moreover $Ef \in A(G)$ if $f \in A(M)$.

Let D be a bounded pseudoconvex domain in \mathbb{C}^n with \mathbb{C}^2 -boundary. Let $\tilde{\mathbb{V}}$ be a subvariety in a neighborhood $\tilde{\mathbb{D}}$ of $\tilde{\mathbb{D}}$ which intersects $\partial \mathbb{D}$ transversally. Let $\mathbb{V} \doteq \tilde{\mathbb{V}}$ $\cap \mathbb{D}$ and $\mathbb{D} = \{z \in \tilde{\mathbb{D}} : \rho(z) < 0\}$. Suppose that $\tilde{\mathbb{V}}$ is written in the form

 $\tilde{V} = \{ z \varepsilon \tilde{D} : h_1(z) = \ldots = h_p(z) = 0 \}$

where $h_1,...,h_p$ are holomorphic functions in \tilde{D} such that $\partial h_1 \wedge ... \wedge \partial h_p \wedge \partial \rho \neq 0$ on ∂V . In this setting the author [1] proved the following.

THEOREM B. If ∂V consists of strongly pseudoconvex boundary points of D, then there exists a continuous linear operator $E: H^{\infty}(V) \rightarrow H^{\infty}(D)$ satisfying $Ef|_{v} = f$. Moreover $Ef \in A(D)$ provided $f \in A(V)$.

In the present paper we shall extend the above theorems A, B, to domains on Stein

manifolds by using the technique of Rossi [4].

1. The lemma concerning the holomorphic retraction. In this section we prove the lemma which is obtained by examining closely the proof of Rossi [4].

DEFINITION. Let D be a relatively compact domain on a Stein manifold X. We say that D is weakly pseudoconvex (resp. strongly pseudoconvex) if there is a neighborhood \tilde{D} of \bar{D} , a C² plurisubharmonic (resp. C² strongly plurisubharmonic) function ρ on \tilde{D} such that

- (a) $d\rho \neq 0$ on ∂D
- (b) $D = \{z \in \tilde{D} : \rho(z) < 0\}.$

Let $\Phi(z)$ be an entire function in \mathbb{C}^n . Let $X = \{z \in \mathbb{C}^n : \Phi(z) = 0\}$. Suppose that $\Phi(z)$ satisfies $d\Phi \neq 0$ on X. Then X is a Stein manifold. Now we are going to prove the following.

LEMMA. Let D be a weakly pseudoconvex domain in X. Then there exists a pseudoconvex domain Ω in Cⁿ with C²-boundary such that

- (a) $\Omega \cap X = D$
- (b) $\partial \Omega$ intersects X transversally in ∂D
- (C) $\pi: \overline{\Omega} \to \overline{D}$

(d) If K is a compact subset of ∂D and consists of strongly pseudoconvex boundary points of D, then Ω is strongly pseudoconvex at each point of K.

Rossi [4] proved that if X is an arbitrary closed submanifold in C^n and D is a strongly pseudoconvex domain in X, then the result of the lemma is valid.

PROOF OF THE LEMMA. Let $\rho(z)$ be a defining function of D. By Docquier-Grauert [2], there exist a neighborhood U of \overline{D} in \mathbb{C}^n and a holomorphic map $\pi : U \rightarrow U \cap X$ such that $\pi(p) = p$ for $p \in U \cap X$, and for each $x \in U$, $\pi^{-1}\pi(x)$ intersects X transversally. By the assumption on Φ , there exist $\varepsilon > 0$ such that $d|\Phi(z)|^2 \neq 0$ for $z \epsilon \{z \in U : 0 < |\Phi(z)|^2 < \varepsilon\}$. Let $m = \sup\{|\rho(z)| : z \in \overline{D}\}$. Let A be a positive number such that $A\varepsilon > m$. We define

 $\sigma = \rho \circ \pi + A |\Phi|^2, N = \{ z \varepsilon U : |\Phi(z)|^2 < \varepsilon \},$ and $\Omega = \{ z \varepsilon N : \sigma(z) < 0 \}.$

Then Ω satisfies the following.

