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Abstract

A symmetric property of a minimal submanifold with respect to an involutive
isometry is studied as the initial value problem of the minimal submanifold equation.
The local existence and uniquness of this initial value problem is proved by the Cauchy
-Kowalevskaja theorem in the real analytic case.

Introduction. In 1874, H. A. Schwarz proved the following symmetry of a
minimal surface in an Euclidean 3-space E*:

THEOREM [6]. (1) If a minimal surface contains a straight line, then the surface
is symmetric with respect to the line.

(2) If a minimal surface intersects a plane perpendicularly along the crossing
curve, then the minimal surface is symmetric with respect to the plane.

The author tried to extend this theorem to the general Riemannian spaces which
have many involutive isometries, in particular to symmetric spaces. The purpose of
the present article is a report of the results (Theorem 1). It turns out that the above
symmetric property of a minimal submanifold does not depend on the ambient space
and rather it is a property of the minimal submnifold equation. In fact the symmetry
follows from the initial value problem of the minimal submanifold along the codimen-
sion one submanifold (Theorem 2, 3). I apply the Cauchy-Kowalevskaja theorem in
a local coordinate chart.

The similar results are already obtained by several authors, see [2] and [4].
These authors use the Cartan-Kihler theorem. Our proof depends on a particular
coordinate system but it is a good example of the application of the Cauchy-Kowalevs-
kaja theorem in differential geometry. Such an elementary proof does not seem to be
in the literature.
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1. The symmetry of a minimal submanifold.

The purpose of this section is to show the following symmetry of a minimal
submanifold which generalizes the Schwartz symmetry in E3 As for the necessary
initial value problem of a minimal submanifold equation, the local existence and
uniqueness in the real analytic case is shown in §2 and the local uniqueness in the
C”-case is shown in §3.

THEOREM 1. Let (N, g) be an ambient C*-Riemannian manifold and let ¢ be an
involutive isometry of N. Put F={xE N |o(x)=x}, the fixed point set of 0. Let M be
a connected minimal submanifold of N. Assume that (1) M intersects F perpendicular-
b, i. e. ox(TpoM)Y=T)M for p EMNF and (2) MNF is codimension one in M. Then
M is symmetrdc with respect to F, i. e. s(M)=M.

We remark that F is a totally geodesic submanifold corresponding to a line or a
plane in E® and that M N F is a clean intersection from the assumption (1). The proof
of Theorem 1 is immediate from the following uniqueness theorem which will be
proved in §3.

THEOREM 2. Let (N, g) be an ambient n-dimensional C™-Riemannian manifold.
Assume that (1) M'C N is an arbitrary (m—1)-dimensional submanifold (m<mn) and
(2) M'>Sp — DpC TpN is a C*-distribution along M’ such that D, is an m-dimen-
sional subspace of ToN which contains TpoM'. Then an m-dimensional connected
minimal submanifold M of N which has initial conditions (1) MDM' and (2) ToM=
Dy for p EM, is unique if it exists.

PROOF OF THEOREM 1. Since M is minimal in N and ¢ is an isometry of N, o(M)
is also minimal in N. Note that

o M)NF=MNF,
TpO'(M):O'*(TpM)ZTpM forpeMNF.

Theorem 2 is applicable to M and o(M) along the above initial conditions and that
o(M)=M is concluded.

2. The local existence and uniqueness in the real analytic case.

For the local nature of the problem we treat the real analytic case first. In the real
analytic case the initial value problem of the minimal submanifold equation is reduced
to the Cauchy-Kowalevskaja theorem and the local existence and uniqueness is



The Symmetry and the Local Existence and Uniqueness of a Minimal Submanifold 9
concluded.

THEOREM 3. Let (N, g) be an n-dimensional real analytic Riemannian manifold.
Assume that all the data ave real analytic. Assume that (1) M'C N is an arbitrary (m
—1)~dimensional connected submanifold, (2) M'Sp—— DpC TpN is a distribution such
that Dy is an m-dimensional subspace of TpN which contains ToM'. Then there exists
locally an wm-dimensional connected minimal submanifold M which has the initial
conditions (1) and (2), and it is unique.

PROOF. We can choose a real analytic coordinate chart U, (y', -+, ¥”) of N as
follows, and we identify U with a coordinate Riemannian space (R”, g) by (¥}, -, ¥™)
where the metric tensor is g=gudy'dy’, g,=g(3/dy’, 3/dy’). We regard M’ and M as
submanifolds in this U=R". '

(3) M'C{y'=0}=R"",
4) v (m+1<i<n) are functionally dependent to y* ---, y™ on M,
(5) Dp & {y'=0} for pEM".

We shall grasp the minimal submanifond M as the graph on (y', -, y™)-space. We
regard (y', -+, ¥y™) as independent variables (z', -, x™) and regard (y™', ---, y") as
unknown functions of (z', -, z™), i. e. the embedding 7 : M— R" is given by

yi=yi(xt, 2™ (i=mtl, e, n).

