Generators for the Algebra of Holomorphic Functions in Certain Pseudoconvex Domains

Kenzō Adachi
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki
(Received Oct. 31, 1988)

Abstract

Let D be a bounded strictly pseudoconvex domain in C^{n} with smooth boundary. Suppose that $h, f_{1}, \ldots \ldots ., f_{m}$ are holomorphic functions in D. In this paper we shall show that there exist $g_{i} \varepsilon A^{p}(D),(1 \leqq p<\infty)$ such that $h=\sum_{i=1}^{m} g_{i} h_{i}$ provided that $h, f_{1}, \ldots \ldots, f_{m}$ satisfy some conditions. We also study the case where D is some convex domain.

1. Introduction. Let D be a bounded domain in C^{n} with smooth boundary. We denote by $A^{p}(D),(1 \leqq p<\infty)$, the space of holomorphic functions f in D satisfying $\int_{D}|f|^{p} d v<\infty$, where $d V$ denotes the Lebesgue measure on D. Let $f_{1}, \ldots \ldots, f_{m}$ be holomorphic functions in D with the property that
(B) $\frac{\partial \mathrm{f}_{i}}{\partial \mathrm{z}_{k}},(\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m} ; \mathrm{k}=1,2, \ldots \ldots, \mathrm{n})$, are bounded on D .

We set

$$
\mathrm{q}=\min (\mathrm{n}+1, \mathrm{~m}), \mathrm{f}=\left(\mathrm{f}_{1}, \ldots \ldots ., \mathrm{f}_{m}\right),|\mathrm{f}|^{2}=|\mathrm{f}|^{2}+\ldots \ldots+\left|\mathrm{f}_{m}\right|^{2} .
$$

The purpose of this paper is to prove the following theorems.

THEOREM 1. Let D be a bounded strictly pseudoconvex domain in C^{n} with smooth boundary. Let $\mathrm{f}_{1}, \ldots . . ., \mathrm{f}_{m}$ be holomorphic functions in D satisfying the condition (B). If h is a holomorphic function in D with $\mathrm{h}|\mathrm{f}|^{-2 q} \varepsilon \mathrm{~L}^{p}(\mathrm{D}),(1 \leqq \mathrm{p}<\infty)$, then there exist $\mathrm{g}_{i} \varepsilon$ $\mathrm{A}^{p}(\mathrm{D}),(\mathrm{i}=1,2, \ldots \ldots, \mathrm{~m})$, such that $\mathrm{h}=\sum_{i=1}^{m} \mathrm{f}_{i} \mathrm{~g}_{\mathrm{i}}$.

Amar[1] proved that if $\mathrm{f}_{1}, \ldots \ldots, \mathrm{f}_{m}$ are functions in $\mathrm{H}^{p}(\mathrm{D}),(1<\mathrm{p}<\infty)$, and $|\mathrm{f}|>\delta$ for some $\delta>0$, then there exist $\mathrm{g}_{i} \varepsilon \mathrm{H}^{\Gamma}(\mathrm{D})$ such that $1=\sum_{i=1}^{m} \mathrm{~g}_{\mathrm{i}} \mathrm{f}_{i}$, where Γ
$=\frac{\mathrm{p}}{\mathrm{q}}$.

Let $s_{i}(\mathrm{t})$ be real analytic functions in [$\left.0, \mathrm{a}_{i}\right]$ satisfying the following conditions:
(i) $\mathrm{s}_{i}^{\prime}(\mathrm{t}) \geqq 0, \mathrm{~s}_{i}^{\prime}(\mathrm{t})+2 \mathrm{ts}_{i}^{\prime \prime}(\mathrm{t})>0$ for $0<\mathrm{t}<\mathrm{a}_{i}$,
(ii) $\mathrm{s}_{i}(0)=0, \mathrm{~s}_{i}\left(\mathrm{a}_{i}\right)>1$.

