1	
2	Comparison of water cloud microphysics over mid-latitude land and ocean using
3	CloudSat and MODIS observations
4	
5	
6	
7	Kazuaki Kawamoto [*]
8	Graduate School of Fisheries Science and Environmental Studies, Nagasaki University,
9	Nagasaki, Japan
10	
11	Kentaroh Suzuki
12	Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
13	
14	
15	
16	
17	*Corresponding author address: Kazuaki Kawamoto, Graduate School of Fisheries
18	Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki,
19	Japan 852-8521.
20	E-mail: kazukawa@nagasaki-u.ac.jp
21	

ABSTRACT

 $\mathbf{2}$ The microphysical properties and processes of water (liquid-phase) clouds in the 3 mid-latitudes were studied using space-borne radar and radiometer data, with a focus on 4 comparisons between continental (over China) and oceanic (over the northwest Pacific) $\mathbf{5}$ clouds. The probability distribution functions (PDFs) of cloud parameters were examined 6 and found to be both reasonable and consistent with previous observations. The PDFs of 7 oceanic cloud parameters as a function of radar reflectivity were generally better defined 8 than those of land cloud parameters. Precipitation characteristics were categorized into 9 non-precipitating, drizzle, and precipitating, as well as the total-precipitating category, 10 according to the maximum radar reflectivity within the cloud layer. The fractional 11 occurrence of the precipitation categories was analyzed as a function of the liquid water 12path. The statistics showed general trends that were very similar for both land and 13oceanic clouds, such as a monotonically decreasing trend for the non-precipitating 14category, a convex shape for the drizzle category, and a monotonically increasing trend 15for the precipitating and total-precipitating categories with increasing liquid water path. 16 The fractional occurrence of the precipitation categories was further investigated as a 17function of multiple cloud parameters to better understand land-ocean contrasts in cloud 18 development stages. The vertical structure of clouds also revealed that oceanic clouds 19 produced heavier precipitation in optically thicker regions, compared to land clouds with 20fewer cloud droplets. However, the differences between land and oceanic clouds were 21small when comparisons included only those clouds with a high density of droplets.

 $\mathbf{2}$

2 **1 Introduction**

3

Clouds play a crucial role in Earth's radiation budget. For example, small changes in cloud albedo, vertical distribution, and lifetimes can have a significant impact on the distribution of radiative heating around the globe [1]. Moreover, the various combinations of optical properties among clouds, aerosols, and water vapor create complicated effects on radiation processes [2]. In addition to the radiative effects, clouds also affect the water cycle through precipitation. It is therefore important to improve our understanding of the frequency and magnitude of precipitation in warm clouds [3].

11 These climatic effects of clouds are also complicated by their interactions with 12aerosols through the so-called aerosol indirect effect. An increase in the aerosol 13 concentration acts to increase cloud condensation nuclei. The increased number of the 14condensation nuclei creates smaller and more numerous cloud droplets, which lead to 15higher cloud reflectivity when the liquid water content is fixed [4]. The decrease in the 16 cloud droplet size also inhibits precipitation and consequently increases the cloud lifetime 17[5]. In addition, Hansen et al. [6] introduced the idea of the aerosol semi-direct effect in 18 which radiative absorption by aerosols heats the surrounding atmosphere, causing 19 atmospheric stratification that results in a reduction in cloud cover. Huang et al. [7] 20observationally found that the semi-direct effect of dust aerosols warmed clouds, 21increased the evaporation of cloud droplets and further reduced the cloud water path. The interaction of aerosols and clouds through these mechanisms still remains one of the most
uncertain processes in the climate system [8].

3 To overcome such a difficulty in understanding the cloud processes and their 4 interaction with aerosols, observations of clouds are crucial. Among various observational 5tools, satellite-borne instruments are particularly promising for monitoring wide areas 6 with high spatial and temporal resolutions. Passive radiometers, such as the Advanced 7 Very High Resolution Radiometer (AVHRR), have retrieved important cloud 8 microphysical data for several decades. Using these data, Han et al. [9] and Nakajima and 9 Nakajima [10] completed near-global and wide-area analyses, respectively, measuring the 10 cloud optical depth (τ_c) and effective particle radius (r_e) with non-absorbing (0.6-um) and 11 water-absorbing (3.7-µm) channels. The subsequent Moderate Resolution Imaging 12Spectroradiometer (MODIS) extended retrieval capabilities, employing 36 channels from 13the ultraviolet to infrared wavelengths.

