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Abstract

MrBayes is model-based phylogenetic inference tool using Bayesian statistics. However, model-based assessment of
phylogenetic trees adds to the computational burden of tree-searching, and so poses significant computational challenges.
Graphics Processing Units (GPUs) have been proposed as high performance, low cost acceleration platforms and several
parallelized versions of the Metropolis Coupled Markov Chain Mote Carlo (MC3) algorithm in MrBayes have been presented
that can run on GPUs. However, some bottlenecks decrease the efficiency of these implementations. To address these
bottlenecks, we propose a tight GPU MC3 (tgMC3) algorithm. tgMC3 implements a different architecture from the one-to-
one acceleration architecture employed in previously proposed methods. It merges multiply discrete GPU kernels according
to the data dependency and hence decreases the number of kernels launched and the complexity of data transfer. We
implemented tgMC3 and made performance comparisons with an earlier proposed algorithm, nMC3, and also with MrBayes
MC3 under serial and multiply concurrent CPU processes. All of the methods were benchmarked on the same computing
node from DEGIMA. Experiments indicate that the tgMC3 method outstrips nMC3 (v1.0) with speedup factors from 2.1 to
2.76. In addition, tgMC3 outperforms the serial MrBayes MC3 by a factor of 6 to 306 when using a single GTX480 card,
whereas a speedup factor of around 516 can be achieved by using two GTX 480 cards on relatively long sequences.
Moreover, tgMC3 was compared with MrBayes accelerated by BEAGLE, and achieved speedup factors from 3.7 to 5.76. The
reported performance improvement of tgMC3 is significant and appears to scale well with increasing dataset sizes. In
addition, the strategy proposed in tgMC3 could benefit the acceleration of other Bayesian-based phylogenetic analysis
methods using GPUs.

Citation: Ling C, Hamada T, Bai J, Li X, Chesters D, et al. (2013) MrBayes tgMC3: A Tight GPU Implementation of MrBayes. PLoS ONE 8(4): e60667. doi:10.1371/
journal.pone.0060667

Editor: Darren P. Martin, Institute of Infectious Disease and Molecular Medicine, South Africa

Received December 6, 2012; Accepted March 1, 2013; Published April 9, 2013

Copyright: � 2013 Ling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: c.ling@giat.ac.cn (CL); wfshi.tsmc@gmail.com (WS)

Introduction

In biology, the evolutionary relationships between groups of

organisms or families of related genes and proteins can be inferred

from the pattern of states at homologous characters, and

represented as a tree structure. A number of algorithms have

been developed to construct phylogenetic trees, such as Neigh-

bour-Joining (NJ) [1] or Maximum Parsimony [2], whereas

methods that implement a model of sequence evolution, such as

Maximum Likelihood [3] and Bayesian inference [4], are more

computationally demanding [5]. MrBayes [6] is a popular tool

that implements the Metropolis Coupled Markov Chain Monte

Carlo (MC3) sampling method for Bayesian inference of phylog-

eny. Since each chain in MC3 runs more or less independently,

MrBayes is well suited to parallel implementation on multi-core

systems as an approach to reduce computation time.

The programmable Graphics Processing Units (GPUs) have

become very powerful many-core processors, driven by demand

from various graphical, computational and engineering applica-

tions. Current GPUs can attain a peak float-point throughput of

up to 3250 GFlop/s per chip, which is higher than that of the

fastest CPU by a factor of over 10. Moreover, recent GPUs

support Compute Unified Device Architecture (CUDA) [7], which

allows users to develop a wide range of applications under a high-

level, general-purpose programming model. Such a general-

purpose GPU computing (GPGPU) model significantly improves

development productivity as it follows the traditional software

programming flow. CUDA is the programming environment for

NVIDIA GPUs. CUDA C is an extension of C programming

language and follows an SPMD execution model with a thread as

the basic unit for parallel computations. Tens of thousands of

threads can be launched concurrently, all executing the same

program, but on different data packets. Threads in the same block

can share data using fast on-chip memory (shared memory).

Threads in different blocks can only share data using relatively

slow on-board memory (global memory) on a GPU card. During

execution, every 32 threads in a block (a warp) follow exactly the

same instruction schedule.

