H^{ρ} Estimates for Extensions of Holomorphic Functions on Convex Domains

Kenzō ADACHI
Department of Mathematics, Faculty of Education
Nagasaki University, Nagasaki

Abstract

In this paper we prove that any $f \in H^{\rho}(M)(1 \leqq p<\infty)$ can be extended to a function in H^{ρ} (D) when D is some convex domain with real analytic boundary and M is a submanifold in general position in D. 1. Introduction. Let G be a bounded strictly pseudoconvex domain in C^{n} with C^{2}-boundary and \widetilde{M} be a submanifold in a neighborhood of \bar{G} which intersects ∂G transversally. Let $\mathrm{M}=\widetilde{\mathrm{M}} \cap \mathrm{G}$. Henkin [7] proved that any bounded holomorphic function in M can be extended to a bounded holomorphic function in G. Recently, Cumenge [6] and Beatrous [2], [3] studied certain norm estimates for extensions of holomorphic functions on M to G . On the other hand, Bruna and Castillo [5] proved the fundamental inequality for some convex domain D with real analytic boundary, and they obtained Hölder and L^{p} estimates for the $\bar{\partial}$-equation. In the previous paper [1], the author studied L^{p} extensions of holomorphic functions in M to D . In the present paper, we shall show that any function f in $\mathrm{H}^{p}(\mathrm{M}), 1 \leqq \mathrm{p}<\infty$, can be extended to a function H in H^{0} (D). Moreover we give some estimates for extensions of bounded holomorphic functions in M. Finally, we will adopt the convention of denoting by c any positive constant which does not depend on the relevant parameters in the estimate in which it occurs.

2. H^{1} estimates. Let D be a bounded domain in C^{n} of the type

$$
\mathrm{D}=\{\mathrm{z}: \rho(\mathrm{z})<0\}
$$

where

$$
\rho(z)=\sum_{i=1}^{n} s_{i}\left(\left|z^{i}\right|^{2}\right)-1
$$

We set $\rho_{i}(\mathrm{w})=\mathrm{s}_{i}\left(|\mathrm{w}|^{2}\right)$ for one complex variable w. We assume s_{i} is real analytic in an interval $\left[0, a_{i}\right]$ such that
(i) $\mathrm{s}_{i}^{\prime}(\mathrm{t}) \geqq 0, \mathrm{~s}_{i}^{\prime}(\mathrm{t})+2 \mathrm{ts}_{i}^{\prime \prime}(\mathrm{t}) \geqq 0$ for $0 \leqq \mathrm{t}<\mathrm{a}_{t}$
(ii) $\quad s_{i}(0)=0, s_{i}\left(a_{i}\right)>1$.

For example, $D^{(m)}=\left\{z: \sum_{i=1}^{n}\left|z_{i}\right|^{2 m_{i}}<1\right\}$ is one of the above domains, where m_{i} 's are positive integers.
Let

$$
\mathrm{F}(\zeta, \mathrm{z})=\sum_{i=1}^{n} \frac{\partial \rho}{\partial \zeta_{i}}(\zeta)\left(\zeta_{i}-\mathrm{z}_{t}\right)
$$

Let \widetilde{M} be a submanifold of dimension k in a neighborhood of \bar{D} which intersects ∂D transversally. Let $M=M \cap D$, and $\delta(z)=\operatorname{dist}(z, \partial D)$. For $\epsilon>0$ sufficiently small, we set $D_{\varepsilon}=\{\mathrm{z}: \rho(\mathrm{z})<-\epsilon\}$. For an open set Ω in a complex manifold, we denote by $\mathrm{H}^{\rho}(\Omega)$ the usual Hardy class, and by $\mathrm{L}^{1}(\Omega)$ the space of all integrable functions in Ω. By applying the theorem of Berndtsson [4], we have the following. (cf. Adachi [1]).

$$
\begin{aligned}
& \text { PROPOSITION 1. Let } \mathrm{f} \in \mathrm{~L}^{1}(\mathrm{M}) \cap \mathrm{O}(\mathrm{M}) \text {. Then } \\
& \mathrm{H}(\mathrm{z})=\mathrm{c}_{\kappa} \int_{M} \frac{\mathrm{f}(\zeta) \rho(\zeta)^{\kappa+1}\left(\partial \bar{\partial} \log \left(-\frac{1}{\rho(\zeta)}\right)\right)^{\kappa} \wedge \mu}{(<\partial \rho(\zeta), \mathrm{z}-\zeta>+\rho(\zeta))^{\kappa+1}}
\end{aligned}
$$

is holomorphic in D and satisfies $\left.\mathrm{H}\right|_{M}=\mathrm{f}$, where μ is a $(\mathrm{n}-\mathrm{k}, \mathrm{n}-\mathrm{k})$-current in ζ whose coefficients are measures supported in M , depending holomorphically on z .