We set

$$
\rho(z)=\sum_{i=1}^{n} \mathrm{~s}_{i}\left(\left|z_{i}\right|^{2}\right)-1 \text { for } z=\left(z_{1}, \ldots \ldots, z_{n}\right) .
$$

The domain

$$
\mathrm{D}=\left\{\mathrm{z} \varepsilon \mathrm{C}^{n}: \rho(z)<0\right\}
$$

is called the complex ellipsoid type. Then we have

THEOREM 2. Let D be a domfdn of complex ellipsoid type in C^{n}. Let $\mathrm{f}_{1}, \ldots . . ., \mathrm{f}_{m}$ be holomorphic functions in D satisfying the condition (B). If h is a holomorphic function in D such that $\delta(z)^{-\varepsilon}|\mathrm{f}|^{-2 q} \mathrm{~h} \varepsilon \mathrm{~L}^{p}(\mathrm{D})$, then there exist $\mathrm{g}_{j} \varepsilon \mathrm{~A}^{p}(\mathrm{D}),(\mathrm{j}=1,2, \ldots \ldots$, $\mathrm{m})$, satisfying $\mathrm{h}=\sum_{j=1}^{m} \mathrm{~g}_{j} \mathrm{~h}_{j}$.

Finally, we shall adopt the convention of denoting by c any positive constant which does not depend on the relevant parameters in the estimate.
2. The strictly pseudoconvex case. Let D be a bounded strictly pseudoconvex domain in C^{n} with smooth boundary. We fix a plurisubharmonic characterizing function ρ for D. Then by Fornaess[5] there exists a function $f(\zeta, z)$ defined on $\overline{\mathrm{D}} \times$ $\overline{\mathrm{D}}$, of class C^{∞}, such that
i) For $\zeta \varepsilon \overline{\mathrm{D}}, \mathrm{F}(\zeta, \cdot)$ is holomorphic in D .
ii) For $\zeta, z \varepsilon \overline{\mathrm{D}}$,

$$
2 \operatorname{ReF}(\zeta, z) \leqq \rho(z)-\rho(\zeta)-\delta|\zeta-z|^{2} \text { for some } \delta>0
$$

iii) $\mathrm{F}(\zeta, z)=\sum_{j=1}^{n} \mathrm{~h}_{j}(\zeta, z)\left(z_{j}-\zeta_{j}\right)$ with

$$
h_{j} \varepsilon \mathrm{C}^{\infty}(\overline{\mathrm{D}} \times \overline{\mathrm{D}}), \mathrm{h}_{j}(\zeta, \cdot) \text { holomorphic in } \mathrm{D} .
$$

We set $\Phi(\zeta, z)=\mathrm{F}(\zeta, z)+\rho(\zeta)$. Then it holds that

$$
|\Phi(\zeta, z)| \geqq c\left[-\rho(z)-\rho(\zeta)+|\zeta-z|^{2}+|\operatorname{Im} \Phi(\zeta, z)|\right] \text { for } \zeta, z \varepsilon \overline{\mathrm{D}} .
$$

Now we have the following.
PROPOSITION 1. Let f be a holomorphic function in a bounded strictly pseudoconvex domain D in C^{n} such that $\frac{\partial \mathrm{f}}{\partial \mathrm{z}_{j}},(\mathrm{j}=1, \ldots \ldots, \mathrm{n})$, are bounded in D . Then there exist $\mathrm{g}_{j} \varepsilon \mathrm{H}^{\infty}(\mathrm{D} \times \mathrm{D}),(\mathrm{j}=1, \ldots \ldots, \mathrm{~m})$, such that

$$
\mathrm{f}(z)-\mathrm{f}(\zeta)=\sum_{j=1}^{n} \mathrm{~g}_{j}(\zeta, z)\left(z_{j}-\zeta_{j}\right)
$$

PROOF. By the Fornaess imbedding theorem[5], there exist a neighborhood \tilde{D} of $\overline{\mathrm{D}}$, a positive integer $\mathrm{k}(\mathrm{k} \geqq \mathrm{n})$, a mapping $\Psi: \tilde{\mathrm{D}} \rightarrow \mathrm{C}^{k}$, and a strictly convex domain G in C^{k}, such that Ψ maps $\tilde{\mathrm{D}}$ biholomorphically onto a closed submanifold $\Psi(\tilde{\mathrm{D}})$ of C^{k} : $\Psi(\mathrm{D}) \subset \mathrm{G}, \Psi(\tilde{\mathrm{D}} \mid \overline{\mathrm{D}}) \subset \mathrm{C}^{k} \mid \overline{\mathrm{G}}$, and $\Psi(\tilde{\mathrm{D}})$ intersects $\partial \mathrm{G}$ transversally. If $\Psi=\left(\Psi_{1}, \ldots \ldots, \Psi_{k}\right)$, then by Hefer's theorem, there exist functions $\Psi_{i j} \varepsilon \mathrm{O}(\tilde{\mathrm{D}} \times \tilde{\mathrm{D}})$ such that

$$
\Psi_{i}(\mathrm{w})-\Psi_{i}(\mathrm{t})=\sum_{j=1}^{n}\left(\mathrm{w}_{j}-\mathrm{t}_{j}\right) \Psi_{i j}(\mathrm{w}, \mathrm{t}) .
$$