More recently, active remote sensing data have become available, such as those 14 15from the CloudSat satellite. Launched in April 2006, CloudSat carries the Cloud Profiling 16 Radar (CPR), operating at 94 GHz. A synergetic approach using both active (e.g., 17CloudSat) and passive (e.g., MOSIS) instruments, such as in the A-Train satellite 18 constellation [11], is an extremely powerful tool in revealing the detailed vertical droplet 19 structures inside clouds, which were previously unknown. A method that combines the radar reflectivity (Z_e) inside the cloud layer from CloudSat with the τ_c of the whole cloud 20 21layer, as well as r_e near the cloud top from MODIS, has been devised and used by several

previous studies. For example, Lebsock et al. [12] reported aerosol effects on Z_e , the 1 liquid water path (LWP), and r_e over global oceans. Suzuki and Stephens [13] found $\mathbf{2}$ 3 sixth-power and cubic relationships between Z_e and the effective particle radius of oceanic 4 clouds, illustrating that condensation and coagulation constituted the dominant $\mathbf{5}$ particle-growth processes at smaller and larger Z_e values, respectively. Furthermore, 6 Nakajima et al. [14] and Suzuki et al. [15] devised a way of combining the vertical profile of Z_e with r_e values derived from MODIS 2.1-µm and 3.7-µm channels to examine 78 particle-growth processes occurring within the cloud layer.

9 There have been, however, relatively few analyses of clouds over land, mainly 10 owing to the more complicated surface conditions and the unavailability of microwave 11 retrievals over land. Among the studies that have analyzed clouds over land, Kawamoto 12and Suzuki [16] (hereafter KS12) analyzed the microphysical transition of cloud particles 13into raindrops in single-layered water clouds over continental regions such as the Amazon 14and China. Their work was motivated by that of Kawamoto [17], who studied the 15relationship between cloud properties obtained from passive satellite remote sensing and 16 precipitation rates collected by surface-based rain gauges. KS12 reported the fractional occurrence of precipitation categories defined with Z_e as a function of the LWP, τ_c and r_e 1718 behaviors according to precipitation categories, and the behavior of vertical cloud 19structures as dictated by the CloudSat radar profile information of Z_e .

As an extension from KS12 that was focused on continental clouds, the specific aim of the present study is to compare the properties and characteristics of land and

 $\mathbf{5}$

1 oceanic clouds in an attempt to identify the similarities and differences between them. For $\mathbf{2}$ this purpose, we combined the observations from the active radar of CPR on-board 3 CloudSat with those from the passive radiometer of MODIS on-board Aqua, in a manner 4 similar to the study of KS12. We investigated several aspects of the cloud-to-precipitation 5 transitional processes inside clouds over land (within 1000 km from 35°N and 105°W 6 over China) and ocean (within 1000 km from 35°N and 165°E over the northwest Pacific) 7 regions at mid-latitudes, which are indicated in Figure 1. These regions were chosen 8 because they are adjacent and nearly continuous over the same latitudes, and therefore are 9 suitable for the comparison analysis of land-ocean contrasts in mid-latitude water 10 (liquid-phase) clouds. In this study, we confine our analyses to low-level water clouds 11 because of their large area of coverage and substantial radiative effect. To avoid the 12complexity that arises from multi-layered clouds, we selected only single-layered clouds.

