Sci. Bull. Fac. Educ., Nagasaki Univ., No. 37, pp. 23~29 (1986)

Pluriharmonic Functions on a Domain Over a Product Space

Kenzo Adachi, Yukio Fukushima*

and Kiyoshi WATANABE**

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki (Received Oct. 31, 1985)

Abstract

Let D be a domain over a product space of a Stein manifold S and Grassmann manifolds G_i (i=1,2,...,N) and \tilde{D} be the envelope of holomorphy of D. In this paper we shall show that each real-valued pluriharmonic function on D is the real part of a holomorphic function on D if and only if $H^1(\tilde{D}, Z)=0$, provided that \tilde{D} is not holomorphically equivalent to the set $E \times V_1 \times ... \times V_{i-1} \times G_i \times V_{i+1} \times ... \times V_N$ (i=1,...,N), where E is an open set of S and V_i is an open set of G_i .

1. Introduction. Let M be a complex manifold. The real part of a holomorphic function on M is a real-valued pluriharmonic function on M. On the other hand, a real-valued pluriharmonic function on M is not always the real part of a holomorphic function on M. Matsugu[5] proved that each real-valued pluriharmonic function on a domain D over a Stein manifold is the real part of a holomorphic function on D if and only if $H^1(\tilde{D}, Z) = 0$, where \tilde{D} is the envelope of holomorphy of D and Z is the constant sheaf of integers. In the previous paper[2] we considered the case of a domain over a Grassmann manifold. In this paper we generalize the above two results.

2. Pluriharmonic function and envelope of pluriharmony. Let M be a complex manifold and u be a 2 times continuously differentiable complex-valued function on M. u is said to be pluriharmonic at a point $p \in M$ if $\partial \overline{\partial} u = 0$ in U, where U is a neighborhood of p. If u is pluriharmonic at every point of M, u is said to be pluriharmonic on M. Let O be the sheaf of germs of holomorphic functions and H be the sheaf of germs of real-valued pluriharmonic functions. We consider the two sheaf homomorphisms obtained by corresponding a holomorphic function f to its real part Re f, $r : O \rightarrow H$, and obtained

^{*} Department of Applied Mathematics, Faculty of Science, Fukuoka University.

^{**} Department of Mathematics, College of Liberal Arts Education, Kobe University

by corresponding a real number b to a purely imaginary number $b\sqrt{-1}$, i: R \rightarrow O, where R is the constant sheaf of the real number field. Since r is surjective by [3] (p. 272) and i is injective, we have the following lemma.

LEMMA 1. Let M be a complex manifold. Then the sequence of sheaves on M $0 \longrightarrow R \longrightarrow O \longrightarrow H \longrightarrow 0$ is exact.

Let M be a complex manifold. If ϕ is a locally biholomorphic mapping of a complex manifold D into M, (D, ϕ) is called an open set over M. Moreover, if D is connected, (D, ϕ) is called a domain over M. If ϕ is a biholomorphic mapping of D into M, (D, ϕ) is called a schlicht open set over M and is identified with the open subset $\phi(D)$ in M. Let (D, ϕ) and (D', ϕ') be open sets over M. A holomorphic mapping λ of D into D' with $\phi = \phi' \circ \lambda$ is called a mapping of (D, ϕ) into (D', ϕ') . If λ is a biholomorphic mapping of D onto D', (D, ϕ) and (D', ϕ') are identified.

