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Abstract

In this paper we shall prove that any holomorphic L? function on V, (1<p< ),
can be extended to a holomorphic L? function on D when D is the real ellipsoid and M
is a submanifold in general position in D. We also study the H* case.

1. Introduction. Let D be the domain such that
D={x+ive C": e +yim<1)
where n;, m;, are positive integers. We set
P(Z)':;:(x?”’-i-y?’”’)—l for z=x+1y.

Let V be a subvariety in a neighborhood D of D which intersects dD transversally.
Suppose that V is written in the form

V={zeD:hiz)=...... =hn(z)=0} (m<n)
where hi(z), ...... , hm(z) are holomorphic in D which satisfy dhiA...... A dhn A dp+0 on
VNaD. Let V=V ND. Under the above assumption concerning V, we shall show that

THEOREM 1. Suppose that { is a bounded holomorphic function in V and 0< e<
1. Then there exist a holomorphic function F in D such that F | V=1, o(z)F(z)eA.(D)
for any 0<a<e.

Let W be a submanifold of dimension k in a neighborhood of D which intersects 6D
transversally. Let W=WND. Then we have

THEOREM 2. Letf be a holomorphic function in W satisfying L/ [ f]*do< oo, (1
<p< ). Then there exists a holomorphic function F in D satisfying
14 < 4
[1F17am=co) [ It |°do,
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where dm and do ave Lebesgue measures on D and W, respectively.

To prove the above theorems, we use the techniques of Diederich, Fornaess and
Wiegerinck [2] . They constructed the support function ®(¢, z), holomorphic in z, and
proved the Holder estimates for @ equation on D. Finally, we will adopt the conven-
tion of denoting by ¢ any positive constant which does not depend on the relevant
parameters in the estimate.

2. Preliminaries. Let f*(z) be the boundary value of f e H*(V), where H*(V) is the
space of all bounded holomorphic functions in V. Since D is convex, f*(z) exists almost
everywhere on V. Let

r=(7, ceeen. ,7n): dDXD—CY
be a smooth function such that

(&—z, (¢, Z))=j2:(§;—zj)7j(§, z)#0 for (¢, z) € 9D X D.

Using the theorem of Hatziafratis [3] , we have

PROPOSITION 1., Forf eHV), and z e V, we have
()= [ FHOK(, 2)

where (1) K(&,z) is written as a sum of terms
n—m—1_ n—m
0’("5, Z) AN a!?’k; A dgs/
i=1 i=1
(&—z, 72"
(i)  a(¢,z)is smooth on dDXD
(iit) i vA¢&, z) is holomorphic in z, then o(&, z) is also homomorphic in z.

Definition. We denote by A«(D), (0< a<1), the space of all functions on D which
satisfy
[ f(z)—f(w) | <ca|lz—w|*  for any z, w e D.

Now we shall state some results proved by Diederich, Fornaess and Wiegerinck
[2] . Letz=x+iyeD, {=&+inpeD. We set
718, 2)= 08—l (7™ 72— &2 25— &)+ (2,— &)™ 7]

where we have used the notation %= 0; and %= 0;. We may assume n;=m;. Then
J

if we choose ¢; >0 small enough, there exists c.>0 such that
(1) 2Re(¢—z, 7(§, 2)) =2 —o(z)+ (&)

N

T B UEM 2+ 7™ ) [ za— G| *4 | 24— G | *™]

h=

for (¢, z) e DXD. Moreover, they obtained the following lemmas:
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LEMMA 1. Forq>0,s=0071,j=s,s+1,...... ,and A positive, close to 0,
f [t+x[7°|x|°dxdy _ O(A"™9) if g#1
121 < (A+ TR TGEHY)T | 0®log A) if g=1

independent of t € (—R, R).

LEMMA 2. For q>0,j=1, and A positive, close to 0,

f [t+x [ '|y|dxdy _ O(A'™9) if g#1
1z <2 (A+ [t+x P+ 7| 0(log A) if g=1

independent of t e (—R, R), wherer=|z| =(x*+y?)"2

We set
_uril&z2) .
Q=2"0(8) 95

Then by Berndtsson [1] , we have the following:

PROPOSITION 2. Let f be a holomorphic function in W satisfying /;, | f]do<

oo, Then

_ (o) IQ* A
F(z)=cw, kﬁ/ (< 7(;‘;), z—§&> +p(§§)k“

is holomorphic in D and satisfvies F | w=£f, where p is a (N—k, N—Kk) current in ¢
whose coefficients are smooth functions in ¢ €D, depending holomorphically onz €D,
and k is the dimension of W.

3. Proof of theorem 1. Let k be the dimension of V. Let B{i=0,1, ...... , No) be
balls with centers on dV and radius 1, which form a cover of dV. Let B, be the ball
with the same center as B; and radius 2r,. Since

dhA...... Adhn A dp=+0 on 9V,
we may assume that

(%(z)l =¢>0 in B..