Now we prove the following theorem. The proof is based on the techniques of Range [8].

Theorem 1. Let $\mathrm{f} \in \mathrm{H}^{1}(\mathrm{M})$. Then $\mathrm{H} \in \mathrm{H}^{1}(\mathrm{D})$.

Proof. By the estimates of Adachi [1], if we set
$\mathrm{a}_{j}\left(\zeta_{j}\right)=\frac{\partial^{2} \rho}{\partial \zeta_{j} \partial \bar{\zeta}_{j}}\left(\zeta_{j}\right)$
then

$$
|\mathrm{H}(\mathrm{z})| \leqq \mathrm{c} \int_{M} \frac{|\mathrm{f}(\zeta)| \prod_{s=1}^{\kappa} \mathrm{a}_{i_{s}}\left(\zeta_{i_{s}}\right)}{(\mid<\partial \rho(\zeta), \mathrm{z}-\zeta>+\rho(\zeta))^{+_{1}}} \mathrm{~d} V_{M}(\zeta)
$$

In the above integral, i_{1}, \ldots, i_{k} are mutually distinct integers. For a small neighborhood U of a point in ∂D, we can choose local coordinates $\left(t_{1}, t_{2}, \ldots, t_{2 n}\right)$ in U such that $\mathrm{t}_{1}=|\rho(\zeta)|+|\rho(\mathrm{z})|, \mathrm{t}_{2}=\operatorname{Im} \mathrm{F}(\zeta, \mathrm{z})$, and $\mathrm{t}_{2 s-1}+\mathrm{it}_{2 s}=\zeta_{i_{s}}-\mathrm{z}_{\mathrm{i}_{s}}(\mathrm{~s}=2, \ldots, \mathrm{k})$.

We set $\mathrm{t}^{\prime}=\left(\mathrm{t}_{2 \kappa}+1, \ldots, \mathrm{t}_{2 n}\right)$. Then we have for $\epsilon>0$ sufficiently small

$$
\begin{aligned}
& |\mathrm{H}(\mathrm{z})| \leqq \mathrm{c} \int_{\left|\mathrm{t}_{2}\right|<\delta_{0}} \frac{\mathrm{dt}_{2} \ldots \mathrm{dt}_{2 n}}{\left(\epsilon+\left|\mathrm{t}_{2}\right|+\left|\mathrm{t}^{\prime}\right|^{m}\right)^{2} \prod_{j=2}^{k}\left(\epsilon+\mathrm{t}_{2 j-1}^{2}+\mathrm{t}_{2 j}^{2}\right)} \\
& \quad \leqq \mathrm{c}|\rho(\zeta)|<\delta_{0} \\
& \quad-1+\frac{1}{\mathrm{~m}}-\delta(\mathrm{k}-1)
\end{aligned}
$$

We choose $\delta>0$ such that $\eta=\frac{1}{\mathrm{~m}}-\delta(\mathrm{k}-1)>0$. Then we have

$$
I \leqq c|\rho(\zeta)|^{-1+\eta}
$$

By Fubinis theorem and the partition of unity argument, we have.
$\int \partial \mathrm{D}_{\varepsilon}|\mathrm{H}(\mathrm{z})| \mathrm{d} \sigma(\mathrm{z}) \leqq \mathrm{c} \int_{M}|\mathrm{f}(\zeta)||\rho(\zeta)|^{-1+\eta} \mathrm{dV}_{M}(\zeta)$
$\leqq \mathrm{c} \int_{0}^{\delta_{1}}\left(\int_{\partial \mathrm{M}_{\mathrm{t}}}|\mathrm{f}(\zeta)| \mathrm{t}^{-1+\eta} \mathrm{d} \sigma_{M}(\zeta)\right) \mathrm{dt} \leqq \mathrm{c} \int_{0}^{\delta_{1}} \mathrm{t}^{-1+\eta} \mathrm{dt} \leqq \mathrm{c}$.
Therefore $H \in H^{\prime}(D)$. This completes the proof of theorem 1 .
3. H^{p} estimates $(1<p \leqq \infty)$. For $z \in M$, we may assume that

$$
\left(\frac{\partial \rho}{\partial \mathrm{x}_{1}}(\mathrm{z}), \frac{\partial \rho}{\partial \mathrm{y}_{1}}(\mathrm{z}), \ldots, \frac{\partial \rho}{\partial \mathrm{y}_{n}}(\mathrm{z})\right)=(1,0, \ldots, 0)
$$