Consider domains (D, ϕ) and (D', ϕ') over M with a mapping λ of (D, ϕ) into (D', ϕ') . Let f be a pluriharmonic (or holomorphic) function in D. A pluriharmonic (or holomorphic) function f' in D' with $f = f' \circ \lambda$ is called a pluriharmonic (or holomorphic) continuation of f to (λ, D', ϕ') , or shorty (D', ϕ') . Let F be a family of pluriharmonic (or holomorphic) functions in D. If any pluriharmonic (or holomorphic) function of F has a pluriharmonic (or holomorphic) continuation to (λ, D', ϕ') , (λ, D', ϕ') or shortly (D', ϕ') is called a pluriharmonic (or holomorphic) completion of (D, ϕ) with respect to F. Let $(\tilde{\lambda}, \tilde{D}, \tilde{\phi})$ be a pluriharmonic (or holomorphic) completion of (D, ϕ) with respect to F. Let (λ, D', ϕ') be any pluriharmonic (or holomorphic) completion of (D, ϕ) with respect to F and F' be the set of pluriharmonic (or holomorphic) continuations of all pluriharmonic (or holomorphic) functions of F to (λ, D', ϕ') . Then if there exists a mapping μ of (D', ϕ') into $(\tilde{D}, \tilde{\phi})$ with $\tilde{\lambda} = \mu \circ \lambda$ such that $(\mu, \tilde{D}, \tilde{\phi})$ is called an envelope of pluriharmony (or holomorphy) of (D, ϕ) with respect to F.

If F is the family of all pluriharmonic (or holomorphic) functions in D, an envelope of pluriharmony (or holomorphy) of (D, ϕ) with respect to F is called shortly an envelope of pluriharmony (or holomorphy) of (D, ϕ) . If F consists of only a pluriharmonic (or holomorphic) function f in D, an envelope of pluriharmony (or holomorphy) of (D, ϕ) with respect to F is called shortly a domain of pluriharmony (or holomorphy) of f. The following lemma is given by Matsugu [5].

LEMMA 2. Let (D, ϕ) be a domain over a complex manifold M and F be a family of pluriharmonic (or holomorphic) functions in D. Then there exists uniquely an envelope of pluriharmony of (D, ϕ) with respect to F.

24

A domain (D, ϕ) over a complex manifold M is said to be pseudoconvex if for every point p of M there exists a neighborhood U of p such that $\phi^{-1}(U)$ is a Stein manifold.

The following lemma is given in [1].

LEMMA 3. Let (D, ϕ) be a domain over a complex manifold M and F be a family of pluriharmonic (or holomorphic) functions in D. Then the envelope of pluriharmony (or holomorphy) $(\tilde{D}, \tilde{\phi})$ of (D, ϕ) with respect to F is pseudoconvex.

3. Pseudoconvex domain over a product space. Let N be a positive integer. Let n_i and r_i (i=1,2,...,N) be positive integers. Let G_{n_i,r_i} (i=1,2,...,N) be a Grassmann manifold.

Let

$$\mathbf{G} = \mathbf{G}_{\mathbf{n}_1,\mathbf{r}_1} \times \mathbf{G}_{\mathbf{n}_2,\mathbf{r}_2} \times \dots \times \mathbf{G}_{\mathbf{n}_N,\mathbf{r}_N}$$

be the product space of N Grassmann manifolds. Let S be a connected Stein manifold. Consider the product space $X=S\times G$. Let (D, ϕ) be a domain over X. An open set Ω of D is said to be a univalent open set containing G_{n_i,r_i} if $\phi \mid \Omega$ is a biholomorphic mapping of Ω onto an open set W of X, where W is written in the form

 $W = E \times V_1 \times ... \times V_{i-1} \times G_{n_i,r_i} \times V_{i+1} \times ... \times V_N,$

E is an open set of S and V_j (j=1,...,i-1,i+1,...,N) is an open set of G_{n_j,r_j} , respectively.

THEOREM 4. Let (D, ϕ) be a pseudoconvex domain over X such that D does not contain a univalent open set containing G_{n_1,r_1} for i=1,2,...,N. Then D is a Stein mainfold.