13The remainder of this paper is arranged as follows. In Section 2, we briefly 14described the datasets used. Section 3 presented the main analyses conducted, specifically 15the probability distribution function (PDF) of cloud parameters, PDF of cloud parameters 16 as a function of Z_e , the fractional occurrences of precipitation categories as a function of 17the LWP, the fractional occurrences of precipitation categories as a function of multiple 18 cloud parameters in the context of their two-dimensional representations, and the 19 transitional characteristics of cloud vertical structures as a function of τ_c and Z_e according 20to the cloud droplet number density (N_c) . Finally, Section 4 summarized the findings and 21conclusions of this study.

2 **2 Datasets**

3

4 We used the same five cloud parameters as used by KS12 to investigate the $\mathbf{5}$ precipitation characteristics in clouds formed over land and ocean: τ_c , r_e , LWP, N_c , and Z_e . 6 The τ_c and r_e data were retrieved from the MODIS visible (non-absorbing) 0.6-µm and 7near-infrared (absorbing) 2.1-µm channels, and these values were taken from the 8 CloudSat 2B-TAU product which only took MODIS pixels that were collocated with the 9 CloudSat footprint [18]. This study used data with uncertainties less than 3 for τ_c and less 10 than 1 µm for r_e . The LWP and N_c values were derived from the τ_c and r_e retrievals 11 according to the adiabatic growth assumption: the LWP was calculated as $5\tau_c r_e/9$ [19] 12and N_c was estimated using equation (1) below, which was originally equation (3) of 13Kubar *et al*. [20]:

14
$$N_c = \sqrt{2} B^3 \Gamma_{\text{eff}}^{1/2} LWP^{1/2} / r_e^3,$$
 (1)

15 where $B = (3\pi\rho_w/4)^{1/3} = 0.0620$, ρ_w is the density of liquid water, and Γ_{eff} is the adiabatic 16 rate of increase in the liquid water content with height. Γ_{eff} is weakly dependent on 17 pressure and temperature and was derived from a diagram by Wood [21]. Taking the 18 uncertainties less than 3 for τ_c and less than 1 µm for r_e into account, uncertainties of the 19 inferred LWP and N_c were generally estimated to less than 20 (g/m²) and 25 (1/cm³), 20 respectively. Z_e was obtained from the CloudSat 2B-GEOPROF product [22,23]. In 21 addition, altitude and temperature profiles were obtained from the European Centre for

1	Medium-Range Weather Forecasts Auxiliary (ECMWF-AUX) dataset matched to the
2	CloudSat radar footprint [24].
3	We used the CloudSat data mentioned above, collocated with MODIS products
4	for the periods of June, July, August (JJA) and December, January, February (DJF) from
5	2006 to 2008, to examine the averaged behaviors of single-layered water clouds over
6	these seasons in mid-latitudes.
7	
8	3. Results
9	
10	3.1 Selection of single-layered water clouds
11	
12	Only single-layered and water (liquid-phase) clouds having $\tau_c > 1$ and $r_e < 35$ (µm)
13	were selected to reduce retrieval error in the products. The single-layered requirement
14	was determined as follows, according to the method of Haynes and Stephens [25]. First,
15	moving upward from the lowest layer, <i>i.e.</i> , the closest to the ground, we examined
16	whether layers met the following three conditions: (1) the cloud mask value was between
17	30 and 40; (2) Z_e was not an undefined value; and (3) the height value was positive. The
18	first height bin that satisfied all of the conditions was defined as the cloud base. Next, we
19	examined the layers upward from the cloud base, and the bins that satisfied all of the
20	conditions were determined to be the cloud layer. The layer just under the first layer not
21	satisfying these conditions was defined as the "cloud top of the lower layer" (CTL). The