If we set $\tau_{z}(\zeta)=\operatorname{Im} F(\zeta, z)$, then

$$
\frac{\partial \tau_{z}}{\partial \mathrm{y}_{\mathrm{t}}}(\mathrm{z})=\frac{1}{2} \frac{\partial \rho}{\partial_{\mathrm{x}_{1}}}(\mathrm{z})
$$

By the transversality of M, we can choose local coordinates (w_{1}, \ldots, w_{k}) for M in a neighborhood U of z such that

$$
\mathrm{w}_{1}=\rho(\zeta)+\mathrm{i} \tau_{z}(\zeta), \mathrm{w}_{i}=\zeta_{i}-\mathrm{z}_{i}(\mathrm{i}=2, \ldots, \mathrm{k}) .
$$

We set $\mathrm{w}_{j}=\mathrm{t}_{2 j-1}+\mathrm{t}_{2 j}(\mathrm{j}=1, \ldots, \mathrm{k})$. Then we prove the following :
Theorem 2. Let $\mathrm{f} \in \mathrm{H}^{\rho}(\mathrm{M})(1<\mathrm{p}<\infty)$. Then $\mathrm{H} \in \mathrm{H}^{\rho}(\mathrm{D})$.
Proof. We set
$\mathrm{K}(\zeta, \mathrm{z}) \mathrm{dV}_{M}(\zeta)=\frac{\mathrm{c}_{\kappa} \rho(\zeta)^{k+1}\left(\partial \bar{\partial} \log \left(-\frac{1}{\rho(\zeta)}\right)\right)^{k} \wedge \mu}{\left(\langle\rho(\zeta), \mathrm{z}-\zeta>+\rho(\zeta))^{\kappa+1}\right.}$
where $\mathrm{dV}_{M}(\zeta)$ is the Lebesgue measure on M. Then we have

$$
\mathrm{H}(\mathrm{z})=\int_{M} \mathrm{f}(\zeta) \mathrm{K}(\zeta, \mathrm{z}) \mathrm{dV}_{M}(\zeta)
$$

Let q be a positive number such that $\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=1$. We choose $\boldsymbol{\epsilon}$ such that $0<\boldsymbol{\epsilon} \mathrm{p}<\frac{1}{2}$. By Hölder's inequality, we obtain

$$
|\mathrm{H}(\mathrm{z})|^{\circ} \leqq\left(\int_{M}|\mathrm{f}(\zeta)|^{\rho} \delta(\zeta)^{-\epsilon \rho}|\mathrm{K}(\zeta, \mathrm{z})| \mathrm{dV}_{M}(\zeta)\right)\left(\int_{M}|\mathrm{~K}(\zeta, \mathrm{z})| \delta(\zeta)^{e q} \mathrm{~d} \mathrm{~V}_{M}(\zeta)\right)^{\frac{\rho}{\natural}}
$$

Let V be a small neighborhood of a point in M. Let $V \subset \subset U$, and U be an open set in which we can choose local coordinates as above. We fix z in V. Then

$$
\int_{M \cap U}|\mathrm{~K}(\zeta, \mathrm{z})| \delta(\zeta)^{\epsilon d} \mathrm{dV}_{M}(\zeta)
$$

$$
\leqq \mathrm{c} \int_{\left|\mathrm{t}_{1}\right| \leqq \delta_{0} \mid \mathrm{t}_{1}^{c \mathrm{t}_{1} \mid+\sigma\left(\alpha_{-1}\right)} \mathrm{dt}_{1}}^{\mathrm{t}_{1}|\rho(\mathrm{z})|} \prod_{j=2}^{k} \int_{\left|\mathrm{w}_{j}\right|} \frac{\mathrm{dt}_{2 j}-\mathrm{dt}_{2 j}}{\leqq \delta_{0}\left|\mathrm{w}_{j}\right|^{2(1-\sigma)}} \leqq \mathrm{c},
$$

provided that we choose $\delta>0$ such that $\epsilon \mathrm{q}>\delta(\mathrm{k}-1)$. The partition of unity arguments yields

$$
\int_{M}|\mathrm{~K}(\zeta, z)| \delta(\zeta)^{c e} \mathrm{dV}(\zeta) \leqq \mathrm{c} .
$$