PROOF. Let V_{n_1,r_1} be a Stiefel manifold which defines G_{n_1,r_1} (i=1,2,...,N), respectively. Then there are canonical mappings $\nu_i : V_{n_1,r_1} \longrightarrow G_{n_1,r_1}$ (i=1,2,...,N). We set

 $\tau_1(s, x_1, ..., x_N) = (s, \nu_1(x_1), x_2, ..., x_N)$ and

 $D_{1} = \{(s, x_{1}, ..., x_{N}, y) \in S \times V_{n_{1}, r_{1}} \times G_{n_{2}, r_{2}} \times ... \times G_{n_{N}, r_{N}} \times D : \tau_{1}(s, x_{1}, ..., x_{N}) = \phi(y) \}$

Then we have the following commutative diagram :

Then $(D_1, \phi_1, S \times V_{n_1, r_1} \times G_{n_2, r_2} \times ... G_{n_N, r_N})$ is pseudoconvex. We shall show that $(D_1, \phi_1, S \times C^{n_1 r_1} \times G_{n_2, r_2} \times ... \times G_{n_N, r_N})$ is a pseudoconvex domain. We set $T = S \times (C^{n_1 r_1} - V_{n_1, r_1}) \times G_{n_2, r_2} \times ... \times G_{n_N, r_N}.$

Let R be the set of all boundary points removable along T. Let $(D_1^*, \phi_1^*, S \times C^{n_1 r_1} \times G_{n_2, r_2} \times ... \times G_{n_N, r_N})$ be the extension of $(D_1, \phi_1, S \times C^{n_1 r_1} \times G_{n_2, r_2} \times ... \times G_{n_N, r_N})$ along T. Then $(D_1 \cup R, \phi^{*_1} | D_1 \cup R, S \times C^{n_1 r_1} \times G_{n_2, r_2} \times ... \times G_{n_N, r_N})$ is pseudoconvex.

Suppose that R is not empty. Let $q \in R$. There exists a point $(s,x_1,...,x_N) \in S \times G_{n_1,r_1} \times ... \times G_{n_N,r_N}$ such that $\phi^{*_1}(q) \in \overline{\tau_1^{-1}(s,x_1,...,x_N)}$. We set $F^* = \phi_1^{*-1}(\overline{\tau_1^{-1}(s,x_1,...,x_N)})$. Let F_0^* be the connected component of F^* which contains q. Then $(F_0^*, \phi_1^* \mid F_0^*, \overline{\tau_1^{-1}(s,x_1,...,x_N)})$ is a pseudoconvex domain. By using the same method as the proof of Ueda [7], we can prove that F_0^* is biholomorphic onto $\overline{\tau_1^{-1}(s,x_1,...,x_N)}$. There exists a point $q_0 \in R$ which lies over $(s,0,x_2,...,x_N)$, where $0 \in C^{n_1r_1}$. Therefore there exists a neighborhood U of q which is mapped biholomorphically onto a neighborhood of $(s,0,x_2,...,x_N)$. Then $\tilde{\tau}_1(U \cap D_1)$ is biholomorphic onto an open set $E \times G_{n_1,r_1} \times V_2 \times ... \times V_N$, where E, V_i are open sets of S, G_{n_1,r_1} , respectively. This is the contradiction. Therefore $(D_1, \phi_1, S \times C^{n_1r_1} \times G_{n_2,r_2} \times ... \times G_{n_N,r_N})$ is pseudoconvex. We define a mapping $\tau_2 : S \times C^{n_1r_1} \times V_{n_2,r_2} \times G_{n_3,r_3} \times ... \times G_{n_N,r_N} \longrightarrow S \times C^{n_1r_1} \times G_{n_2,r_2} \times ... \times G_{n_N,r_N}$

by
$$\tau_2(s,x_1,x_2,...,x_N) = (s,x_1,\nu_2(x_2),x_3,...,x_N)$$
 and put

$$D_2 = \{(s,x_1,...,x_N,y) \in S \times C^{n_1r_1} \times V_{n_2,r_2} \times G_{n_3,r_3} \times ... \times G_{n_N,r_N} : \tau_2(s,x_1,...,x_N) = \phi_1(y) \}$$