We set $\operatorname{Tf}(z)=f\left(\Psi^{-1}(z)\right)$.
Then $\operatorname{Tf}(z)$ is bounded holomorphic in $\Psi(\mathrm{D})$ and its first derivatives are also bounded in $\Psi(D)$. By Jakobczak [6], there exists an extension operator $\mathrm{L}: \mathrm{O}(\Psi(\mathrm{D})) \rightarrow \mathrm{O}(\mathrm{G})$ such that LTf, together with their first derivatives, are bounded in G. Then we have the decomposition, for $\zeta, z \varepsilon \mathrm{G}$,

$$
\operatorname{LTf}(z)-\operatorname{LTf}(\zeta)=\sum_{i=1}^{k}\left(z_{i}-\zeta_{i}\right) \tilde{f_{i}}(z, \zeta)
$$

where $\tilde{\mathrm{f}_{i}} \varepsilon \mathrm{H}^{\infty}(\mathrm{G} \times \mathrm{G})$. Thus we have

$$
\mathrm{f}(\mathrm{w})-\mathrm{f}(\mathrm{t})=\operatorname{LTf}(\Psi(\mathrm{z}))-\operatorname{LTf}(\Psi(\mathrm{t}))=\sum_{j=1}^{n}\left(\mathrm{w}_{j}-\mathrm{t}_{j}\right) \mathrm{g}_{j}(\mathrm{w}, \mathrm{t}),
$$

where $\mathrm{g}_{j}(\mathrm{w}, \mathrm{t})=\sum_{i=1}^{m} \Psi_{i j}(\mathrm{w}, \mathrm{t}) \tilde{\mathrm{f}_{i}}(\Psi(\mathrm{w}), \Psi(\mathrm{t})) \varepsilon \mathrm{H}^{\infty}(\mathrm{D} \times \mathrm{D})$,
This completes the proof.

From the above proposition 1, we have the decomposition

$$
\mathrm{f}_{i}(\zeta)-\mathrm{f}_{i}(\mathrm{z})=\sum_{k=1}^{n} \mathrm{~g}_{j}^{k}(\zeta, \mathrm{z})\left(\zeta_{k}-z_{k}\right)
$$

where $g_{j}^{k}(\zeta, z) \varepsilon H^{\infty}(\mathrm{D} \times \mathrm{D})$. We set

$$
\mathrm{Q}^{1}=\frac{\sum_{j=1}^{n} \mathrm{~h}_{j}(\zeta, z) \mathrm{d} \zeta_{j}}{\rho(\zeta)}, \mathrm{Q}^{2}=\frac{\sum_{k} \sum_{j} \overline{\mathrm{f}_{k}(\zeta)} \mathrm{g}_{j}^{k}(\zeta, z) \mathrm{d} \zeta_{j}}{|\mathrm{f}|^{2}},
$$

Then Berndtsson[3] proved that for a holomorphic function h in D with $\int_{D}|\mathrm{~h}||\mathrm{f}|^{-2 q}|\rho|^{N-1} \mathrm{~d} V<\infty$,
(1) $\mathrm{h}(\mathrm{z})=\int_{D} \mathrm{~h}(\zeta) \sum_{k=0}^{q-1} \mathrm{C}_{k}\left(\frac{\rho(\zeta)}{\Phi(\zeta, z)}\right)^{N+n-k}\left(\frac{\overline{\mathrm{f}(\zeta) \mathrm{f}}(\mathrm{z})}{|\mathrm{f}|^{2}}\right)^{q-k}\left(\bar{\partial} \mathrm{Q}^{1}\right)^{n-k} \wedge\left(\bar{\partial} \mathrm{Q}^{2}\right)^{k}$
where N is any positive number. In the above formula (1), we take $\mathrm{N}=1$. Then we have the following.