Now we choose local coordinates $\left(u_{1}, \ldots, u_{2 n}\right)$ in a neighborhood V such that $u_{1}=-\rho(z)$, $u_{2}=\operatorname{Im} F(\zeta, z)$, and $\left(u_{1}, \ldots, u_{2 k}\right)$ form local coordinates of $M \cap V$. We set $u=\left(u_{2 k+1}\right.$, $\left.\ldots, u_{2 n}\right)$. Then by Fubini's theorem we obtain

$$
\begin{aligned}
& \int_{\partial D_{\eta} \cap \mathrm{v}}|\mathrm{H}(\mathrm{z})|^{\rho} \mathrm{d} \sigma(\mathrm{z}) \leqq \mathrm{c} \int_{M}|\mathrm{f}(\zeta)|^{\rho} \delta(\zeta)^{-\epsilon \rho} \int_{\partial \mathrm{D}_{\eta} \cap v}|\mathrm{~K}(\zeta, \mathrm{z})| \mathrm{du}_{2} . . \mathrm{du}_{2 n} \mathrm{dV}_{M}(\zeta) \\
& \leqq \mathrm{c} \int_{M}|\mathrm{f}(\zeta)|^{\rho} \delta(\zeta)^{-c \rho} \int_{\left|\mathrm{u}^{\prime}\right|} \frac{\mathrm{du}}{\delta(\zeta)+\left|\mathrm{u}^{\prime}\right|^{m}} \delta(\zeta)^{-\sigma(\xi-1)} \mathrm{dV}_{M}(\zeta) \\
& \leqq \mathrm{c} \int_{M}|\mathrm{f}(\zeta)|^{\rho} \delta(\zeta)^{-\epsilon \rho-\sigma\left((x-1)^{-1+\frac{1}{m}}\right.} \mathrm{dV}_{M}(\zeta)
\end{aligned}
$$

We choose ϵ and δ so small that $\epsilon \mathrm{p}+\delta(\mathrm{k}-1)<\frac{1}{\mathrm{~m}}$. Then

$$
\sup _{\eta>0} \int_{\partial \mathrm{D}_{\eta} \cap \mathrm{v}}|\mathrm{H}(\mathrm{z})|^{\rho} \mathrm{d} \sigma(\mathrm{z})<\infty .
$$

The partition of unity arguments yields $H \in H^{p}(\mathrm{D})$. This completes the proof of theorem 2.

Theorem 3. Let $\mathrm{f} \in \mathrm{H}^{\text {w }}(\mathrm{M})$. Then for any $\in>0, \delta(\mathrm{z})^{\epsilon} \mathrm{H}(\mathrm{z})$ is bounded in D.

Proof. By the same method as proofs of the above two theorems, we have $\mid \delta(z){ }^{c} \mathrm{H}(\mathrm{z})$ |
$\leqq \int_{\left|\mathrm{t}_{1}\right|<\delta_{0}} \frac{\mathrm{c} \delta(\mathrm{z})^{\mathrm{c}} \mathrm{dt}_{1} \ldots \mathrm{dt}_{2 k}}{\left(\delta(\mathrm{z})+\left|\mathrm{t}_{1}\right|+\left|\mathrm{t}_{2}\right|+\left|\mathrm{t}^{\prime}\right|^{\mathrm{m}}\right)^{2} \prod_{j=2}^{\mathrm{k}}\left(\delta(\mathrm{z})+\mathrm{t}_{2 j-1}^{2}+\mathrm{t}_{2 j}^{2}\right)}$
$\left|\mathrm{t}_{2 k} \mathrm{i}\right|<\delta_{0}$
$\leqq c \int_{\left|\mathrm{t}_{1}\right|<\delta_{0} \delta(\mathrm{z})+\left|\mathrm{t}_{1}\right|} \frac{\delta(\mathrm{z})^{c-\sigma\left(x_{-1}\right)}}{} \mathrm{dt}_{1} \int_{\left|\mathrm{t}_{3}\right|<\delta_{0}} \frac{\mathrm{dt}_{3} \ldots \mathrm{dt}_{2 k}}{\prod_{j=2}^{k}\left(\mathrm{t}_{2 j-1}^{2}+\mathrm{t}_{2 j}^{2}\right)^{1-\sigma}} \leqq \mathrm{c}$,
provided that $\epsilon>\delta(\mathrm{k}-1)$. This completes the proof of theorem 3 .

REFERENCES

[1] K. Adachi, Lestimates for extensions of holomorphic functions in convex domains, Kobe J. Math., 3 (1986), 87-92.
[2] F. Beatrous, L' estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
[3] - estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116.
[4] B. Berndtsson, A formula for interpolation and division in C^{n}, Math. Ann., 263 (1983), 399-418.
[5] J. Bruna and J. del Castillo, Hölder and L^{p} estimates for the ∂-equation in some convex domains with real-analytic boundary, Math, Ann., 269 (1984), 527-539.
[6] A. Cumenge, Extension dans des classes de Hardy de fonctions holomorphes et estimations de type "mesures de Carleson" pour 1'equation D, Ann. Inst. Fourier 33 (1983), 59-97.
[7] G.M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Math. USSR Izvestija, 6 (1972), 536-563.
[8] R.M. Range, On Hölder estimates for $\bar{\partial} u=f$ on weakly pseudoconvex domains, Proc. Int. Conf. Cortona, Italy 1976-1977, (1978), 247-267.