To increase efficiency of GPU implementation of MrBayes

MC3, we propose a new implementation architecture, tgMC3. A

performance comparison between tgMC3, BEAGLE-based

MrBayes MC3 [8], nMC3 (v1.0) [9], nMC3 (v2.1, the latest

version so far), as well as the multi-core parallel MrBayes MC3, is

performed.
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Approach

Overview of MrBayes MC3

MrBayes MC3 is a computer package for the Bayesian inference

of phylogeny, which has a command-line interface and performs

phylogenetic analysis under various evolutionary models. For the

purpose of a standardized evaluation against other implementa-

tions, we used MrBayes v3.1.2 (unless stated otherwise) under a

commonly applied model which is set using the following

command:

nst~6; rates~invgamma;

A detailed description of MrBayes MC3 settings can be found

elsewhere [10], but briefly, this model allows gamma distributed

variation in the rate of substitution over sites [11], with six

substitution rate parameters, four base frequencies, and a

proportion of invariable positions. Both the sampling frequency

and the diagnosis frequency were set to 1000. The total number of

generations for each dataset in our experiments can be found in

section 4. For each dataset, two independent runs were performed,

each with four Markov chains (three heated chains and one cold

chain). Multiple chains can be used for fast mixing [12]. For

individual run, each chain is operated one by one as depicted in

Figure 1. We let TN denote the initial tree of chain N, T
j
1,T

j
2:::T

j
N

denote the new group of trees modified from T
j{1
1 ,T

j{1
2 :::Tj{1

N by

proposed moves in iteration j, s
j
Ndenote the seed value of chain N

in iteration j and Q denote whether the move is aborted.

For each chain, we let M denote the mutation matrix, Dz denote

the DNA data at site z, Lz denote the number of site z, Pj denote

the proportion of invariable sites and Bj
m denote the base

frequency of character state in DNA sequence in iteration j,

where mM{A, C, G, T}. The computation order of nodes in

MrBayes MC3 uses the recursive algorithm [3]. In each procedure,

the parameter Q needs to be verified in advance.

Since Markov chains in MrBayes MC3 are scheduled serially,

and the run-time of each tree can be considered identical, the

elapsed time can be regarded proportional to the number of

chains. In addition, the number of unobserved tree nodes in an

arbitrary tree topology and the computations of conditional

likelihood probabilities of non-terminal node in each chain can be

deemed as constant and performed independently.

Overview of Parallel MrBayes MC3 on GPUs
To our knowledge, the first parallel version of MrBayes MC3

was gMC3 [13,14]. Since the transfer of the transition probability

(tip) matrix between CPU and GPU is very frequently, it meets a

large transfer overhead. Based on the gMC3, an improved parallel

version of MrBayes MC3 was proposed (nMC3 [9]). In the initial

version of nMC3, the authors decreased the frequency of tip matrix

uploading and made both the CPU and GPU perform compu-

tations in parallel. This results in improved overlap in CPU-GPU

data communication. In addition, site likelihood computation was

performed in parallel by GPUs, which gives a delay in GPU to

CPU transfer and decreases the amount of data transferred.

Further speedups were achieved as a result of these modifications.

In subsequent versions of nMC3, the authors optimized the stream

order and thread parallelization strategy for large datasets.

However, these various nMC3 implementations all used traditional

one-to-one acceleration architecture, thus giving complex kernel

launches. For the purpose of avoiding redundant computations

and data transfer, we propose a new improved architecture for

applying MrBayes MC3 to GPUs. Furthermore, Ayres and

colleagues implemented an open API library, BEAGLE, to speed

up likelihood calculations [8]. The BEAGLE library is now

supported in MrBayes (v3.2.1), and is also included in this article

for the performance comparisons.

Design and Implementation

1. The MrBayes nMC3 Method
The two most time-consuming aspects of MrBayes MC3 are the

calculation of tip, and the calculation of clp. Since the implemen-

tation of the former on GPUs is identical in both tgMC3 and

nMC3, we will not introduce this process here (for more details, see

[9]).

