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Abstract— Physical meaning of the instantaneous space vector of 
salient permanent magnet synchronous machine is studied. For 
this purpose, we define a real physical space vectors. The 
electromagnetic torque is derived by current and flux densities. A 
space vector diagram in a transient state is derived and discussed.  
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I.  INTRODUCTION 

In order to save energy, the applications of the interior 
permanent magnet synchronous machine (IPMSM) are 
expanding. Since the IPMSM does not have rotor winding, the 
copper loss is reduced than that of induction motor, and high 
power factor operation is possible. Furthermore, the application 
of IPMSM  to the wind generation are studied actively. 

Mathematical modeling and analysis of IPMSM using 
instantaneous space vector have been done in many literatures 
[1] [2] [4] [5]. However, the physical meaning of the 
instantaneous space vector of IPMSM is not completely 
considered including the transient operations.  Especially the 
relation between the space vector of flux linkage and actual 
flux density is not clear in salient pole machine.  Furthermore, 
the electromagnetic torque is derived by using the derivative of 
electromagnetic energy for salient pole machine in many 
literatures. 

In order to solve these problems, we define the “Real 
Physical Space Vector” of current density, MMF, flux density 
and induced EMF. These vectors are useful to understand the 
conventional instantaneous space vectors physically.  

II. REAL PHYSICAL SPACE VECTOR 

- Current, MMF and Flux Density- 
 

Figure 1 shows a model of IPMSM and definition of 
positive direction of variables. n  is a normal unit vector of  
plane of winding to compute a flux. Therefore n  is positive 
direction of the flux.  We assume that all windings are 
sinusoidally distributed windings as shown in Fig.2 [2][3]. 
When the phase currents flow, their current distributions per 
angle are defined as 
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In order to consider the saliency, equivalent air-gap length 
is assumed as [3] 
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where, 1 20, 0    

The  permeability of permanent magnet is considered to be 
equal to that of air. Therefore, the equivalent air-gap length is 
long in d-axis direction. Applying Ampere’s law around the 
path of Fig.3 and neglecting the field intensity of steel, the 
magnetic field intensity Ha caused by ia in the air-gap is 
obtained as follows: 
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Figure 1.  Model of IPMSM and definition of positive direction 
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Figure 2.  Sinusoidally distributed winding. 
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The positive direction of H is assumed from the rotor to the 
stator. The magnetomotive force (MMF) of  ia which is used at 
point  is computed as 
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Similarly the MMFs of ib and ic are obtained respectively as 
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The flux densities by phase currents are  derived respectively 
as follows: 
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By substituting (4) into (9)-(11) , the following equations 
are obtained [3] 
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Figure 3.  Current distribution. 
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Figure 4.  Dimensions. 
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When ia + ib + ic = 0, the currents are expressed even in 
transient state as follows: 
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Our theory is developed by these expressions  of  (15) - (17). 

The current density distribution caused by 3-phases 
currents is obtained by (1)-(3), (15)-(17) as 
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The MMF distribution caused by 3-phases currents is obtained 
by (6)-(8), (15)-(17) as 
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The air-gap flux density by phase currents and permanent 
magnet is  derived by (12)-(14), (15)-(17) as 
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The distributions of current density, MMF and flux density can 
be observed in the motor.  So we define “real physical space 
vector” of MMF (19) as  
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The direction angle i(t) of real physical space vector shows the 
angle a in which the MMF (19) becomes maximum. Similarly, 
the real physical space vector of current density (18) is 
expressed as 
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In the case of flux density (20) , we can obtain the physical 
space vector by neglecting the third harmonic component as 
follows: 
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III. INSTANTANEOUS SPACE VECTOR 

-Flux Linkage and Electromagnetic Torque- 

 

In general, the instantaneous space vector is defined as [1] 
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where,  f means phase voltage v, phase current i and flux 
linkage . It is well known that the space vector can be also 
expressed by using  stationary reference frame  quantities. 
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By assuming  fa + fb + fc = 0 , we have 
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Equations of currents (15) - (17) are derived by (27) - (29) 
respectively. By using (15) - (17), the space vector of current is 
obtained as 
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It means that the real physical space vector of MMF is 
proportional to the current space vector. It is noted that the 

actual distributions of current density is expressed by its real 
physical space vector (22).  It is convenient that the relation 
can be explained by a right-handed screw rule.  From (26), and 
(27)-(29),  the rule is valid as shown in Fig.5. For example, 
when f  = 0,  fa is maximum even in transient state. In order to 
satisfy the right-handed screw rule, the positive direction of 
current should be defined as shown Fig.1.  
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Figure 5.  Physical meaning of instantaneous space vector. 

