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Abstract— Physical meaning of the instantaneous space vector of
salient permanent magnet synchronous machine is studied. For
this purpose, we define a real physical space vectors. The
electromagnetic torque is derived by current and flux densities. A

space vector diagram in a transient state is derived and discussed.
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. INTRODUCTION

In order to save energy, the applications of the interior
permanent magnet synchronous machine (IPMSM) are
expanding. Since the IPMSM does not have rotor winding, the
copper loss is reduced than that of induction motor, and high
power factor operation is possible. Furthermore, the application
of IPMSM to the wind generation are studied actively.

Mathematical modeling and analysis of IPMSM using
instantaneous space vector have been done in many literatures
[1] [2] [4] [5]. However, the physical meaning of the
instantaneous space vector of IPMSM is not completely
considered including the transient operations. Especially the
relation between the space vector of flux linkage and actual
flux density is not clear in salient pole machine. Furthermore,
the electromagnetic torque is derived by using the derivative of
electromagnetic energy for salient pole machine in many
literatures.

In order to solve these problems, we define the “Real
Physical Space Vector” of current density, MMF, flux density
and induced EMF. These vectors are useful to understand the
conventional instantaneous space vectors physically.

Il.  REAL PHYSICAL SPACE VECTOR
- Current, MMF and Flux Density-

Figure 1 shows a model of IPMSM and definition of
positive direction of variables. n is a normal unit vector of
plane of winding to compute a flux. Therefore n is positive
direction of the flux. We assume that all windings are
sinusoidally distributed windings as shown in Fig.2 [2][3].
When the phase currents flow, their current distributions per
angle are defined as
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In order to consider the saliency, equivalent air-gap length
is assumed as [3]
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where, o >0, a, >0

The permeability of permanent magnet is considered to be
equal to that of air. Therefore, the equivalent air-gap length is
long in d-axis direction. Applying Ampere’s law around the
path of Fig.3 and neglecting the field intensity of steel, the
magnetic field intensity H, caused by i, in the air-gap is
obtained as follows:

b i,

Figure 1. Model of IPMSM and definition of positive direction
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Figure 2. Sinusoidally distributed winding.
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The positive direction of H is assumed from the rotor to the
stator. The magnetomotive force (MMF) of i, which is used at
point o is computed as

=Lcos a (5)
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Similarly the MMFs of i, and i, are obtained respectively as
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The flux densities by phase currents are derived respectively
as follows:
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By substituting (4) into (9)-(11)
are obtained [3]

, the following equations

Figure 3. Current distribution.

Figure 4. Dimensions.
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When i, + iy + ic = 0, the currents are expressed even in
transient state as follows:

i, =1(t)cosé,(t) (15)
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Our theory is developed by these expressions of (15) - (17).

The current density distribution caused by 3-phases
currents is obtained by (1)-(3), (15)-(17) as

Jae (@) = Ja (@) + Jp (@) + (@)
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The MMF distribution caused by 3-phases currents is obtained
by (6)-(8), (15)-(17) as

Fae (@) = Fy (@) + Ry (o) + R ()
_3N,

(19)
The air-gap flux density by phase currents and permanent
magnet is derived by (12)-(14), (15)-(17) as
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The distributions of current density, MMF and flux density can
be observed in the motor. So we define “real physical space
vector” of MMF (19) as

Fae () == 1() &4 (21)



The direction angle 4(t) of real physical space vector shows the
angle a in which the MMF (19) becomes maximum. Similarly,
the real physical space vector of current density (18) is
expressed as

T 0N < R, (22)
In the case of flux density (20) , we can obtain the physical
space vector by neglecting the third harmonic component as
follows:
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Ill.  INSTANTANEOUS SPACE VECTOR
-Flux Linkage and Electromagnetic Torque-

In general, the instantaneous space vector is defined as [1]
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where, f means phase voltage v, phase current i and flux
linkage w. It is well known that the space vector can be also
expressed by using a—43 stationary reference frame quantities.
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Equations of currents (15) - (17) are derived by (27) - (29)
respectively. By using (15) - (17), the space vector of current is
obtained as

i (t) = \E ()l (30)

From (22) and (30), we have
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It means that the real physical space vector of MMF is
proportional to the current space vector. It is noted that the

actual distributions of current density is expressed by its real
physical space vector (22). It is convenient that the relation
can be explained by a right-handed screw rule. From (26), and
(27)-(29), the rule is valid as shown in Fig.5. For example,
when & =0, f, is maximum even in transient state. In order to
satisfy the right-handed screw rule, the positive direction of
current should be defined as shown Fig.1.

Figure 5. Physical meaning of instantaneous space vector.

The flux linkage of a-phase winding is obtained from (20) as
v.=| ?ﬂ&cosaj “2g, (0)Irdo da+l,i,
2 2 “3
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Is : leakage inductance

By (32), it is recognized that the third harmonics component
(3a) of the flux density (20) does not affect the instantaneous
flux linkage because of sinusoidally distributed winding. The
b- and c-phases flux linkages are obtained similarly as
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The instantaneous space vector of the flux linkage can be
obtained by (24), (32), (36) and (37) as follows:

v =\EL1I(t)ejg‘ —\Eu(t)e“”f‘@) +\E%eﬂ (38)

By using (30), the flux linkage is expressed as
e = Ly iy — Lyel?%i, +yelt (39)
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By comparing (23) and (38), we could prove theoretically that
the instantaneous space vector of the flux linkage except
leakage is proportional to the real physical space vector of flux
density when the third harmonic component of flux density are
neglected. That is,

3zrIN, .
N AR 40
l//s 2 2 abc ( )

The electromagnetic torque in the direction of rotation can
be computed using Fleming’s left-hand rule as
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By (40), it is recognized that the third harmonics component
(3ar) of the flux density (20) does not affect the instantaneous
torque because of sinusoidally distributed winding. This
relation was also obtained in the case of the flux linkage.
Therefore, the third harmonics component will not affect the
terminal voltages and phase currents. Therefore, it is

reasonable to discuss the flux density by (23). In this case,
(except leakage inductance term) is proportional to flux density

B.oc - SO the instantaneous torque (41) is understood by
Fleming’s left-hand rule.