Then we have the following commutative diagram :

Then $(D_2, \phi_2, S \times C^{n_1 r_1} \times V_{n_2, r_2} \times G_{n_3, r_3} \times ... \times G_{n_N, r_N})$ is pseudoconvex. By using the same process as the preceding proof, we can show that $(D_2, \phi_2, S \times C^{n_1 r_1 + n_2 r_2} \times G_{n_3, r_3} \times ... \times G_{n_N, r_N})$ is pseudoconvex. By repeating this process, we arrive at the fact that

 $(D_N,\phi_N, S \times C^{n_1r_1+n_2r_2+...+n_Nr_N})$ is pseudoconvex. Since $S \times C^{n_1r_1+n_2r_2+...+n_Nr_N}$ is a Stein manifold, D_N is a Stein manifold. In view of the theorem of Matsushima-Morimoto [6], D is a Stein manifold. This completes the proof.

4. Main results. Let X be the same product space $S \times G$ as the previous section.

LEMMA 5. Let (D, ϕ) be a domain over X. Let f be a real-valued pluriharmonic function in D and $(\lambda, \tilde{D}, \tilde{\phi})$ be the domain of pluriharmony of f. If \tilde{D} contains a univalent open set containing G_{n_1,r_1} , then any point of \tilde{D} is contained in a univalent open set containing G_{n_1,r_1} .

PROOF. We may assume that i=N. Let A be the set of all point ω of \tilde{D} such that ω is contained in a univalent open set containing G_{n_N,r_N} . Then A is a non-empty open subset of \tilde{D} . Thus, it is sufficient to show that A is closed subset in D. Let ω be a point of the closure of A. There exist, respectively, open neighborhoods W, V and U of ω , $\pi(\phi(\omega))$ and $\pi_N(\phi(\omega))$ such that $\phi \mid W$ is a biholomorphic mapping of W onto V \times U and such that V and U are coordinate neighborhoods, where π is the projection of X onto $S \times G_{n_1,r_1} \times ... \times G_{n_{N-1},r_{N-1}}$ and π_N is the projection of X onto G_{n_N,r_N} . There exist a point $z \in V$ and a univalent open subset Ω containing G_{n_N,r_N} such that $\tilde{\phi} \mid \Omega$ is a biholomorphic mapping of Ω onto $E\times V_1\times ...\times V_{N-1}\times G_{n_N,r_N},$ where $z\varepsilon E\times V_1\times ...\times V_{N-1},$ E is an open set of S and V_i (j=1,2,...,N-1) is an open set of G_{n_i,r_i} , respectively. We may assume that there exists a biholomorphic mapping μ of V onto a polydics V' such that $\mu(E \times V_1 \times ... \times V_{N-1})$ and V' is a polydisc with center the origin. Let \tilde{f} be the pluriharmonic continuation of f to $(\lambda, \tilde{D}, \tilde{\phi})$. In view of J. Kajiwara and N. Sugawara [4], $f \circ (\phi \mid W)^{-1} \circ (\mu^{-1} \times 1)$ is a pluriharmonic continuation of f to $V \times G_{n_N,r_N}$. Since $(\lambda, \tilde{D}, \tilde{\phi})$ is the domain of pluriharmony of f, there exists a biholomorphic mapping ξ of $V \times G_{n_N,r_N}$ into \tilde{D} such that $\tilde{\phi} \circ \xi$ is the identity of $V \times G_{n_N,r_N}$. Since $\xi(V \times G_{n_N,r_N}) \supset W$ and $\xi(V \times G_{n_{N},r_{N}})$ is open set in \tilde{D} , ω belongs to A. This completes the proof.