Whereas GPU computation of clp under nMC3 is as follows. We

assume that the transition probability matrix for each non-

terminal node has already been calculated and transferred to GPU

memory. As in Figure 2, the implementation architecture of nMC3

can be grouped into five modules according to the associated

procedures in MrBayes MC3, with each module implemented by a

single kernel which is labeled in a rectangle by dashed line. We will

first introduce the essential function of each kernel, and then give

the potentially redundant procedures in nMC3 by discussing the

data relevance among the kernels.

kernel1. Transform tip matrix of non-terminal nodes and pad

the transformed matrix (prelike matrix) with new tip for ambiguity

data in parallel by GPU threads. Not all non-terminal nodes need

Figure 1. The flow diagram of MrBayes MC3. The gray box
indicates the detailed operation of each procedure, and the arrow
indicates the required parameters in a given procedure.
doi:10.1371/journal.pone.0060667.g001
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to perform the procedure, as some of them may not have terminal

node.
kernel2. Load tip or prelike matrix from global memory to

shared memory, in addition to terminal states or clp of its

descendents, and distribute the computation of clp among threads.

The computed clp values need to be saved in global memory

iteratively until reaching the root node.

kernel3. If the parameter scalarsSet of the node is activated,

the lnscaler value of each site belonging to the node should be

subtracted by old scaler, with kernel 3 used to implement this

function. In the mean time, the CPU process flips the scalersSet bit

alongside the GPU.
kernel4. For a scaler node, MrBayes MC3 stipulates the

maximum clp within each residue as the scaler of the residue, which

is achieved simply by traversing all clp. The new scaler is then

divided by all clp of that residue. The kernel employs multiple

threads to traverse the corresponding clp and scale them in

parallel, which requires reloading clp from global memory.

Similarly, alongside the GPU, the CPU process flips the scalersSet

bit.
kernel5. The kernel computes the clp of a root node, which

requires the following new parameters: proportion of invariable

sites, state frequencies and the weight of each site.

Kernels 3 and 4 may not occur in some non-terminal nodes.

Therefore, if the node is non-scaling, only kernels 1, 2 and 5 will

be implemented for a root node, and 1, 2 will be implemented for

down nodes. Otherwise, the number of kernels for root and down

node is 5 and 4, respectively. Besides, kernels 3 and 4 are two

independent procedures. The bit switch operation of the former

will not affect the computation of the latter, and the updated value

only affects the computation of the new tree sample in the next

generation. Therefore, kernels 3 and 4 can be merged into one

module and the bit switch operations can be stacked and

implemented together by CPU processes after these modules.

Moreover, new parameters in kernel 5 can be calculated in

advance and merged in kernel 2 for computing likelihoods of the

root node.

2. An Improved GPU Implementation of MrBayes MC3

Since the computation of clp can be regarded as a pipeline of

several sequential steps, we put forward a tight GPU implemen-

tation of MrBayes MC3, tgMC3. The pseudo-code description of

the clp computation for an arbitrary down node can be found in

Figure 3. The single tight kernel integrates all kernel functions in

earlier applications on GPUs. In tgMC3, we do not use global

kernels to perform each function, but use device function in the

kernel to process each step. The concise and explicit architecture

of tgMC3 is illustrated in Figure 4. The major advantages of

tgMC3 over nMC3 are listed below:

Figure 2. GPU implementation architecture in nMC3. Each module is implemented by a single kernel which is labeled in a rectangle by dashed
line.
doi:10.1371/journal.pone.0060667.g002
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N By analyzing data dependencies in MrBayes MC3, tgMC3

integrates multiple functions into a single tight GPU kernel,

instead of using several discrete kernels, hence decreasing the

complexity of kernel launching. Just one kernel is sufficient for

likelihood computation of both down and root nodes. This is

particularly useful for large datasets having a relatively small

amount of unique sites.

N In step 1, for terminal nodes, nMC3 loads tip and the transition

probability for ambiguity data initially into a prelike matrix, and

then re-load the prelike matrix from global memory into shared

memory for likelihoods computation. However, this is a

redundant process on GPUs, which we have improved here.

A direct multi-threaded data transfer of tip matrices is

proposed in the tgMC3 method.