Then

—Yp @ . i _
Lj-pkaz_j Pia (=1, ....... k—1)

form a base for the (0, 1) tangential vector fields on 9V NBo. For i#k

@) Loyl S8ucll & 127724 19 1772+ | 2= & | (n) | & 1297+ p(mi) | e | 2779,
| Ly | c(| & 2771+ | 9,127,

where #(3)=0 for j=1, x(j)=1forj=2,3, ......
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We can introduce new real coordinates on B as follows: For ¢ e BoND fixed, if
we setr;=Re(z;— &), 0;=Im(z,— &), A=Im &(¢, z), p=p(¢)— o(z), then r;, 0;(j=1, ...... ,
k—1,k+1,...... ,N), 4, o form coordinates on Bo in such a way that z;, 6,(i=1, ...... k
—1), form coordinates of dVNBo. Let £>0and

F(z):favf*(?g)K(C, 7) forz eD.
Then F(z) is holomorphic in D. Let z=x+iy ¢ Bo Then
% 9 (p(2)F(2)) = £p(2)""" p (Z)F(Z)-i-p(Z) (Z)

. oF .
Since %,
—2 k k—2 k
(6 B¢, Z) /\1 J. m A dés, *(£) B¢, 2) /\1 6m, A dgs,
= Z
av (§—z, (¢, Z))” ﬁv (&2, r(C Z))"“
where 81(¢, z) is a smooth (0, 1), form and 8:(¢, z) is a smooth function. SinceL;, (j=
1,...... ,k—1), form a base for the (0, 1) tangential vector fields, we have to estimate
the following integrals:
k—1 k k—2 k
/\ L.Iy] /\ dé’s, /\ L.ly.l/\d Ct /\ dé;;
f =1 ’ f =1 =1
aVNBe (§ z, 7(? z))* oV N B (&—z, 7(¢, Z))k ’
k—1 k

A Ly A dE,
1= 1=
/avnB» (&—z, (¢, Z))k“

By applying lemmas 1, 2, and inequalities (1), (2), we have

k—2 k
/ avNB,

A Ly A d&,AdA .
=1 i=1 dr—idok_, < C

(&2, 7(¢,2)) gcf laid<r | 0(2) [ +(zi1Foro)™ o@) [

|l7h»1 | <R

k—1 k
N L17] A dgs,

S o =7
o | (E—z, 7(§ z))*!

k—1 k
/avnBo

/\ L,7, /\ dCS,
W
From the equality (3), we have
, %, (p(Z)EF(Z))|<c{| o(z) | log | o(2) || + | o(z) | <] p(z) | '}
<clp(z)|* (0<a<e).

< C
“le@)

<c|loglo(z)|l.

Therefore we obtain
4) | V(o(2)°F(2)) | =c[dist(z, dD)]*",
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where V denotes the real gradient. From (4), we have
| 0(2)°F(z)~ (W)Y F(w) | <c|lz—w]|!| for z,w eD.
This completes the proof of theorem 1.

4, Proof of theorem 2. Since
= 1 oy, 1 = ul
IQ= Z FE-dLNAG— 7 0N 2 7dE),
o d¢&; Y =1
and dpA3dp=0, coeff1c1ents of (3Q)* consist of the following:

1 Oy ... 0% 1 97 .. a?’j“ dp
0% 9¢n d&a 0* 3 En ag;‘u '3§

where ji, Jz, ...... , & are integers such that js#j. if s#t. We may assume that j;=1, ...... ,
je=k. Now we shall show that

on 07k
e p(§)'dm(2)
) I'_];|<r,z—§>p(t)|"“ =c

and

I . Oye—
_ (19838, “}dm(Z)
) L= f (< z-E>a@ T =

Since the integrand of 1, is less singular than that of I, we shall show that I;<c. For
>0 sufficiently small, we set Ue={¢ eD:]|po(¢)| <e}). Let { eU.. To prove the
inequality (6), it is sufficient to show that

Iy . Oe-s
-f g dmiz)
) vape ol <7, z—§>p(§) [+

By the same method as the proof of theorem 1, we obtain

A

C.

I SC./‘Ic SR [log (I o(£) | + ﬁ (E 2+ 9im ) 2, — &1 °

FZE+1
| tow | SR

+12;—& | ?™) | dtarsr-dte.
we set A= max m;, and we introduce polar coordinates. Then we have
R
éc‘ﬁ [Tog (| o) | +1*) [rdr=c | o(§) | " =c.

Therefore we have

[1F@ ldm@sc [, 155)1 da(?).
In case p>1, we write F(z) in the following form

F(2)= [ (2)T(¢, Ddo(?).

Let q be such that %; + —(11~=1. Then, by applying Hélder’s inequality, we have

IFG) 1 >=( [ 1601711, 2 1do(0) [, 1 T(, 2 1dat®))™

By the same method as the case p=1, we obtain
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P P
[IFI*amsc [ 1£]*ds,
which completes the proof of theorem 2.
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