 

    The flux linkage of a-phase winding is obtained from (20) as 
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             ls  : leakage inductance 

By (32), it is recognized that the third harmonics component 
(3) of the flux density (20) does not affect the instantaneous 
flux linkage because of sinusoidally distributed winding. The 
b- and c-phases flux linkages  are obtained similarly as 
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The instantaneous space vector of the flux linkage can be 
obtained by (24),  (32), (36) and (37) as follows: 
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By using (30), the flux linkage is expressed as 
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By comparing (23) and (38), we could prove theoretically that 
the instantaneous space vector of the flux linkage except 
leakage is proportional to the real physical space vector of flux 
density when the third harmonic component of flux density are 
neglected. That is, 
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    The electromagnetic torque in the direction of rotation can 
be computed using Fleming’s left-hand rule as  
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By (40), it is recognized that the third harmonics component 
(3) of the flux density (20) does not affect the instantaneous 
torque because of sinusoidally distributed winding. This 
relation was also obtained in the case of the flux linkage. 
Therefore, the third harmonics component will not affect the 
terminal voltages and phase currents. Therefore, it is 
reasonable to discuss the flux density by (23). In this case, s  
(except leakage inductance term) is proportional to flux density 

abcB . So the instantaneous torque (41) is understood by 
Fleming’s left-hand rule.  

 

IV. SPACE VECTOR DIAGRAM 

-Induced Electromotive Force and Terminal Voltage- 

 

     The voltage equation of IPMSM is expressed as 
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By using space vector, (42) becomes 
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The space vector in a d-q  reference frame is defined as  
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Therefore, the current space vector is expressed as 
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The Park’s equation in d-q axis is obtained by using (44) in 
(47) and eliminating rje  . 

   The induced electromotive force(EMF) by the permanent 
magnet ( the positive direction is defined in Fig.1) is obtained 
as 
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The space vector of induced EMF is expressed as 
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The counter EMF is obtained as 
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 In section II we defined the real physical space vectors which 
are current density, MMF and flux density.  In this section, we 
discuss the real physical space vector of the induced EMF (48). 
The currents are uniform in each phase. On the other hand, the 
induced EMF is different even in a same phase and it is a 
function of angle. Hence, we consider the winding as a 
conductor distributed in the space.  The induced EMF density 
at the angle  can be expressed by Fleming’s right-hand rule as 
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Using (52) and (53), the real physical space vector of induced 
EMF density is expressed as  
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By using (51), we can draw a instantaneous space vector 
diagram shown in Figs.6 (motoring operation) and 7 
(regenerating operation). In these figure, the space vector of the 
flux linkage (39) is also shown.  The 2 *rj

se i   is the mirror-

phase current of si  in regard to d-axis [6]. The winding 

denoted by the symbols   and ⊙ shows the point of the real 
physical space vector. The si  and 0e  correspond to the  abcj  

and abce  respectively.  

In steady-state, p = 0 in (51). Therefore, 
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From (30), the conventional phasor of a-phase is obtained by 
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Figure 6.  Transient space vector diagram of IPMSM (Motoring operation). 
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Figure 7.  Transient space vector diagram of IPMSM (Regenarating 
operation). 
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Figure 8.  Transient equivalent circuit of non-salient PMSM. 

 

    For non-salient IPMSM,  the following equation is valid. 
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r d qj L i pi e                                        

1 0 's s sR i p L i e                                                (59) 

By using (59), the equivalent circuit which is valid in transient 
state is shown in Fig.8 for non-salient motor. Figs.9 (motoring 
operation) and 10 (regenerating operation) show the 
instantaneous space vector diagrams. The steady state equation 
(57) becomes 

1dq s dq r dq rv R i j L i j            (60) 

V. CONCLUSION  

 
The conclusions drawn from this paper are summarized as 

follows: 

(1) We defined the “Real Physical Space Vector” of current 
density, MMF, flux density and induced EMF. These 
vectors are useful to understand the conventional 
instantaneous space vectors physically.  

(2) We could prove theoretically that the instantaneous space 
vector of the flux linkage except leakage is proportional to 
the real physical space vector of flux density when the 
third harmonic component of flux density are neglected. 

(3) The electromagnetic torque is derived by using the current 
density and  the flux density distribution. By the definition 
of the real physical space vector, the torque equation is 
well understood. 

(4) We showed the instantaneous space vector diagrams of 
IPMSM which are valid in transient state. In these figures, 
we can understand currents and induced EMF distribution 
also. 

(5) Since the theory proposed in this paper is easy to 
understand physically, it is useful to the education of 
IPMSM.   
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Figure 9.    Transient space vector diagram of non-salient PMSM (Motoring 
operation). 
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Figure 10.    Transient space vector diagram of non-salient PMSM 
(Regenerating operation). 
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