IV. SPACE VECTOR DIAGRAM
-Induced Electromotive Force and Terminal VVoltage-

The voltage equation of IPMSM is expressed as

Va Ia Va
Vo |=Rs| iy |+ P| ¥ (42)
Ve I Ve

By using space vector, (42) becomes
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The space vector in a d-q reference frame is defined as
fog =710 1 (44)
Therefore, the current space vector is expressed as
i, =%y, (45)
By substituting (45) into (39), we have
Vs = (L g — Lolgq +1)e’*
=(Lg ig +¥ + jLgig)e* (46)
where, L, =L -L,, L,=L+L,
By substituting (46) into (43), we have
Vs = Rgis + jorwel? + (~ay Ly iq +Lg (pig))el?
+ j(oy Ly ig +Lg (pig))el?r (47)

The Park’s equation ir_1 d-q axis is obtained by using (44) in
(47) and eliminating e1% .
The induced electromotive force(EMF) by the permanent

magnet ( the positive direction is defined in Fig.1) is obtained
as
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The space vector of induced EMF is expressed as
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The counter EMF is obtained as
6" =6 = jorye) (50)

By substituting (50) into (47), we have

Vg = Rl +6&" + (~op Ly g + Lg (pig))e )

+ (o Ly ig + Lg (pig))el?r (51)

In section 1l we defined the real physical space vectors which
are current density, MMF and flux density. In this section, we
discuss the real physical space vector of the induced EMF (48).
The currents are uniform in each phase. On the other hand, the
induced EMF is different even in a same phase and it is a
function of angle. Hence, we consider the winding as a
conductor distributed in the space. The induced EMF density
at the angle o can be expressed by Fleming’s right-hand rule as

€. = N By | ra, cos(a—6,) (52)

where, Ng; is the winding density considering all phases and
can be expressed as
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Using (52) and (53), the real physical space vector of induced
EMF density is expressed as

éabc = NsBO I ra)r ejHr (54)

By using (51), we can draw a instantaneous space vector
diagram shown in Figs.6 (motoring operation) and 7
(regenerating operation). In these figure, the space vector of the

flux linkage (39) is also shown. The el?%i; is the mirror-
phase current of i in regard to d-axis [6]. The winding
denoted by the symbols ® and ® shows the point of the real
physical space vector. The i; and &, correspond to the |,
and é,,. respectively.

In steady-state, p = 0 in (51). Therefore,

Vs = Rsi's + ja)r(l—d id + JLq iq)ejer + ja)rl//ejer (55)

Concerning the flux linkage, from (46)

pys = Jor (Ly iy +w + iLglg e = jory, (56)
Therefore, py, is orthogonal to the . . By using (44), we
have

Vag = Rslag + Jor (Lg ig + iLq ig) + Jory (57)

where, iy, =iy + Ji

From (30), the conventional phasor of a-phase is obtained by
dividing space vector Vg, iyq by /3.
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Figure 6. Transient space vector diagram of IPMSM (Motoring operation).
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Figure 7. Transient space vector diagram of IPMSM (Regenarating
operation).



IS
e

R, L
ANN—TOT

ISIE Sk

Figure 8. Transient equivalent circuit of non-salient PMSM.

For non-salient IPMSM, the following equation is valid.

azzo, LZZO'Ld:Lq:Ll (58)
Eq. (51) becomes
Vs = Rls +60" + Ly (~@y iq + pig)el’r
+j Ly (@ ig + pig)eld
= RSi.S +p Ll i.S + éo ! (59)

By using (59), the equivalent circuit which is valid in transient
state is shown in Fig.8 for non-salient motor. Figs.9 (motoring
operation) and 10 (regenerating operation) show the
instantaneous space vector diagrams. The steady state equation
(57) becomes

Vg = Rs i.dq + o, Ly i.dq +Joy (60)

V. CONCLUSION

The conclusions drawn from this paper are summarized as
follows:

(1) We defined the “Real Physical Space Vector” of current
density, MMF, flux density and induced EMF. These
vectors are useful to understand the conventional
instantaneous space vectors physically.

(2) We could prove theoretically that the instantaneous space
vector of the flux linkage except leakage is proportional to
the real physical space vector of flux density when the
third harmonic component of flux density are neglected.

(3) The electromagnetic torque is derived by using the current
density and the flux density distribution. By the definition
of the real physical space vector, the torque equation is
well understood.

(4) We showed the instantaneous space vector diagrams of
IPMSM which are valid in transient state. In these figures,
we can understand currents and induced EMF distribution
also.

(5) Since the theory proposed in this paper is easy to
understand physically, it is useful to the education of
IPMSM.
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Figure 9.  Transient space vector diagram of non-salient PMSM (Motoring
operation).
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Figure 10. Transient space vector diagram of non-salient PMSM
(Regenerating operation).
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