1	same procedure was then conducted downward from the highest layer, and the first layer
2	that satisfied all the conditions was called the "cloud top of the higher layer" (CTH). If
3	CTL and CTH were identical, we considered the cloud layer to be single-layered.
4	Otherwise, we concluded that the atmospheric column consisted of multilayered clouds.
5	The latter (liquid-phase) requirement was identified by the CloudSat cloud mask criterion
6	and an echo-top temperature warmer than 273K. We compared our cloud phase
7	identification with the information of the 2B-CWC-RVOD product, which combined
8	MODIS and CloudSat data. The results showed that 81.1% of our estimation of water
9	agreed with the 2B-CWC-RVOD product over land and 75.2% agreed over ocean.
10	
11	3.2 Probability distribution functions (PDFs) of cloud parameters
12	
13	To investigate the overall characteristics of clouds, we first constructed PDFs of
14	cloud parameters (τ_c , r_e , LWP, N_c , and Z_e) over land and ocean, as shown in Fig. 2. Figure
15	2(a) shows that both land and oceanic clouds had a similar PDF of τ_c , whose mode value
16	was about 25, indicating that land clouds were slightly thicker optically. Figure 2(b)
17	shows that oceanic clouds had distinctly larger r_e than did land clouds and this difference
18	was significant judging from the uncertainty of 1 μ m considered in this study. Oceanic
19	clouds had a higher mode value of the LWP than did land clouds, caused by larger values
20	of r_e (Figure 2(c)). Conversely, land clouds had definitely more N_c than oceanic clouds
21	(Figure 2(d)). This land–ocean contrast and the mode values of N_c are reasonable and

1	comparable to results from past aircraft measurements (e.g., [26]). The land-ocean
2	contrast found in N_c may reflect a signature in aerosol abundance, as supported by
3	MODIS-retrieved aerosol optical depth (AOD) annual-mean values [27], which were
4	estimated as 0.45 and 0.18 over land (characterized by industrial and dust aerosols) and
5	ocean (less influenced by anthropogenic sources), respectively. These features are also
6	those expected from the Twomey's theory [4] and consistent with results of previous
7	observational studies (e.g., [28]). Also shown in Figure 2(e) is the PDF of Z_e for all the
8	cloud layers. It was found that both land and oceanic clouds had bimodal characteristics,
9	and the mode value for oceanic clouds (roughly 2 dBZ) was larger than that of land
10	clouds (roughly -8 dBZ). Also, oceanic clouds showed a higher frequency of $Z_e > -5$ dBZ
11	than did land clouds, and vice versa. These features of land and oceanic clouds are similar
12	to those reported by KS12 for clouds over China and the Amazon, respectively.
13	For studying how these characteristics of cloud properties were related to
14	precipitation processes, the cloud-to-rain transition processes were analyzed in terms of
15	precipitation categories defined according to the maximum Z_e value within the cloud layer.
16	The precipitation categories were defined with threshold values as follows: (i)
17	non-precipitating ($Z_e < -15 \text{ dBZ}$); (ii) drizzle (-15 dBZ < $Z_e < 0 \text{ dBZ}$), and (iii)
18	precipitating (0 dBZ $< Z_e$), following Suzuki et al. [29]. L'Ecuyer et al. [1] further divided
19	the drizzle category into two subcategories of drizzle ($-15 \text{ dBZ} < Z_e < -7 \text{ dBZ}$) and light
20	rain (-7 dBZ < Z_e < 0 dBZ), although that classification was not used here. In addition to
21	the three categories above, we also introduced the category of total-precipitating events

.

1	$(-15 \text{ dBZ} < Z_e)$ as combined category of the drizzle and precipitating categories defined
2	above. These four categories are hereafter referred to as $Z_e 1$, $Z_e 2$, $Z_e 3$, and $Z_e 4$,
3	respectively. The two threshold values of -15 and 0 dBZ dividing these categories were
4	superimposed in Figure 2(e). Although Suzuki et al. [29] utilized near-surface
5	non-attenuated radar reflectivity from the CloudSat 2C-PRECIP-COLUMN data available
6	only over the ocean, we used the maximum radar reflectivity within the cloud layer for
7	consistent analyses over both land and ocean.
8	
9	3.3 PDFs of cloud parameters as a function of Z_e
10	
11	Next, we analyzed the PDFs of cloud parameters as a function of Z_e to examine
12	how they tend to change with changing Z_e , taking Z_e as the horizontal coordinate and the
13	PDFs of cloud parameters as the vertical coordinate. Figures 3 (a)–(d) and 4 (a)–(d)
14	illustrate the results over land and ocean for τ_c , r_e , LWP, and N_c , respectively. First, the
15	tendencies of oceanic cloud parameters showed generally better-defined relationships
16	with Z_e values, such as a negative relationship of N_c and positive relationships of τ_c , r_e ,
17	and LWP as Z_e increased with saturation for $Z_e > 0$ dBZ. Land clouds showed the same
18	tendencies, except for the flat variation in τ_c , but the tendencies were particularly less
19	distinct for $Z_e > 0$ dBZ. The less distinct tendencies of land cloud parameters for this
20	region might be partly due to the small number of samples, as shown in Fig. $2(e)$.