PROPOSITION 2. For a holomorphic function h on D with $\int_{D}|\mathrm{~h}||\mathrm{f}|^{-2 a} \mathrm{dV}<\infty$, we have

$$
\mathrm{h}=\sum_{j=1}^{m} \mathrm{~g}_{j} \mathrm{f}_{j}
$$

where $g_{j},(\mathrm{j}=1, \ldots \ldots, \mathrm{~m})$, are written in the following form

$$
\mathrm{g}_{j}(\mathrm{z})=\int_{D} \frac{\mathrm{~h}(\zeta)}{\overline{\mathrm{f}}{ }^{2 q}} \sum_{k=0}^{q-1}\left(\frac{\rho(\zeta)}{\Phi(\zeta, \mathrm{z})}\right)^{1+n-k}\left(\bar{\partial} \mathrm{Q}^{1}\right)^{n-k} \wedge \phi_{k, j}(\zeta, z) .
$$

In the above integral, $\phi_{k, j}(\zeta, z)$ are bounded (k, k)-forms in $(\zeta, \bar{\zeta})$, depending holomorphically on z.

Beatrous[2] proved the following.

PROPOSITION 3. For $\mathrm{t}>0$, we have
(i) $\int_{D} \frac{\mathrm{dV}(\mathrm{z})}{|\Phi(\zeta, \mathrm{z})|^{n+t}} \leqq \mathrm{c}|\rho(\zeta)|^{1-t}$
(ii) $\int_{D} \frac{\mathrm{dV}(\zeta)}{\left.\Phi(\zeta, \mathrm{z})\right|^{n+t}} \leqq \mathrm{c}|\rho(\mathrm{z})|^{1-t}$

PROOF OF THEOREM 1. For $\Psi=\Sigma \Psi_{I J} \mathrm{~d} \zeta_{I} \wedge \mathrm{~d} \bar{\zeta}_{j}$, we set $\|\Psi\|^{2}=\Sigma\left|\Psi_{I J}\right|^{2}$. Then we have

$$
\left\|\left(\frac{\rho(\zeta)}{\Phi(\zeta, z)}\right)^{1+n-k}\left(\bar{\partial} Q^{1}\right)^{n-k}\right\| \leqq \frac{c}{|\Phi(\zeta, z)|^{1+n-k}} .
$$

(i) In case $p=1$. By using proposition 3 and the Fubini's theorem, we have

$$
\begin{aligned}
\int_{D}\left|\mathrm{~g}_{j}(\mathrm{z})\right| \mathrm{dV}(\mathrm{z}) & \leqq \mathrm{c} \int_{D} \frac{|\mathrm{~h}(\zeta)|}{|\mathrm{f}|^{2 q}}\left(\int_{D} \frac{\mathrm{dV}(z)}{|\Phi(\zeta, z)|^{n+1}}\right) \mathrm{dV}(\zeta) \\
& \leqq \mathrm{c} \int_{D} \frac{|\mathrm{~h}(\zeta)|}{|\mathrm{f}|^{2 q}} \mathrm{dV}(\zeta)<\infty .
\end{aligned}
$$

Thus $\mathrm{g}_{j} \varepsilon \mathrm{~A}^{1}(\mathrm{D})$.
(ii) In case $1<\mathrm{p}<\infty$. We can write $\mathrm{g}_{j}(\mathrm{z})$ in the following form.

$$
\mathrm{g}_{j}(\mathrm{z})=\int_{D} \frac{|\mathrm{~h}(\zeta)|}{\mid \mathrm{f}} \mathrm{f}^{2 q} \mathrm{~K}_{j}(\zeta, z) \mathrm{dV}(\zeta) .
$$

Let r be a positive number such that $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{p}}=1$. By Hölder's inequality, we have

$$
\left|\mathrm{g}_{j}(z)\right|^{p} \leqq\left(\int_{D} \frac{|\mathrm{~h}(\zeta)|^{p}}{|\mathrm{f}|^{2 q P}}\left|\mathrm{~K}_{j}(\zeta, z)\right| \mathrm{dV}(\zeta)\right)\left(\int_{D}\left|\mathrm{~K}_{j}(\zeta, z)\right| \mathrm{dV}(\zeta)\right)^{\frac{p}{r}}
$$

By proposition 3(ii), we have

$$
\int_{D}\left|\mathrm{~K}_{j}(\zeta, z)\right| \mathrm{dV}(\zeta) \leqq \mathrm{c}
$$