N For scaling nodes, the nMC3 method accelerates steps 3 and 4

by two individual GPU kernels. However, the scaled data and

scaler are closely connected with conditional likelihoods from

step 2. Therefore, combined with the original down node

types, a scaler shortcut is calculated by scaler parameters for

the purpose of integrating these steps without adding branches,

and the final number of down node kernel type is expanded

from 4 to 16. These modifications improve the scaling node

procedures on GPUs.

2.1 A direct read of transition probability matrix. In

MrBayes MC3, in the jth generation of Markov chain i, on the

newly proposed tree topology T, for non-terminal node k, site l,

discrete rate r and nucleotide m, where mM{A, C, G, T}, before

computing a conditional likelihood probability clpm = clP(T, k, l, r,

m) of the node, the corresponding transition probability matrices

tip for terminal node descendents should be transformed. Since

each non-terminal node has two child nodes which are either

terminal or non-terminal, non-terminal node can be classified into

4 groups. MrBayes MC3 assesses the combinations of the node,

and labels the node as one of down_0, down_1, down_2 or down_3.

The computation of clp is then distributed to the relevant pass.

In the nMC3 algorithm, the procedure described above is split

into two sections by first accelerating the transformation of tip

matrices to prelike matrices, and then accelerates the computation

of clp. These accelerations are implemented by two separate

kernels. Assuming that both the left and right children of a node

are terminal, i.e. the node belongs to down_3, tipL and tipR matrices

need to be transformed into prelikeL and prelikeR matrices. For this,

the implementation requires two global memory reads and writes.

Since prelike matrices are in use in the computation of clp, one

additional global memory read is needed.

In the tgMC3 algorithm, to compute clp = CLP(T, k, l, r, m) over

all l, r and m at non-terminal node k on the newly proposed tree

topology T, nodes will be distributed into the relevant down_x, xM
{0, 1, 2, 3} after assessment. The implementation is performed by

transforming the tipL and tipR matrices to prelikeL and prelikeR

matrices in shared memory directly for the computation of clp,

instead of loading from global memory repeatedly. Hence, the

whole procedure is performed within the same kernel on GPUs.

2.2 One tight kernel versus multiple discrete

kernels. Some non-terminal nodes are specified to be scaled

after the clp of these nodes are computed. In MrBayes MC3,

scaling is performed either by subtracting the value of the old

scaler or adding the new scaler to the lnScaler variable, or both

steps are performed successively. These steps are followed by two

bit switch operations. These operations actually block the scaling

being performed in the same kernel on GPUs in the nMC3

algorithm. As explained in section 3.1, these steps are independent

and the bit switch operation of step 1 will not affect the input

variables of step 2. Hence they can be grouped and performed

after the two steps. Experimental results confirm that the accuracy

of the results is not changed by porting these codes (Table S1).

This principle is adopted for our tgMC3 algorithm. Since the two

steps may not occur on the same node, simply including these steps

in the kernel will result in redundant branch judgments for GPU

threads. Therefore, we develop a shortcut list helping the CPU

decide which tight GPU kernel to be launched (Table 1), where

the values of S and N represent whether scalersSet or scalerNode is

activated. T denotes the shortcut for each type of down node, i.e. a

secondary classification of down nodes. With these improvements,

a union implementation scheme is established so that the whole

implementation architecture employs just one tight GPU kernel.

This not only decreases the CPU-GPU communication overhead,

but also affords new implementation architecture to avoid

redundant data transfers. In particular, the tight GPU kernel is

extremely useful for clp, as shared memory and registers can be

fully utilized, instead of repeatedly loading the data from global

memory.

Table 2 presents the data transfer complexity of the major

parameters in the GPU-based implementation of MrBayes MC3,

where the read and write operations on global memory are

separately counted. Since the types of node and the scaler state are

indeterminate, it is not feasible to calculate a completely accurate

value. Hence, the statistics of data transfers are established in the

case that each non-terminal node is composed of a terminal node

and a non-terminal node descendent, and that all nodes are

scaling-node. If the size per transfer is normalized to 1, transfer

complexity can be decreased from O(4(N-2)+5) to O(2(N-2)+2) for

clp, from O(3(N-2)+3) to O(N-1) for tip and from O(4(N-2)+4) to

O(2(N-2)+2) for lnscaler. However, we will not claim that the

improved method can achieve such improvements in practice, and

the aim of such a comparison is primarily to highlight the

differences between tgMC3 and nMC3.