Let {i} be the Christoffel symbol of (R™, g). Let hun—g(f«(3/3x"), f+(3/dx")) be the

induced metric on M and let (4*) be the inverse matrix of (%..). Then it can be shown
that the minimal submanifold equation of f becomes the following system of differen-
tial equations (see Lemma below) :

h [ Oy L[ i ] oyt oyt -
O B+ 2 e )=, (G=mtl, -, m),

where we put []2] ={ ]lk} - él{;’e} gg (,, Here we notice that the Christoffel symbols of

the submanifold M which may contain the 2-nd order derivatives of y*’s do not appear.
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The functional dependences of coefficients of this equatibn are
Ban= hxﬂ(x, Y, %) and A= h“‘<x, v, %)

since gi;=gi(x', -+, ", y" N (x), -, y"(x))=g:(x, y) and f«(3/dx*)=(3/dy")
+ 3 (3’/8x")(3/dy"). And

: i :_1_ ih( 3ghj ag;.k . agjk) . . .
since {jk} Z;g oy + F EG at (z, y). These coefficients do not contain

the 2-nd order derivatives of y. As the principal part of this equation is %h‘”(azyi/
dx*dx"), the positive definiteness of the metric implies the ellipticity of the equation.
It follows from Theorem 6. 7. 6 in [4] that the solution of this equation is real analytic.
Hence it suffices to show the existence and uniqueness in the real analytic category.
We shall apply the Cauchy-Kowalevskaja theorem.

Intial conditions (1) and (2) become in our coordinate system:

(1) M ={0, z% -, ™ y™(0, 2% -, 27), -, y7(0, 2P e, ™)),

hense it corresponds to give ¥(0, 2% =, x™) ({=m+1, -, n),

(2) Dp=R-span {n(—(%) f*( a;’,,) at p} for pEM’,

0N 9 & 8
f*( ax")_ oy’ t 2o y’

™M

hence it corresponds to give (dy’/dx') (0, 2% -+, z™) (i=m+1, -, n). The minimal
submanifold equation (6) has the following normal form with respect to the variable x'.

) PR B R A .
where (4, )=*(1,1)

where G'(s, t, v, w) is a certain real analytic function determined only by the metric
g of R*. Note that 4" +0 everywhere. Hence the Cauchy-Kowalevskaja theorem is
applicable to this system under the initial conditions (1) and (2). [}

REMARK. It is easy to see this directly. Put H'=G/A" and take the analytic
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expansion with respect to x' of

(&) vi+m | 29,2 50 4w+ D)) =0

Put y4(x)= 2z, -, 27 () (4'(a?, -, 2" =((3/32")y") (0, 2%, -+, z™)/p1), sub-
stitute analytic expansions of y(x), (3y/dx), (d*y'/dx*dx*) to the above equation and

write out the coefficient of (x')?. Then we know that there exists certain real analytic
functions H'» such that

i i i Y’y 321/iq .]=ni+1,“-,n —
(D+1) (p+2)y pre T H | ¥q, ot orior”® ;A =2, m =0,
q=0y 1’ “'y,p+1

(p=0,1,2, -, i=m+1, -, n).
Hense the initial conditions

(1) yiozyi(ov xZ’ .“yxm)

(2) yilzgii((),xzw',x’”), (i=m+1, -, n),

determine higher order coefficients y’(p>2) uniquely. This proves the uniqueness
part of Theorem 3. But as for the convergence of the formal power series y'=

!)Z]Oy"p(xz, -, 2™ (z')? in some neighborhood of z'=0, i. e., the local existence of the

solution, we have to depend on the method of majorant series of Cauchy—Kowalevska-
ja. ’

For the sake of completeness we give a proof of Eq. (6), i. e. a reduction of the
minimal submanifold equation in our setting of the coordinate system. The fundamen-
tal references are [8], pp 125, (16.2) or [9]. Eq. (6) may be viewed as a generalization
of the classical equation of the minimal surface z=2z(x, ¥) in the Euclidean (z, v,
Z)-space:

{15 18 B ()5

due to Lagrange. Retain notation in the proof.

LEMMA. In a coovdinate Riemannian space (R", g) by the coordinates (y*, -, y™),
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an m-dimensional submanifold MCR" is given by a gmbh on the (y', -, y™)-space:

f:M— R",
7 {y‘=x‘ (A=1,, m),
y'=yi(x', 2" (i=m+1, -, n).

Then the minimal submanifold equation of M is

z oy’ 2 [z] oy’ ay“} .
Am) Y9 P A G = ves
O 2o + Bt =0 (i=mtl, ),

where []lk]={]k} w:{]k} aa;g

PrROOF. The usual definition of minimality is that the mean curvature vector of
M is zero : H=0. We make use of the Einstein convension of tensor calculus and
Roman indices 7,7, £+ run through 1<, j, £ <n, Greek indices A, g, v+ run
through 1<A, ¢, v --- <m. But we sometimes specify the range of a summation, e. g.
by i§n or ,;m‘ The mean curvature vector H is given by

H=1"Hyien, Hii= ‘;Bz +{Z/€}B;B,, —I¢B.,

where e;=d/3dy’, B,'=3ay'/ox" and I'\¢ is the Christoffel symbol of the submanifold (M,
k). Put 8i=r+(3/3x")=(8y?/dx*)(8/dy’)=Bie;. Then the tangent space is T,M=

gka& at p. It is known that

By
a H

I#=B*; ( +{ Z}B{Bﬂ ) where BY;=h*"g:sB.°

(see [9], pp 159, (23.7)). The minimal equation A =0 becomes

By S }BiBA—riBS)=

@ b33

hm( a.gigx" +{jzk} giA gi e ¥ gy ) 0, for 1<i<n.