Thus we have, using proposition 3(i) and the Fubini's theorem,

$$
\int_{D}\left|\mathrm{~g}_{j}(\mathrm{z})\right|^{p} \mathrm{dV}(\mathrm{z}) \leqq \mathrm{c} \int_{D} \frac{|\mathrm{~h}(\zeta)|^{p}}{|\mathrm{f}|^{2 q p}} \mathrm{dV}(\zeta)<\infty .
$$

This completes the proof of theorem 1.
3. The case of the complex ellipsoid type. We set $\delta(z)=-\rho(z)$. From the condition (B), we have the decomposition

$$
\mathrm{f}_{j}(\zeta)-f_{j}(z)=\sum_{k=1}^{n} \mathrm{~g}_{j}^{k}(\zeta, z)\left(\zeta_{k}-z_{k}\right)
$$

where $\mathrm{g}_{j}^{k}(\zeta, z) \varepsilon \mathrm{H}^{\circ}(\mathrm{D} \times \mathrm{D})$. We set

$$
\begin{aligned}
& \gamma_{j}(\zeta)=\frac{\partial \rho}{\partial \zeta_{j}}(\zeta), \mathrm{Q}^{1}=\frac{\sum_{j=1}^{m} \gamma_{j}(\zeta) \mathrm{d} \zeta_{j}}{\rho(\zeta)}, \\
& \mathrm{Q}^{2}=\frac{\sum_{k} \sum_{j} \overline{\mathrm{f}_{k}(\zeta) \mathrm{g}_{j}^{k}(\zeta, z) \mathrm{d} \zeta_{j}}}{|\mathrm{f}(\zeta)|^{2}}, \mathrm{~F}(\zeta, z)=\sum_{i=1}^{n} \gamma_{i}(\zeta)\left(z_{i}-\zeta_{i}\right) .
\end{aligned}
$$

Then Berndtsson[3] proved that for $h \varepsilon A^{1}(D)$,

$$
\mathrm{h}(\mathrm{z})=\int_{D} \mathrm{~h}(\zeta) \sum_{k=0}^{q-1} \mathrm{C}_{k}\left(\frac{\rho(\zeta)}{\mathrm{F}(\zeta, z)+\rho(\zeta)}\right)^{1+n-k}\left(\frac{\overline{\mathrm{f}(\zeta) \mathrm{f}(z)}}{|\mathrm{f}(\zeta)|^{2}}\right)^{q-k}\left(\bar{\partial} \mathrm{Q}_{1}\right)^{n-k}\left(\bar{\partial} \mathrm{Q}^{1}\right)^{n-k} \wedge
$$

$\left(\bar{\partial} \mathrm{Q}^{2}\right)^{k}$.
Since $q-k>0$, we have the following.

PROPOSITION 4. For $h \in \mathrm{~A}^{\mathrm{l}}(\mathrm{D})$, we have

$$
\mathrm{h}=\sum_{j=1}^{m} \mathrm{~g}_{\mathrm{j}} \mathrm{f}_{j}
$$

where g_{j} are written in the following form

$$
\mathrm{g}_{j}(\mathrm{z})=\int_{D} \mathrm{~h}(\zeta) \sum_{k=0}^{q-1}\left(\frac{\rho(\zeta)}{\mathrm{F}(\zeta, z)+\rho(\zeta)}\right)^{1+9-k}\left(\bar{\partial} Q^{1}\right)^{n-k} \wedge \frac{\phi_{k, j}(\zeta, z)}{\mid \mathrm{f}(\zeta))^{2 q}} .
$$

In the above integral, $\phi_{k}, j(\zeta, \mathrm{z})$ are bounded (k, k)-forms in $(\zeta, \bar{\zeta})$, depending holomorphically on z .