2.3 Intra-task parallelization versus Inter-task

parallelization. The proposed algorithm is implemented by

two task parallelization strategies. The difference between these

strategies is whether the computation of an individual nucleotide

residue is performed by a single thread or by multiple threads. An

intra-task parallelization strategy is normally used to process

relatively short nucleotide sequences in order to utilize GPU

resources to the greatest extent, whereas shared memory is

commonly exploited for faster accession of data. The inter-task

parallelization method is normally used to process relatively long

Figure 3. Pseudo code of computing the conditional likelihood
probability of down nodes implemented in tgMC3.
doi:10.1371/journal.pone.0060667.g003
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nucleotide sequence, as the overlap of memory access is higher,

which also reduces costs on dispatching threads. In the specified

evolutionary model, 16 elements for each nucleotide need to be

calculated in total, which is separated into 4 sets, each with four

values corresponding to the A, C, G, T nucleotide states. In nMC3

(v1.0), this is performed by a single parallelization strategy, the so-

called Intra-task parallelization method, where the computation of

each nucleotide residue is completed by 16 threads. In nMC3

(v2.1), the situation appears quite complicated, as the module for

computing clp (kernel 2) is performed by mixed parallelization

strategies (Figure 2), where the inter-task parallelization strategy is

directed against long sequences and the intra-task parallelization

strategy is directed against short sequences. The module for scaling

nodes (kernel 4) is performed simply using the inter-task

parallelization strategy. The parallelization strategy used in version

1.0 is suitable for short sequences, since if there are only a few

nucleotide residues, increased thread allocation makes efficient use

of GPU resources, although there is cost in terms of coordination

among threads. The fact that version 1.0 adopts a reduction

method to find the maximum clp value of each nucleotide residue

in module 4 results in 50% of threads working in an idle state

during each iteration. Nonetheless, Intra-task parallelization is still

more preferred than Inter-task parallelization on the implemen-

tation of relatively short sequences. For version 2.1, module 4 can

be performed by two parallelization strategies, which we improved

here. Therefore, tgMC3 contains two parallelization strategies,

and a threshold value regarding to the choice of parallelization

strategy is empirically defined before running.

Experiments

1. Experimental Environments
All experiments were benchmarked on the same computing

node of DEGIMA (Destination for Gpu intensive MAchine) [15],

built by one of the authors of this article (TH) for high

performance computing research in Nagasaki University. The

process technology of the CPU used in [9] is less current than the

GTX 480 card, and hence we used a relatively advanced processor

based on 32 nm process technology for equivalent comparisons.

The details of experimental environments are listed in Table 3.

The gcc version 4.4.4 with the –O3 and –Wall flag was used for

compiling MrBayes MC3, as well as the CPU-side code of tgMC3,

nMC3 and BEAGLE-based MrBayes. The GPU-side code of

tgMC3, nMC3 and BEAGLE-based MrBayes MC3 were compiled

using CUDA Toolkit, version 4.2. CUDA_INSTALL_PATH and

SDK_INSTALL_PATH should be imported to environment before

Figure 4. The proposed tight GPU (tgMC3) implementation architecture.
doi:10.1371/journal.pone.0060667.g004

Table 1. Shortcut list of the tight GPU kernel.

S N T down_0 down_1 down_2 down_3

0 0 0 down_0_0 down_1_0 down_2_0 down_3_0

0 1 1 down_0_1 down_1_1 down_2_1 down_3_1

1 0 2 down_0_2 down_1_2 down_2_2 down_3_2

1 1 3 down_0_3 down_1_3 down_2_3 down_3_3

doi:10.1371/journal.pone.0060667.t001

Table 2. The complexity of data transfers in nMC3 and
tgMC3*.

nMC3 tgMC3

down node root down node root

clpRg 2(N-2)Ld(clp) 2Ld(clp) (N-2)Ld(clp) Ld(clp)

clprg 2(N-2)Ld(clp) 3Ld(clp) (N-2)Ld(clp) Ld(clp)

tipRg (N-2)d(tip) d(tip) 0 0

tiprg 2(N-2)d(tip) 2d(tip) (N-2)d(tip) d(tip)

lsRg 2(N-2)Ld(f) 2Ld(f) (N-2)Ld(f) Ld(f)

lsrg 2(N-2)Ld(f) 2Ld(f) (N-2)Ld(f) Ld(f)