(i) $\overline{\Omega}$ is compact in N, (ii) $\Omega \cap X = D$, (iii) $\overline{\Omega} \cap X = \overline{D}$, (iv) $d\sigma(z) \neq 0$ for $z \in \partial \Omega$, (v) \widetilde{V} intersects $\partial \Omega$ transversally, (vi) Ω is a pseudoconvex domain in Cⁿ, (vii) If $x \in \partial D$ is a strongly pseudoconvex boundary points of D, then x is also a strongly pseudoconvex boundary points of Ω . Therefore the lemma is proved.

2. Extension theorems of Stein manifolds. We begin by extending the result of Henkin [3] to Stein manifolds.

THEOREM 1. Let G be a strongly pseudoconvex domain in a Stein manifold X. Let \tilde{M} be a submanifold in a neighborhood \tilde{G} of \bar{G} which intersects ∂G transversally. Let $M = \tilde{M} \cap G$. Then there exists a continuous linear operator $E : H^{\infty}(M) \rightarrow H^{\infty}(G)$ such that $Ef|_{M} = f$. Moreover $Ef \in A(G)$ provided $f \in A(M)$.

PROOF. We may take X to be a closed submanifold of \mathbb{C}^n by the embeading theorem of Stein manifolds. Let $\pi: \overline{\Omega} \to \overline{D}$ be as in the lemma. Since \widetilde{M} intersects $\partial \Omega$ transversally, by applying theorem A, there exists an extension operator $E: H^{\infty}$ $(M) \to H^{\infty}(\Omega)$ such that $Ef|_{M} = f$. Moreover the operator E satisfies $Ef \varepsilon A(\Omega)$. $f \to Ef|_{D}$ satisfies the required properties. Therefore theorem 1 is proved.

Let Φ and X be as in the preceding section. Let D be a weakly pseudoconvex domian in X. Say $D = \{z : \rho(z) < 0\}$. Let \tilde{V} be a subvariety in a neighborhood \tilde{D} of \bar{D} in X. Suppose that \tilde{V} intersects ∂D transversally and is written in the form $\tilde{V} = \{z \in \tilde{D} : h_1(z) = ... = h_p(z) = 0\}$

where $h_1,...,h_p$ are holomorphic functions in \tilde{D} and satisfy $\partial h_1 \wedge ... \wedge \partial h_p \wedge \partial \rho \neq 0$ on $\tilde{V} \cap \partial D$. Let $V = \tilde{V} \cap D$. Then we have the following.

THEOREM 2. If ∂V consists of strongly pseudoconvex boundary points of D, there exists a continuous linear operator $E: H^{\infty}(V) \rightarrow H^{\infty}(D)$ satisfying $Ef|_{v} = f$. Moreover $Ef \in A(D)$ provided $f \in A(V)$.

PROOF. From the lemma, there exists a pseudoconvex domain E in Cⁿ such that (i) $E \cap X = D$, (ii) ∂E intersects X transversally in ∂D , (iii) ∂V consists of strongly pseudoconvex boundary points of E. In view of (ii), \tilde{V} intersects ∂E transversally. Therefore by applying theorem B, there exists a continuous linear operator E : $H^{\infty}(V) \rightarrow H^{\infty}(E)$ satisfying $Ef|_{V} = f$. Clearly Ef belongs to $H^{\infty}(D)$ and Ef ε A(D) if f ε A(V), which completes the proof of theorem 2.

References

- [1] K. Adachi, Continuation of bounded holomorphic functions from certain subvarieties to weakly pseudoconvex domains, Pacific J. Math., 130 (1987), 1-8.
- [2] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
- [3] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general

Kenzō Adachi

position to strictly pseudoconvex domains, Izv. Akad. Nauk SSSR, 36 (1972), 540-567.

[4] H. Rossi, A Docquier-Grauert lemma for strongly pseudoconvex domains in complex manifolds, Rocky Mountain J. Math., 6 (1976), 171-176.