The Group of Homeomorphisms on a Connected 1-Manifold

Takashi Karube

Department of Mathematics, Faculty of Education Nagasaki University, Nagasaki (Received Oct. 31, 1983)

Abstract

The topological types of the spaces of homeomorphisms on paracompact Hausdorff connected 1-manifolds are classified.

1. Introduction.

A paracompact Hausdorff connected 1-manifold is homeomorphic to one of the following four spaces :

- R : the real line.
- R_+ : a real half-line.

S : a circle.

I : a closed interval on R.

This is well-known—an easy proof is given in [5]. Let M be any one of the above four spaces with orientation, H(M) the group of all homeomorphisms of M onto itself endowed with the compact open topology, and $H^*(M)$ the subspace of H(M) which consists of orientation-preserving ones. Then

 $H(I) = H^{+}(I) \cdot Z_{2} \approx H^{+}(I) \times Z_{2}$ and $H^{+}(I) \approx l_{2}$ (Anderson [1],)

 $H(R) = H^{+}(R) \cdot Z_{2} \approx H^{+}(R) \times Z_{2}$ and $H^{+}(R) \approx l_{2}$ (Karube [4]),

and $H(R_{*})=H^{*}(R_{*})\approx l_{2}$ (Karube [4]), where l_{2} is the Hilbert space of squaresummable sequences, Z_{2} the discrete space consisting of two points, \approx means being homeomorphic, and \times topological product.

In this note we consider H(S).

2. The group of homeomorphisms on a circle.

LEMMA 1 (Karube [4]). Let [0,1] (resp. (0,1)) be the closed (resp. open) interval on R. Then $H^+([0,1])$ and $H^+((0,1))$ are isomorphic as topological

groups by the natural map. And so $H^+(R) \approx l_2$.

Considering the circle S a multiplicative topological group of complex numbers of norm 1, let T denote the subgroup of H(S) consisting of all translations in the group S, P the subgroup of H(S) consisting of all homeomorphisms which leave the identity 1 fixed, P^+ the subgroup of P consisting of orientation-preserving ones, and Z_2 either the subgroup of H(R)or of H(S) consisting of the identity map and the reflexion.

LEMMA 2. P^+ and $H^+(S-\{1\})$ are isomorphic as topological groups by the natural map. And so $P^+ \approx l_2$.

PROOF. A modification of the proof of Lemma 1 ([4]) ensures that P^* is isomorphic to $H^*(S-\{1\})$ as topological groups. Since $S-\{1\}$ is homeomorphic to R, $H^*(S-\{1\}) \approx H^*(R)$. Hence $P^* \approx l_2$ by Lemma 1.

THEOREM. $H(S) = T \cdot P^+ \cdot Z_2 \approx T \times P^+ \times Z_2$ and $(T, P^+) \approx (S, l_2)$.

PROOF. Both T and P are closed subgroups and H(S) = TP, $T \cap P = \{1\}$. Whereas H(S) is neither a direct product nor a semidirect product of T and P, the correspondence of $u \in H(S)$ to $(t_{u(1)}, t_{u(1)}^{-1} \circ u) \in T \times P$ $(t_a :$ the multiplication by a in S) gives a homeomorphism between H(S) and the product space $T \times P$ — this owes to a remark of Keesling ([6], p. 15). The space T is homeomorphic to S. Since P^+ is an open and closed subgroup of P, the space P is homeomorphic to $l_2 \times Z_2$ by Lemma 2. Consequently $H(S) \approx S \times l_2 \times Z_2$.

REMARK. Another proof that $P \approx l_2 \times Z_2$ is obtained by the fact : let X be a locally connected, locally compact Hausdorff space, X^* the compactification of X by adding a point x_{∞} to X, and $H(X^*, x_{\infty})$ the subspace of $H(X^*)$ consisting of the mappings that leave the point x_{∞} fixed, then $H(X^*, x_{\infty}) \approx H(X)$ —this owes to Theorem 2 of [2] and Theorems 1, 3, and 4 of [3].

References

- [1] R. D. Anderson: Spaces of homeomorphisms of finite graphs. (Manuscript)
- [2] R. Arens: A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480-495.
- [3] R Arens: Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610.
- [4] T. Karube: A simple proof that the space of orientation preserving transformations of an interval is homeomorphic to l₂, Sci Bull. Fac. Educ., Nagasaki Univ., No. 28 (1977), 9-10
- [5] T. Karube: Topological types of paracompact connected 1-manifolds, Sci. Bull. Fac. Educ., Nagasaki Univ., No. 33 (1982), 1-4.
- [6] J. Keesling: Using flows to construct Hilbert space factors of function spaces, Trans. Amer. Math. Soc. 161 (1971), 1-24.