*N, number of taxa;
N-2, number of down node;
L, number of sites, i.e. length of compressed DNA sequences;
g, GPU global memory, Rg denotes write operation on g and rg denotes read
operation on g;
ls, lnScaler;
d(x), memory space used to store x. Particularly, d(f) is memory space used to
store a float variable, so d(f) is 4 bytes. A residue in d(clp) is 16d(f), and d(tip) is
64d(f) bytes.
doi:10.1371/journal.pone.0060667.t002
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making the codes, more details can be found in the user manual of

tgMC3 (File S1).

2. Datasets
The nucleotide datasets used in experiments can be placed into

three categories according to their unique sites: short (datasets 1

and 2), medium (dataset 3) and long sequence length (datasets 4

and 5). We briefly list them below, and the details of these datasets

can be found in [16–18].

Dataset 1: A group of Trichophora 18S rDNA including 26

taxa.

Dataset 2: A group of Euhemiptera 18S rDNA including 33

taxa.

Dataset 3: A group of metazoan 18S rDNA including 111 taxa.

Dataset 4: A group of eukaryotic 18S rDNA including 234 taxa.

Dataset 5: A group of 23 - 28S rDNA from Bacteria, Archaea,

and Eukaryota including 288 taxa.

3. Results
3.1 Run-time. The run-time gives elapsed time for the whole

analysis. Table 4 presents the run-time required to analyze the

datasets on the platforms described in Section 4.2 with 1) serial

MrBayes MC3 using one CPU process, 2) MrBayes MC3 using

two concurrent CPU processes, 3) BEAGLE-based MrBayes MC3

using one GTX 480 card, 4) nMC3 (v1.0 and 2.1) using one GTX

480 card, 5) tgMC3 using either one GPU or two GPUs. From

Table 4 we can see that tgMC3 takes the least time in our test.

3.2 Speedup. We made the following definitions:

1) The b-m speedup is the number of times faster that BEAGLE-

based MrBayes MC3 using one CPU process and one GPU

device performs when compared with MrBayes MC3

implemented by either one CPU process or two concurrent

CPU processes.

2) The n-m speedup is the number of times faster that the nMC3

(v2.1) algorithm using one CPU process and one GPU device

performs when compared with MrBayes MC3 implemented

by either one CPU process or two concurrent CPU processes.

3) The t-m speedup is the number of times faster that the tgMC3

algorithm using one CPU process and one GPU device

performs when compared with MrBayes MC3 implemented

by either one CPU process or two concurrent CPU processes.

Table 5 presents the speedups, computed from the data in

Table 4. The tgMC3 method outperforms the serial MrBayes MC3

by a factor between 6 to 30 times when using a single GTX480

card, whereas a speedup factor around 51 times can be achieved

by using two GTX 480 cards on relatively long sequences

(Table 4). The number of times faster between each GPU-based

MrBayes MC3 can also be computed from Table 4. Experiments

indicate that the tgMC3 method outstrips nMC3 (v1.0) with

speedup factors from 2.1 to 2.7 times and nMC3 (v2.1) from 1.2 to

1.7 times. Moreover, tgMC3 outperforms the BEAGLE-lib based

method from 3.7 to 5.7 times. For all the five test datasets, tgMC3

always achieves the greatest speedup factor when using one core or

two cores (Table 5).
3.3 Scalability. The sequence length discussed in this section

is the number of unique sites per dataset, as opposed to the

complete length of sequences, since only unique sites affect the

Table 3. The experimental environments of host and device in the proposed method.

Host GPU device

Operating system: Fedora Release 12
CPU: Intel i7-3820 (4 cores, 3.6 GHz)
Memory: 16 GB

Graphic Driver: NVIDIA Driver version 4.2
GPU: NVIDIA GeForce GTX 480 (15632 cores, 1.4 GHz)
GPU memory: 1.5 GB

doi:10.1371/journal.pone.0060667.t003

Table 4. Dataset information.