We set

$$
\mathrm{a}_{i}\left(\zeta_{i}\right)=\frac{\partial^{2} \rho}{\partial \zeta_{i} \partial \zeta_{i}}\left(\zeta_{i}\right)
$$

Then we have (see[4])

$$
\left|\gamma_{i}(\zeta)\right| \leqq \mathrm{a}_{i}\left(\zeta_{i}\right) .
$$

Taking account of the equality

$$
\left(\bar{\partial} \mathrm{Q}^{1}\right)^{n-k}=\frac{1}{\rho^{n-k}}\left(\sum_{j} \bar{\partial} \gamma_{j} \mathrm{~d} \zeta_{j}\right)^{n-k}+\frac{\mathrm{n}-\mathrm{k}}{\rho^{n-k+1}}\left(\sum_{j} \bar{\partial} \gamma_{j} \mathrm{~d} \zeta_{j}\right)^{n-k-1} \wedge\left(\bar{\partial} \rho \wedge \sum_{j} \gamma_{j} \mathrm{~d} \zeta_{j}\right),
$$

we have

$$
\left\|\left(\frac{\rho(\zeta)}{\mathrm{F}(\zeta, z)+\rho(\zeta)}\right)^{1+n-k}\left(\bar{\partial} \mathrm{Q}^{1}\right)^{n-k}\right\| \leqq \frac{\prod_{s=1}^{n-k} \mathrm{a}_{i s}\left(\zeta_{i s}\right)}{\mathrm{F}(\zeta, z)+\left.\rho(\zeta)\right|^{n+1-k}}
$$

where i_{1}

$$
\mathrm{L}_{\rho}(\zeta)(\zeta-z)^{2}=\sum_{i, j=1}^{n} \frac{\partial^{2} \rho}{\partial \zeta_{i} \partial \zeta_{j}}(\zeta)\left(\zeta_{i}-z_{i}\right)\left(\bar{\zeta}_{j}-\bar{z}_{j}\right) .
$$

Then by the fundamental inequality proved by Bruna and Castillo[4], there exists a positive number λ such that

$$
|\mathrm{F}(\zeta, z)+\rho(\zeta)| \geqq \mathrm{c}\left(\delta(z)+\delta(\zeta)+\mathrm{L}_{\rho}(\zeta)(\zeta-z)^{2}+|\zeta-z|^{\lambda}+|\operatorname{Im} \mathrm{F}(\zeta, z)|\right) .
$$

We set

$$
\mathrm{T}(\zeta, z)=\delta(z)+\delta(\zeta)+\mathrm{L}_{\rho}(\zeta)(\zeta-z)^{2}+|\zeta-z|^{2}+|\operatorname{Im} \mathrm{F}(\zeta, z)|
$$

PROOF OF THEOREM 2. (i) In case $\mathrm{p}=1$. For a small neighborhood U of z_{0} $\varepsilon \partial \mathrm{D}$, we can choose local coordinates $\left(\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots \ldots, \mathrm{t}_{2 n}\right)$ in U for ζ fixed such that $\mathrm{t}_{1}=-\rho(\mathrm{z}), \mathrm{t}_{2}=\operatorname{Im} \mathrm{F}(\zeta, \mathrm{z}), \mathrm{t}_{2 j-1}=\operatorname{Re}\left(\zeta_{j}-z_{j}\right), \mathrm{t}_{2 j}=\operatorname{Im}\left(\zeta_{j}-z_{j}\right), \mathrm{j}=2, \ldots \ldots, \mathrm{~m}$.
We set

$$
\begin{aligned}
& \mathrm{t}^{\prime}=\left(\mathrm{t}_{3}, \mathrm{t}_{4}, \ldots \ldots, \mathrm{t}_{2 n}\right), \mathrm{w}_{j}=\zeta_{j}-z_{j} \text { for } \mathrm{j}=2, \ldots \ldots, \mathrm{n}, \\
& \mathrm{I}(\zeta)=\int_{D \cap U} \frac{\prod_{s=1}^{n-k} \mathrm{a}_{i s}\left(\zeta_{i s}\right)}{\mathrm{T}(\zeta, \mathrm{z})^{n-k+1}} \mathrm{dt}_{1} \mathrm{dt}_{2} \ldots \ldots \mathrm{dt}_{2 n} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathrm{I}(\zeta) \leqq \mathrm{c} \int_{\substack{0<\mathrm{t}_{1}<\mathrm{M} \\
0<t_{1}<\mathrm{M} \\
\left|\mathrm{t}^{\prime}\right|<\mathrm{M}}} \frac{\mathrm{dt}_{1} \mathrm{dt}_{2} \mathrm{dt}_{3} \ldots \ldots . \mathrm{dt}_{2 n}}{\left(\delta(\zeta)+\mathrm{t}_{1}+\mathrm{t}_{2}+\left|\mathrm{t}^{1}\right|^{\wedge}\right)^{2} \prod_{j=2}^{n-h} \prod^{2}\left(\mathrm{t}_{2 j-1}^{2}+\mathrm{t}_{2 j}^{2}+\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{1}\right)} \\
& \leqq \mathrm{c} \int_{\mid \mathrm{t}, 1<\mathrm{m}} \frac{\left|\log \left(\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\lambda}\right)\right| \mathrm{dt}_{3} \ldots \ldots . \mathrm{dt}_{2 n}}{\left.\prod_{j=2}^{n-k} \prod_{2 j-1}+\mathrm{t}_{2 j}^{2}+\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\wedge}\right)} .
\end{aligned}
$$

