H[°] Estimates for Extensions of Holomorphic Functions on Convex Domains

Kenzo Adachi

Department of Mathematics, Faculty of Education Nagasaki University, Nagasaki

Abstract

In this paper we prove that any $f \in H^{e}(M)$ $(1 \le p < \infty)$ can be extended to a function in $H^{e}(D)$ when D is some convex domain with real analytic boundary and M is a submanifold in general position in D.

1. Introduction. Let G be a bounded strictly pseudoconvex domain in C^{*} with C^{*}-boundary and \widetilde{M} be a submanifold in a neighborhood of \overline{G} which intersects ∂G transversally. Let $M = \widetilde{M} \cap G$. Henkin [7] proved that any bounded holomorphic function in M can be extended to a bounded holomorphic function in G. Recently, Cumenge [6] and Beatrous [2], [3] studied certain norm estimates for extensions of holomorphic functions on M to G. On the other hand, Bruna and Castillo [5] proved the fundamental inequality for some convex domain D with real analytic boundary, and they obtained Hölder and L^{*} estimates for the $\overline{\partial}$ -equation. In the previous paper [1], the author studied L^{*} extensions of holomorphic functions in M to D. In the present paper, we shall show that any function f in H^{*} (M), $1 \le p < \infty$, can be extended to a function H in H^{*} (D). Moreover we give some estimates for extensions of bounded holomorphic functions in M. Finally, we will adopt the convention of denoting by c any positive constant which does not depend on the relevant parameters in the estimate in which it occurs.

2. H^1 estimates. Let D be a bounded domain in C^n of the type

$$D = \{z : \rho(z) < 0\}$$

where

$$\rho(z) = \sum_{i=1}^{n} s_i(|z^i|^2) - 1.$$

Kenzo Adachi

We set ρ_i (w) = s_i (+w + ²) for one complex variable w. We assume s_i is real analytic in an interval [0, a_i] such that

(i) $s'_i(t) \ge 0$, $s'_i(t) + 2ts''_i(t) \ge 0$ for $0 \le t < a_i$ (ii) $s_i(0) = 0$, $s_i(a_i) > 1$.

For example, $D^{(m)} = \{z : \sum_{i=1}^{n} |z_i|^{2\pi_i} < 1\}$ is one of the above domains, where m_i 's are positive integers.

Let

$$F(\zeta, z) = \sum_{i=1}^{n} \frac{\partial \rho}{\partial \zeta_{i}}(\zeta) (\zeta_{i} - z_{i})$$

Let \widetilde{M} be a submanifold of dimension k in a neighborhood of \overline{D} which intersects ∂D transversally. Let $M = \widetilde{M} \cap D$, and $\delta(z) = \text{dist}(z, \partial D)$. For $\epsilon > 0$ sufficiently small, we set $D_{\epsilon} = \{z : \rho(z) < -\epsilon\}$. For an open set Ω in a complex manifold, we denote by $H^{\rho}(\Omega)$ the usual Hardy class, and by $L^{1}(\Omega)$ the space of all integrable functions in Ω . By applying the theorem of Berndtsson [4], we have the following. (cf. Adachi [1]).

PROPOSITION 1. Let
$$f \in L^{1}(M) \cap O(M)$$
. Then

$$H(z) = c_{\kappa} \int_{M} \frac{f(\zeta) \rho(\zeta)^{*+1} (\partial \overline{\partial} \log((-\frac{1}{\rho(\zeta)}))^{*} \wedge \mu}{(\langle \partial \rho(\zeta), z-\zeta \rangle + \rho(\zeta))^{*+1}}$$

is holomorphic in D and satisfies $H \mid_{M} = f$, where μ is a (n-k, n-k)-current in ζ whose coefficients are measures supported in M, depending holomorphically on z.

Now we prove the following theorem. The proof is based on the techniques of Range [8].

THEOREM 1. Let $f \in H^1(M)$. Then $H \in H^1(D)$.

PROOF. By the estimates of Adachi [1], if we set

$$\mathbf{a}_{j}(\boldsymbol{\zeta}_{j}) = \frac{\partial^{2} \rho}{\partial \boldsymbol{\zeta}_{j} \partial \overline{\boldsymbol{\zeta}}_{j}}(\boldsymbol{\zeta}_{j})$$

then

$$| H(z) | \leq c \int_{M} \frac{| f(\zeta) | \prod_{s=1}^{n} a_{i_{s}}(\zeta_{i_{s}})}{(| \langle \partial \rho(\zeta), z-\zeta \rangle + \rho(\zeta))^{k+1}} dV_{M}(\zeta)$$

In the above integral, i_1, \ldots, i_k are mutually distinct integers. For a small neighborhood U of a point in ∂D , we can choose local coordinates $(t_1, t_2, \ldots, t_{2n})$ in U such that $t_i = +\rho(\zeta) + +\rho(z) + t_2 = \text{Im F}(\zeta, z)$, and $t_{2s-1} + \text{i}t_{2s} = \zeta_{i_s} - z_{i_s}$ (s=2,...,k).

