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Abstract

The group I(M) of isometries of a connected metric manifold M is a Lie group
with respect to any topology finer than the pointwise topology. And if moreover the

manifold M is the coset space of a topological group with a two-sided invariant metric,

then I(M) is the total space of a principal fibre bundle over M with fibre and group

Ia(M) (the isotropy subgroup of I(M) at an arbitrarily fixed point a of M).

lntroduction．MyersandSteenrod［7］haveprovedthatforaRimannianmanifold

Mwithafinitenumberofconnectedcomponents，thegroupI（M）ofisometriesofM

isaLietransformationgroupwithrespecttothepointwisetopology．Wehavetried

togetsimilarconclusiontothisforaconnectedmetricmanifold，andwehavegotthe

results as statedinthe above abstract．

1．To becomealocally compacttopologicaltransformation group，

InthispapertheisometricgroupofametricspaceXmeansthesetofalldistance

－preSearVingsurjectionsofthespaceXontoitself，andisdenotedbyI（X）．Itisa

groupofhomeomorphismsonX．NowweconsiderforwhatspaceXtheisometry

groupI（X）withthecompact－OpentOplogyislocallycompact？Inthisconnectionwe

usethefollowinggeneralizationofatheoremofDantzigandvanderWaerden［1］

（seeCorollaryin［5］）．

PROPOSITION A．Let X be eiiher a co7nt）aCt metric si）aCe Or alocalbJ CO〝4）aCt
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REMARK．SimilargeneralizationofthetheoremofDantzigandvanderWaerden

isfoundonpage460f［3］．
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2 .' To become a Lie group. 

We have proved in [4] the following proposition. 

PROPOSITION B. If a locally compact transformation group acting effectively on a 

connected metric mamfold is locally Lipschitzian, then it is necessarily a Lie group. 

Here the definition of "locally Lipschitzian" is as follows: a topological transfor-

mation group G acting on a space Y with a metric p is locally Lipschitzian, if for any 

neighborhood U of each point a in Y there exist a neighborhood V of the identity of 

G and a neighborhood Ul of the point a as follows: 

1 ) V(Ul)(lU, and 

2 ) p(g(x), g(y))~c ' p(x, y) for all g e V and all x, y e U1' where c is a constant. 

Let M be a connected metric manifold. Since the isometry group I(M) of M, with 

any jointly continuous topology, is locally Lipschitzian, we have the following theorem 

from Propositions A and B. 

THEOREM. The isometry group of a connected metric mamfold is a Lie group with 

respect to any topology finer than the pointwise toplogy. 

3 . To become the total space of a principal fibre bundle. 

Now we consider a homogeneous space as a base space. 

Let G be a topological group with a two-sided invariant metric p, and X= G/H 

be the left (or right) coset space of G by a closed subgroup H. Then we can define 

a left (resp. right) invariant metric p' on X as follows: 

p'(xl' x2)=p(glH, g:~H) for xi e X and gi e 7T~1(xi) (i=1, 2). 

We say p' the induced metric from p. 

We have proved in [6] the following proposition. 

PROPOSITION C. Let G be a topological group with a two-sided invariant metric p. 

Give the left (or right) coset space X=G/H the induced metric from p. If X is 

connected, Iocally Euclidean, and has a local cross-section, then the isometry group of 

the space X is the total space of a principal fibre bundle over X with respect to the 

compact open topology. 

Using this we have the following. 

COROLLARY. Let G be a connected Lie group with two-sided invariant metric. 

Give the left or right coset space X=G/H the induced metric. Then the isometry group 

I(X) of the space X is a Lie group and also the total space of a principal fibre bundle 

over X with respect to the compact-open topology. 

REMARK. Examples of topological groups which has a two-sided metric are 

compact groups, Abelian groups, discrete groups, and product groups of such groups. 

H. Freudenthal [2] determined the type of a 2nd countable locally compact connected 
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group with a two-sided invariant 

translations of a Euclidean space 

3 

metric. It is the direct product of the group of 

and a compact connected group. 
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