Dataset
No.of
taxa

Alignment
length (nt)

No.of
generations Run-time(s)

MrBayes
1 core

MrBayes
2 cores

BEAGLE
with
1 GPU

nMC3(1.0)
with
1 GPU

nMC3 (2.1)
with
1 GPU

tgMC3

with
1 GPU

tgMC3

with
2 GPUs

1 26 1546 1,000,000 2485 1285 2338 1117 724 412 244

2 37 2238 1,000,000 8729 4529 3502 1653 1035 749 420

3 111 1506 500,000 10155 5178 3265 1870 1194 765 436

4 234 1790 100,000 7979 4050 1490 858 545 402 228

5 288 3386 100,000 17984 9101 2662 1492 734 610 352

doi:10.1371/journal.pone.0060667.t004

Table 5. Speedup comparisons to MrBayes MC3.

Dataset b-m speedup n-m speedup t-m speedup

1-core 2-cores 1-core 2-cores 1-core 2-cores

1 1.06 0.55 3.43 1.77 6.03 3.12

2 2.49 1.29 8.43 4.44 11.65 6.05

3 3.11 1.59 8.51 4.34 13.43 6.77

4 5.36 2.72 14.64 7.43 19.85 10.07

5 6.76 3.42 24.5 12.4 29.5 14.92

doi:10.1371/journal.pone.0060667.t005

tgMC3: A Tight GPU Implementation of MrBayes
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computation complexity in MrBayes MC3. We normalized the

speedup comparisons of the GPU-based implementation of

MrBayes MC3 to serial MrBayes MC3. Figures 5 and 6 illustrate

the speedup comparisons between these methods when using the

first N taxa of datasets 4 and 5. These datasets are composed of

relatively long sequences, with 1790 nt and 3386 nt. From these

figures, it is apparent that the speedup factors of tgMC3 and

nMC3 (v2.1) show better scalability than the remaining methods.

In particular, tgMC3 runs at least 1.2 times faster than nMC3

(v2.1). Figure 7 illustrates the speedup of a group of simulated

datasets composed of 60 taxa, which were generated with Seq-Gen

version 1.3.2 [19], consisting L unique sites. In each case, we run

serial MrBayes MC3, BEAGLE, nMC3 (v1.0), nMC3 (v2.1) and

tgMC3 for 10000 generations. The speedup of each GPU-version

of MrBayes MC3 is normalized by the run-time of serial MrBayes

MC3. Likewise, tgMC3 outperforms other methods and shows the

best scalability as sequence length is increased (Figure 7).

Discussion

While there have been a number of versions of MrBayes MC3

accelerated with GPUs, several bottlenecks still exist. Firstly, data

transfer can impose a substantial overhead in GPU-CPU

heterogeneous computing for MrBayes MC3 if calculation times

are not well synchronized. Secondly, the adoption of several

CUDA kernels to accelerate each sub-function in MrBayes MC3

can be inefficient. The use of multiple CUDA kernels may reduce

speedup as there are redundant global memory accesses between

kernels. Thirdly, the size of the input data influences the degree of

acceleration, particularly with insufficient computational load

reducing the efficiency of GPU hardware usage. Previous methods

fail to take these into account.

To address these bottlenecks and further accelerate MrBayes

MC3 on GPUs, we propose a tight GPU MC3 (tgMC3) algorithm

with three key features; i) the algorithm applies a tight GPU kernel

to avoid data transfer overhead between CPU and GPU; ii) it

encapsulates conditional likelihood probability estimation in a

single CUDA kernel, also reducing the run-time consumed on

GPU device memory access; iii) it employs two different task

parallelization strategies to make full use of GPU hardware

resources. Thus, tgMC3 can outperform the serial MrBayes MC3

by considerable speedup factors on empirical and simulated

datasets.