H[°] Estimates for Extensions of Holomorphic Functions on Convex Domains

We set $t' = (t_{z_{k+1}}, \dots, t_{z_n})$. Then we have for $\epsilon > 0$ sufficiently small $| H(z) | \leq c \int_{|t_2| < \delta_0} \frac{dt_2 \dots dt_{z_n}}{(\epsilon + |t_2| + |t'|^n)^2 \prod_{j=2}^n (\epsilon + t_{z_j-1}^2 + t_{z_j}^2)}$ $\leq c + \rho(\zeta) | -1 + \frac{1}{m} - \delta(k-1)$

We choose $\delta > 0$ such that $\eta = \frac{1}{m} - \delta(k-1) > 0$. Then we have $I \leq c + \rho(\zeta) + \frac{-1+\eta}{2}$.

By Fubini's theorem and the partition of unity argument, we have, $\int_{\partial D_{\epsilon}} |H(z)| d\sigma(z) \leq c \int_{M} |f(\zeta)| |\rho(\zeta)|^{-1+\eta} dV_{M}(\zeta)$ $\leq c \int_{0}^{\delta_{1}} \left(\int_{\partial M_{\epsilon}} |f(\zeta)| t^{-1+\eta} d\sigma_{M}(\zeta) \right) dt \leq c \int_{0}^{\delta_{1}} t^{-1+\eta} dt \leq c.$

Therefore H ϵ H'(D). This completes the proof of theorem 1.

3. H^{ρ} estimates $(1 . For <math>z \in M$, we may assume that $(\frac{\partial \rho}{\partial x_{i}}(z), \frac{\partial \rho}{\partial y_{i}}(z), \dots, \frac{\partial \rho}{\partial y_{n}}(z)) = (1, 0, \dots, 0).$

If we set $\tau_{z}(\zeta) = \text{Im } F(\zeta, z)$, then

$$\frac{\partial \tau_z(z)}{\partial y_1} = \frac{1}{2} \frac{\partial \rho}{\partial x_1}(z)$$

By the transversality of M, we can choose local coordinates (w_1, \ldots, w_k) for M in a neighborhood U of z such that

$$\begin{split} \mathbf{w}_{i} &= \rho \; (\zeta) \; + \; \mathrm{i} \tau_{z} \; (\zeta), \; \mathbf{w}_{i} = \zeta_{i} - \mathbf{z}_{i} \; (\mathrm{i} = 2, \ldots, \mathrm{k}). \end{split}$$
We set $\mathbf{w}_{j} = \mathbf{t}_{z_{i}-1} + \; \mathrm{i} \mathbf{t}_{z_{j}} \; (\mathrm{j} = 1, \ldots, \mathrm{k}).$ Then we prove the following:

THEOREM 2. Let $f \in H^{\prime}(M)$ $(1 . Then <math>H \in H^{\prime}(D)$.

PROOF. We set

$$\mathrm{K}\left(\zeta,\,\mathrm{z}\right)\mathrm{d}\mathrm{V}_{^{\!\!M}}\left(\zeta\right) = \frac{\mathrm{c}_{^{\!\!\!k}}\rho\left(\zeta\right)^{^{\!\!\!\!k+1}}\left(\partial\widetilde{\partial}\mathrm{log}\left(-\frac{1}{\rho\left(\zeta\right)}\right)\right)^{^{\!\!\!k}}\wedge\mu}{\left(<\rho\left(\zeta\right),\,\,\mathrm{z}-\zeta>+\rho\left(\zeta\right)\right)^{^{\!\!\!\!k+1}}}$$

where $dV_M(\zeta)$ is the Lebesgue measure on M. Then we have

$$H(z) = \int_{M} f(\zeta) K(\zeta, z) dV_{M}(\zeta).$$

Kenzō Adachi

Let q be a positive number such that $\frac{1}{p} + \frac{1}{q} = 1$. We choose ϵ such that $0 < \epsilon_p < \frac{1}{2}$. By Hölder's inequality, we obtain

$$\mid \mathrm{H}(z) \mid {}^{\rho} \leq \left(\int_{M} \mid \mathrm{f}(\zeta) \mid {}^{\rho} \delta(\zeta) {}^{-\epsilon\rho} \mid \mathrm{K}(\zeta, z) \mid \mathrm{d} \mathrm{V}_{\mathrm{M}}(\zeta) \right) \left(\int_{M} \mid \mathrm{K}(\zeta, z) \mid \delta(\zeta) {}^{\epsilon q} \mathrm{d} \mathrm{V}_{\mathrm{M}}(\zeta) \right) {}^{\frac{\rho}{q}}$$