LEMMA 6. Let (D, ϕ) be a domain over X. Let f be a pluriharmonic function and $(\lambda, \tilde{D}, \tilde{\phi})$ be the domain of pluriharmony of f. Assume that \tilde{D} contains univalent open sets containing G_{n_i,r_i} (j=s,...,N) and \tilde{D} does not contain univalent open sets containing

 G_{n_j,r_j} (j=1,...,s-1). We put $Y=S\times G_{n_1,r_1}\times...\times G_{n_{s-1},r_{s-1}}$ and $G=G_{n_s,r_s}\times...\times G_{n_N,r_N}$. Then there exist a Stein manifold (L, ψ) over Y and a biholomorphic mapping η of \tilde{D} onto $L\times G$ such that $\tilde{\phi}=(\psi\times 1)\circ\eta$.

PROOF. Let π_{Y} be the projection of X onto Y and π_{G} be the projection of X onto G. Let x be a point of D. We put $(y, z) = \tilde{\phi}(x)$ where $y \in Y$ and $z \in G$. From lemma 5 $\tilde{\phi}^{-1}(\{y\} \times G)$ is a covering manifold of a simply connected manifold $\{y\} \times G$. Hence $\tilde{\phi}$ maps each connected component of $\tilde{\phi}^{-1}(\{y\} \times G)$ biholomorphically onto $\{y\} \times G$. We

shall induce in \tilde{D} an equivalence relation R as follows : $x_1 \sim x_2$ if and only if x_1 and x_2 belong to the same connected component of $\tilde{\phi}^{-1}(\{y\}\times G)$ for some $y \in Y$. Then L= \tilde{D}/R is a complex manifold such that (L, ψ) is a domain over Y where μ is the canonical mapping of \tilde{D} onto L and ψ is the canonical mapping L into Y such that $\pi_Y \circ \tilde{\phi} = \psi \circ \mu$. Then the mapping η defined by

$$\eta(\mathbf{x}) = (\mu(\mathbf{x}), \pi_{\mathrm{G}} \circ \widetilde{\phi}(\mathbf{x}))$$

28

is a biholomorphic mapping of \tilde{D} onto $L \times G$ such that $\tilde{\phi} = (\psi \times 1) \circ \eta$. Since \tilde{D} is pseudoconvex and L does not contain univalent open sets containing G_{n_j,r_j} (j=1,..., s-1), (L, ψ) is a pseudoconvex domain over Y. Hence from theorem 4 L is a Stein manifold. This completes the proof.

Using the above results we prove the following main theorem.

THEOREM 7. Let (D, ϕ) be a domain over X and $(\lambda, \tilde{D}, \tilde{\phi})$ be the envelope of holomorphy of (D, ϕ) . If \tilde{D} does not contain univalent open sets containing G_{n_j,r_j} (j= 1,2,...,N), then each real-valued pluriharmonic function on D is the real part of a holomorphic function on D if and only if $H^1(\tilde{D}, Z) = 0$.

PROOF. Since \tilde{D} is a Stein manifold from theorem 4, we have $H^1(\tilde{D}, O) = 0$. From lemma 1 we have the exact sequence of cohomologies

 $H^{0}(\tilde{D}, O) \longrightarrow H^{0}(\tilde{D}, H) \longrightarrow H^{1}(\tilde{D}, R) \longrightarrow 0.$