For any η, μ with $0<\eta<1$, and $0<\mu<1$, we have

$$
\begin{aligned}
\mathrm{I}(\zeta) & \leqq \mathrm{c}_{\eta} \int_{1 \mathrm{t}, \mathrm{l}} \frac{\mathrm{M}\left(\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{1}\right)^{2} \prod_{j=2}^{n-1}\left(\mathrm{t}_{2 j-1}^{2}+\ldots . \mathrm{dt}_{2 n}\right.}{\left(\mathrm{t}_{2 j}^{2}+\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\wedge}\right)} \\
& \leqq \mathrm{c}_{\eta} \int_{1 \mathrm{t}, \mid<\mathrm{M}} \frac{\mathrm{dt}_{3} \ldots \ldots . \mathrm{dt}_{2 n}}{\left(\delta(\zeta)^{\mu}\left(\left|\mathrm{t}^{\prime}\right|{ }^{1}\right)^{1-\mu}\right)^{n} \prod_{j=2}^{n-k}\left|\mathrm{w}_{j}\right|^{2(1-\mu)} \delta(\zeta)^{\mu}} \\
& \leqq \mathrm{c}_{\eta} \int_{1 \mathrm{t}, \mid<\mathrm{M}} \frac{\mathrm{dt}_{3} \ldots . . \mathrm{dt}_{2 n}}{\delta(\zeta)^{\mu(\eta+n-k-1)^{n-k-1}} \prod_{j=2}^{n-1}\left|\mathrm{w}_{j}\right|^{2(1-\mu)}\left|\mathrm{w}_{n-k}\right|^{(1-\mu)(2+\lambda \eta)}}
\end{aligned}
$$

First we choose μ so small that $\mu(\eta+\mathrm{n}-\mathrm{k}-1)<\varepsilon$, and then η sufficiently small in such a way that $(1-\mu)(2+\lambda \eta)<2$.
Then we have

$$
\mathrm{I}(\zeta) \leqq \frac{\mathrm{c} \varepsilon}{\delta(\zeta)^{\varepsilon}} .
$$

Therefore we have

$$
\int_{D}\left|g_{j}(\mathrm{z})\right| \mathrm{dV}(\mathrm{z}) \leqq \int_{D} \frac{\mathrm{c}_{\varepsilon}|\mathrm{h}(\zeta)|}{|\mathrm{f}|^{2 q} \delta(\zeta)^{\varepsilon}} \mathrm{dV}(\zeta) .
$$

Thus we have $g_{j} \varepsilon \mathrm{~A}^{1}(\mathrm{D})$.
(ii) In case $1<\mathrm{p}<\infty$. We can write $\mathrm{g}_{j}(\mathrm{z})$ in the following form

$$
\mathrm{g}_{j}(\mathrm{z})=\int_{D} \frac{\mathrm{~h}(\zeta) \mathrm{K}_{j}(\zeta, \mathrm{z}) \mathrm{dV}(\zeta)}{|\mathrm{f}(\zeta)|^{2 q}} .
$$

Let r be a positive number such that $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{p}}=1$. By Hölder's inequality, we have

$$
\left|\mathrm{g}_{j}(\mathrm{z})\right|^{p} \leqq\left(\int_{D} \frac{|\mathrm{~h}(\zeta)|^{p}\left|\mathrm{~K}_{j}(\zeta, \mathrm{z})\right| \mathrm{dV}(\zeta)}{|\mathrm{f}(\zeta)|^{2 q p}}\right)\left(\int_{D}\left|\mathrm{~K}_{j}(\zeta, z)\right| \mathrm{dV}(\zeta)\right)^{\frac{p}{r}} .
$$