Figures 5 and 6 illustrate that the outperformance of tgMC3

compared to other acceleration methods with datasets of various

size, although the scalability is similar to nMC3 (v2.1) for long

sequences. tgMC3 and nMC3 (v2.1) also show similar scalability

with the increase of alignment length (Figure 7). The reason is

associated with the task parallelization strategies. In tgMC3, two

different task parallelization strategies are used to accelerate the

computation of clp. Intra-task parallelization is used for short and

medium alignments, with the aim to fully utilize GPU resources by

allocating as many threads as possible, whereas inter-task

parallelization is performed for long sequences to avoid redundant

computation. An alignment length threshold is defined to select

amongst these two strategies. However, in nMC3 (v2.1), only inter-

task parallelization is adopted. As datasets 4 (results shown in

Figure 5) and 5 (results shown in Figure 6) are composed of long

sequences, both tgMC3 and nMC3 (v2.1) apply the same strategy,

inter-task parallelization. This accounts for similar performance

with increasing alignment length.

As can be seen from Table 4, the performance of the BEAGLE-

based (1 GPU) implementation and MrBayes MC3 (1 CPU core) is

very similar when using dataset 1. Performance differs for all

remaining datasets, with BEAGLE running in a much shorter

time. While a GPU has many cores, the frequency of each core is

relatively low. In cases where there is a small amount of data for

computation, there is no advantage for parallel computing

compared with serial computing. In addition, CPU-GPU data

transfer could be a big overhead. If there is not enough data within

each CUDA kernel or the data transfer frequency is continual,

GPU-based heterogeneous computing is not a good option.

BEAGLE-based implementation only parallelizes the computation

of conditional likelihood probability, while the chains are still

scheduled serially. Therefore, it cannot achieve much speedup on

datasets with short alignments as there is insufficient computation

load. When the alignment length increases, higher speedup can be

achieved by BEAGLE. This also can be seen from the

performance of other GPU-based implementations.

The experimental results show that the proposed tgMC3

algorithm achieves increasing speedup as the number of unique

sites increases, compared with serial GPU-based MrBayes MC3.

In addition, tgMC3 outperforms other GPU-based MrBayes MC3,

by a speedup factor of 3.7–5.7 times to the BEAGLE-based

method, and 2.1–2.7 times to the nMC3 algorithm (v1.0).

Moreover, the tgMC3 algorithm achieves a speedup factor of up

to 1.7 times compared with nMC3 (v2.1). A minimum speedup

factor of 1.2 times can be achieved when computing sufficiently

long sequences.

Conclusions
We presented an accelerated implementation of MrBayes MC3

by employing an encapsulated GPU-based implementation

architecture, tgMC3. Besides the acceleration strategies imple-

mented in nMC3, the proposed tgMC3 further reduces the run-

time of MrBayes MC3 by decreasing data transfer overhead, and

accelerating the computation of conditional likelihood probabil-

ities of sampling trees by two different task parallelization

strategies. A number of empirical and simulated datasets are used

to assess the speedup and scalability of the algorithm. The

experiments indicate that one GTX 480 card can improve the

performance of serial MrBayes MC3 running on a start-of-the-art

Figure 5. Speedup comparisons between BEAGLE, nMC3(v1.0),
nMC3(v2.1) and tgMC3 on the first N taxa in dataset 4, where NM
{40, 60, …, 220}.
doi:10.1371/journal.pone.0060667.g005
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general purpose processor by a factor of 6 for datasets with short

sequences, and up to roughly 30 for datasets with long sequences.

Moreover, tgMC3 outperforms the nMC3 algorithm (v1.0) from

2.1 to 2.7 times and the latest version (v2.1) from 1.2 to 1.7 times

depending on the alignment length. In addition, tgMC3 shows

similar scalability to the nMC3 algorithm (v2.1), with increasing

data size and alignment length. To conclude, tgMC3 achieves

better acceleration than previously proposed GPU-based optimi-

zation strategies of MrBayes MC3. In particular, our method could

benefit the acceleration of the latest version of MrBayes (v3.2.1)

and other Bayesian-based methods for phylogenetic analysis.

Figure 6. Speedup comparisons between, BEAGLE, nMC3(v1.0), nMC3(v2.1) and tgMC3 on the first N taxa in dataset 5, where NM {40,
60, …, 220}.
doi:10.1371/journal.pone.0060667.g006

Figure 7. Speedup comparisons between BEAGLE, nMC3(v1.0), nMC3(v2.1) and tgMC3 on a group of 60 taxa, consisting L unique
sites, where LM {1000, 2000, …, 10000}.
doi:10.1371/journal.pone.0060667.g007
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