Hence we have that $H^1(\tilde{D}, R) = 0$ if and only if the homomorphism $H^0(\tilde{D}, O) \rightarrow H^0(\tilde{D}, H)$ is surjective. Since $(\lambda, \tilde{D}, \tilde{\phi})$ is the envelope of holomorphy of (D, ϕ) , we have that λ induces the isomorphism λ^* : H⁰(\tilde{D} , O) \rightarrow H⁰(D,O), where $\lambda^*(\tilde{f}) = \tilde{f} \circ \lambda$ for $\tilde{f} \in H^0(\tilde{D}, O)$. We claim that the induced homomorphism μ^* : H⁰(\tilde{D} , H) \rightarrow H⁰(D, H) is also an isomorphism, where $\mu^*(\tilde{u}) = \tilde{u} \circ \lambda$ for $\tilde{u} \in H^0(\tilde{D}, H)$. To see this it is sufficient to show that μ^* is surjective. Suppose $u \in H^0(D, H)$. Let (λ', D', ϕ') be the domain of pluriharmony of u and u' be the pluriharmonic continuation of u to (D', ϕ') . From lemma 3 and lemma 6, after permuting $(n_1, n_2, ..., n_N)$, if necessary, either D' is a Stein manifold or there exist an integer s with $1 \le s \le N$, a Stein manifold (L, ψ) over $Y = S \times G_{n_1,r_1} \times ... \times G_{n_{s-1},r_{s-1}}$ and a biholomorphic mapping η : D' \rightarrow L×G such that $\phi' = (\psi \times 1) \circ \eta$ where G=G_{n_sr_s×...×} G_{n_N,r_N} . In the former case D' is a domain of holomorphy of a holomorphic function in D. Since $(\lambda, \tilde{D}, \tilde{\phi})$ is the envelope of holomorphy of (D, ϕ) , there exists a holomorphic mapping $\phi : \tilde{D} \to D'$ such that $\lambda' = \Phi \circ \lambda$. We put $\tilde{u} = u' \circ \Phi \epsilon H^0(\tilde{D}, H)$. Then $\mu^*(\tilde{u}) = 1$ $u' \circ \Phi \circ \lambda = u' \circ \lambda' = u$. Therefore μ^* is surjective. In the latter case, $L \times S$ is a domain of holomorphy of a holomorphic function in D and so is D'. Thus by the same argument as the preceding case, we can prove that μ^* is surjective. From the two isomorphism $H^{0}(\tilde{D}, O) \cong H^{0}(D, O)$ and $H^{0}(\tilde{D}, H) \cong H^{0}(D, H)$ we see that the homomorphism $H^{0}(D, O) \rightarrow H^{0}(D, O)$ $H^{0}(D, H)$ is surjective if and only if the homomorphism $H^{0}(\tilde{D}, O) \rightarrow H^{0}(\tilde{D}, H)$ is surjective. From the universal coefficient theorem for cohomology, it follows that

 $H^{1}(\tilde{D}, R) = 0$ if and only if $H^{1}(\tilde{D}, Z) = 0$. This completes the proof.

By the same method as the above proof, we have the following corollary.

COROLLARY. Let (D, ϕ) be a domain over X and $(\lambda, \tilde{D}, \phi)$ be the envelope of holomorphy of (D, ϕ) . Then the homomorphism $H^{0}(\tilde{D}, O) \rightarrow H^{0}(\tilde{D}, H)$ is surjective if and only if the homomorphism $H^{0}(\tilde{D}, O) \rightarrow H^{0}(\tilde{D}, H)$ is surjective.

References

- [1] Y. Fukushima, On the relation between pluriharmonic functions and holomorphic functions, Fukuoka Univ. Rep. 66 (1983), 33-37.
- [2] Y. Fukushima and K. Watanabe, Pluriharmonic function on a domain over a Grassmann manifold, Fukuoka Univ. Sci. Rep. 15 (1985), 1-4.
- [3] R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Holl, Englewood Cliffs, 1965.
- [4] J. Kajiwara and N. Sugawara, Quotient representation of meromorphic functions in a domain over a product space of Grassmann manifolds, Mem. Fac. Sci., Kyushu Univ. 35 (1981), 27-32.
- [5] Y. Matsugu, Pluriharmonic functions as the real parts of holomorphic functions, Mem. Fac. Sci., Kyushu Univ. 36 (1982), 157-163.
- [6] Y. Matsushima and A. Morimoto, Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, 88 (1960), 137-155.
- [7] T. Ueda, Pseudoconvex domains over Grassmann manifolds, J. Math. Kyoto Univ. 20 (1980), 391
 -394.