By the same method as the proof in the case when $\mathrm{p}=1$, we have, for any η with $0<$ $\eta<1$,

$$
\left(\int_{D}\left|\mathrm{~K}_{j}(\zeta, \mathrm{z})\right| \mathrm{dV}(\zeta)\right)^{\frac{p}{r}} \leqq \mathrm{c}_{\eta} \delta(\mathrm{z})^{-\eta} .
$$

Thus we have, using the same coordinates as in the proof of the case (i),

$$
\begin{aligned}
& \int_{D \cap U} \delta(z)^{-\eta}\left|\mathrm{K}_{j}(\zeta, \mathrm{z})\right| \mathrm{dV}(\mathrm{z}) \\
& \leqq \mathrm{c}_{\eta} \int_{D \cap U} \frac{\mathrm{dt}_{1} \mathrm{dt}_{2} \ldots \ldots \mathrm{dt}_{2 n}}{\mathrm{t}_{1}^{\eta}\left(\delta(\zeta)+\mathrm{t}_{1} \mathrm{t}_{2}+\left|\mathrm{t}^{\prime}\right|^{1}\right)^{2} \prod_{j=2}^{n-k}\left(\delta(\zeta)+\mathrm{t}_{2 j-1}^{2}+\mathrm{t}_{2 j}^{2}+\left|\mathrm{t}^{\prime}\right|^{\lambda}\right)} .
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
\int_{\substack{0<t_{1}<M \\
0<t_{2}<M}} \frac{\mathrm{dt}_{1} \mathrm{dt}_{2}}{\mathrm{t}^{\eta}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\left|\mathrm{t}^{\prime}\right|^{\lambda}+\delta(\zeta)\right)^{2}} & \leqq \mathrm{c} \int_{0}^{M} \frac{\mathrm{dt}_{1}}{\mathrm{t}_{1}^{n}\left(\mathrm{t}_{1}+\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\lambda}\right.} \\
& \leqq \frac{\mathrm{c}^{\eta}}{\left(\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\lambda}\right)^{\eta}} .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
& \int_{D \cap U} \delta(z)^{-\eta}\left|\mathrm{K}_{j}(\zeta, z)\right| \mathrm{dV}(\mathrm{z}) \\
& \leqq \mathrm{c}_{\eta} \int_{i t 1<M} \frac{\mathrm{dt}_{3} \ldots . . . \mathrm{dt}_{2 n}}{\left(\delta(\zeta)+\left|\mathrm{t}^{\prime}\right|^{\lambda} \eta^{n-k} \prod_{j=2}\left(\delta(\zeta)+\left|\mathrm{w}_{j}\right|^{2}+\left|\mathrm{t}^{\prime}\right|^{1}\right)\right.} \leqq \frac{\mathrm{c}_{\varepsilon}}{\delta(\zeta)^{\varepsilon}} .
\end{aligned}
$$

Hence we have

$$
\int_{D}\left|\mathrm{~g}_{j}(\mathrm{z})\right|^{\mathrm{d}} \mathrm{dV}(\mathrm{z}) \leqq \mathrm{c}_{\varepsilon} \int \frac{|\mathrm{h}(\zeta)|^{p}}{\delta(\zeta)^{\varepsilon}|\mathrm{f}(\zeta)|^{2 q p}} \mathrm{dV}(\zeta)<\infty .
$$

Terefore $g_{j} \varepsilon \mathrm{~A}^{p}(\mathrm{D})$. This completes the proof of theorem 2.

References

[1] E. Amar, Généralization d'un théorème de Wolff à la boulle de C^{n}, Université de Paris-sud, Orsay, 1980.
[2] F. Beatrous, L^{P} estimates for extensions of holomorbhic functions, Michigan Math. J. 32 (1985), 361-380.
[3] B. Berndtsson, A formula for interpolation and division in C^{n}, Math. Ann., 263 (1983), 399-418.
[4] J. Bruna and J. Castillo, Hölder and L ${ }^{p}$-estimates for the $\bar{\partial}$ equation in some convex domains with real analytic boundary, Math. Ann., 269 (1984), 527-539.
[5] J. E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569.
[6] P. Jakobczak, Extension and decomposition operators in products of strictly pseudoconvex sets, Ann. Polon. Math., XLIV (1984), 219-237.