In our setting of the coordinate system we have
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0y’
oz’

Bi= =4, for 1<i<m.
Hence d,=ei+ 2 Bi'e; and

(8) hi=g(0s d)=gu+ T Bigut 2 Bigut+ 2 BiBi&y.
Eq. (7) becomes the following (9) & (10) :

) h**‘({ﬂ;} B —11,,) 0 for 1<i<m.

(B +{ ]} BB~ T ) =0 for m<i<an.

From (9) we have

W Ne By = h“{]?,‘; }B{B#‘*Bwl‘.

Substitute this to (0. Then we get our equation (6) :
By’ _Jw i ip el — ;
© B () pBe)BeBs =0 meisw.

Thus (9) & (10) imply (6). We have to show the converse that (6) implies (9) & (10).
Similarly it is clear that (6) & (9) imply (0. So it is sufficient to show that (6) implies
(9). From (6) we have

(B 2 BB = neBeBaBs )
Using this and the expression of I we have
werg=pen (S5 +{ 1 1B

—pupin kpo R il Y
W*Bi/B.*B IBV{Z.k}.

Comparing this with (9), it suffices to show that
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{j‘;’e}=BwiBJ{];}.

Part the range of summation of the index z to §+ ‘>Zm in the right hand side. Then

Bw‘B“[{Jf;e} - Bw”{;;e} +ZB w'B“i{]z;e}'

We know that B“;=h“"g:sB."= 2 + 2

ss=m §>m

=h‘“"(gfa+s§‘.mgfsBas>, in particular
BY,= h‘”“(gw +2 gusBas)
s>m

=h‘““( hva— 2 gasBus‘s’?‘_;mgstBasBut> by (8)

s>m

=0%— hwa(g;mgasts + s tz)ﬂlgstBasBu! )
w. R4 — W _ jwa s sp ¢ 14
Hence B“:B. {jk} {jk} h (s;mgasBu +s,t2>mgstBa B, >{jk}

{3}

This completes the proof of Lemma.

3. The uniqueness in the C*-case.
In this section we prove the uniqueness of the minimal submanifold in the C*-case
(Theorem 2). We use the following uniqueness continuation theorem.

THEOREM [1]. Let A be a linear elliptic 2-nd order differential operator defined
on a domain D in R*. In D let u=(u', -+, u”) be functions satisfving the differential
inequalities.
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‘1)

If w=0 to infinitely high order at a single point in D, then u=0 throughout D.

Az’ \gConst.<

J.k

m+1

PROOF OF THEOREM 2. By the Taylor expansion of C*-functions y =(y™", -+, y™)
as higher order as necessary we know that the argument of Remark in §2 is valid in
the C*-case. That is, initial conditions (1) and (2) determine the derivatives of y to

m+1

infinitely high order at every points in M’. For functions y=(y™", -, ¥"), we shall
write the equation (6) as follows.

1S oy\ &y’ ; Oy \ ] e
F[y]—gh ”(:r, v, 8x>axlaxu +L<:c, v, ax>—0, _ (i=m+1, -, n).

Assume that we have two solutions y(x), v(x) under the same initial conditions. Put
u(x)=y'(x)—vi(x) and consider the following identities.

i AP To+ adt=Fly]- Flv]=0,

Note that ———F (vo+ tu]l= 2

lo’

v 2
5 e+l G + v i

where we abbreviate notation as yi=3dy’/dx*, vi.=(3%y’/6x*dx*). Then we know that
u satisfies the following linear equations.

EFz' ( Fu’ i ou’ i J— c__
(x) 3" gij(x) 5z +%}F,»(x)u =0, (G=m+1, -, n),

A

where for example coefficients of the principal part are

Fi(x)= f 35; v+ tuldt

Zflh“‘<x, v+ tu, 2% +t3—u>dt
0 an

From these it is easily seen that the above equation is elliptic. We apply the unique
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continuation theorem to A=§F1g(x) (0*/0x*0x*). We know that ¥ =0 to infinitely

high order at p=(0, 2% ---, z™) in R™. In a sufficiently small neighborhood D of p in
R™, we can assume _that Fj and F} are bounded. Hence we have

+ 33 |’ |> on D.

|Au? |<Const. (2 I%g—:

JaA

Therefore we have =y —v=0 on D. The connectedness of M implies the uniqueness

of a minimal M. |

(2]

(3]
[4]

(5]

(6]
(7]
(8]
(9]
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