Let V be a small neighborhood of a point in M. Let $V \subset \subset U$, and U be an open set in which we can choose local coordinates as above. We fix z in V. Then

$$\int_{M\cap U} | K (\zeta, z) + \delta (\zeta)^{\epsilon \alpha} dV_M (\zeta)$$

$$\leq c\int \frac{t_{1}^{\epsilon_{q-\sigma(k-1)}}dt_{1}}{|t_{1}| \leq \delta_{0} |t_{1}| + |\rho(z)|} \prod_{j=2}^{k} \int \frac{dt_{2j-1}dt_{2j}}{|W_{j}| \leq \delta_{0} |W_{j}|^{2(1-\sigma)}} \leq c,$$

provided that we choose $\delta > 0$ such that $\epsilon_q > \delta(k-1)$. The partition of unity arguments yields

$$\int_{M} | K(\zeta, z) | \delta(\zeta)^{\varepsilon q} dV (\zeta) \leq c.$$

Now we choose local coordinates (u_1, \ldots, u_{2n}) in a neighborhood V such that $u_1 = -\rho(z)$, $u_2 = \text{Im } F(\zeta, z)$, and (u_1, \ldots, u_{2n}) form local coordinates of $M \cap V$. We set $u = (u_{2n+1}, \ldots, u_{2n})$. Then by Fubini's theorem we obtain

$$\int_{\partial D_{\eta} \cap V} | H(z) |^{p} d\sigma(z) \leq c \int_{M} | f(\zeta) |^{p} \delta(\zeta)^{-\epsilon p} \int_{\partial D_{\eta} \cap V} | K(\zeta, z) | du_{zn} dV_{M}(\zeta)$$

$$\leq c \int_{M} \left| f\left(\zeta\right) + {}^{\rho} \delta\left(\zeta\right) - {}^{c\rho} \int_{\left| u' \right| \leq \delta_{0}} \frac{du}{\delta\left(\zeta\right) + \left| u' \right|^{\frac{m}{2}}} \delta\left(\zeta\right) - {}^{\sigma\left(k-1\right)} dV_{M}\left(\zeta\right)$$

$$\leq \mathrm{c} \int_{M} | f(\zeta) |^{\rho} \delta(\zeta)^{-\epsilon\rho_{-}\sigma(k_{-})-1+\frac{1}{m}} \mathrm{d} \mathrm{V}_{M}(\zeta).$$

We choose ε and δ so small that $\varepsilon_{\mathrm{p}}+\delta\left(k\text{--}1\right)<\frac{1}{m}.$ Then

$$\sup_{\eta > 0} \int_{\partial D_{\eta} \cap V} | H(z) |^{\rho} d\sigma(z) < \infty.$$

The partition of unity arguments yields H ϵ H^e(D). This completes the proof of theorem 2.

THEOREM 3. Let $f \in H^{\infty}(M)$. Then for any $\epsilon > 0$, $\delta(z)^{\epsilon}H(z)$ is bounded in D.

PROOF. By the same method as proofs of the above two theorems, we have $\delta(z)$ ^cH(z) |

$$\leq \int \frac{c\,\delta(z)\,{}^{\epsilon}dt_{1}...dt_{z_{k}}}{\left|\begin{array}{c}t_{1}\right| < \delta_{_{0}}} \frac{c\,\delta(z)\,{}^{\epsilon}dt_{1}...dt_{z_{k}}}{\left(\delta(z) + t_{_{2}j^{-1}} + t_{_{2}j}^{2}\right)} \\ + t_{_{2k}}^{\cdots} | < \delta_{_{0}} \end{array}$$

provided that $\epsilon > \delta$ (k-1). This completes the proof of theorem 3.

REFERENCES

- K. Adachi, L^e estimates for extensions of holomorphic functions in convex domains, Kobe J. Math., 3 (1986), 87-92.
- [2] F. Beatrous, L' estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
- [3] —, estimates for derivatives of holomorphic functions in pseudoconvex domains, Math.
 Z. 191 (1986), 91-116.
- [4] B. Berndtsson, A formula for interpolation and division in Cⁿ, Math. Ann., 263 (1983), 399-418.
- [5] J. Bruna and J. del Castillo, Hölder and L^e estimates for the ∂-equation in some convex domains with real-analytic boundary, Math, Ann., 269 (1984), 527-539.
- [6] A. Cumenge, Extension dans des classes de Hardy de fonctions holomorphes et estimations de type "mesures de Carleson" pour l'equation ∂, Ann. Inst. Fourier 33 (1983), 59-97.
- [7] G.M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563.
- [8] R.M. Range, On Hölder estimates for ∂u=f on weakly pseudoconvex domains, Proc. Int. Conf. Cortona, Italy 1976-1977, (1978), 247-267.