1	It should be noted that the LWP and N_c are by-products and are not independent of
2	τ_c and r_e . We used the LWP obtained from τ_c and r_e in the present study for consistent
3	analyses over both land and ocean. It would be of interest in future studies to apply the
4	same procedure to microwave-derived LWP values, which would be independent of
5	optical measurements, for a comparison of oceanic cloud behavior since the microwave
6	retrievals are available only over the ocean.
7	
8	3.4 Fractional occurrence of precipitation categories as a function of the LWP
9	
10	We analyzed the fractional occurrences of the four categories $(Z_{e1}-Z_{e4})$ as a
11	function of the LWP and the results are shown in Fig. 5. In this study, the fractional
12	occurrence was calculated as the ratio of the number of samples that satisfied the
13	condition to the total number of samples in the bin. Note that the PDF is not shown in Fig.
14	5(a)–(d), unlike in Fig. 2(a)–(e). Lebsock <i>et al</i> . [12] found that the probability of
15	precipitation, defined as the fractional occurrence of precipitation events, increased
16	monotonically with the LWP for oceanic clouds. In Fig. 5(a) through (d), the fractional
17	occurrences of non-precipitating, drizzling, precipitating, and total-precipitating
18	categories are shown as a function of the LWP for land and oceanic clouds. Figure 5(a)
19	presents monotonically decreasing trends for both land and oceanic clouds in the
20	non-precipitating category. Land clouds had higher frequencies of the non-precipitating
21	category than oceanic clouds for LWP from 100 to 500 (g/m ²). At LWP > 500 (g/m ²), a

1 majority of clouds were either drizzling or precipitating. For the drizzling category (Fig. $\mathbf{2}$ 5(b), convex shapes are found for both land and ocean clouds, but the peak LWP was 3 considerably larger for land clouds (about 400 g/m^2) than for oceanic clouds (about 200 g/m^2); the smaller particle sizes over land may have resulted in the larger frequency of 4 $\mathbf{5}$ drizzle compared to the precipitating category (Fig. 5(c)) as argued below. In Fig. 5(c) 6 showing the precipitating category, both land and ocean clouds have monotonically increasing trends, but higher frequencies are found over LWP from 100 to $650 (g/m^2)$ for 78 oceanic clouds than land clouds that tend to have larger LWP values for the precipitation 9 frequency to reach the comparable value to oceanic clouds. At LWP > 650 (g/m^2), all 10 clouds approached unity. In addition, the total-precipitating category in Fig. 5(d) shows a 11 monotonically increasing trend. Although in general the precipitation frequency was 12higher in oceanic clouds than land clouds, the clouds over both areas were precipitating at LWP > 500 (g/m^2), consistent with the interpretation of Fig. 5(a) for the non-precipitating 1314category.

15 These behaviors of land clouds tend to be similar to those previously found in 16 polluted coastal areas (*e.g.*, Asian coast and Gulf of Mexico) by Kubar *et al.* [20] (see 17 their Fig. 11(b)). Conversely, the behavior of oceanic clouds fell in between those of 18 clouds in polluted coastal areas and the remote oceanic area reported by Kubar *et al.* [20] 19 (also see their Fig. 11(b)) because the oceanic area in this study was relatively near the 20 East Asian coast.

 $\mathbf{2}$

In this sub-section, the fractional occurrences of precipitation categories are further studied by the two-dimensional representations of τ_c - r_e and LWP- N_c combinations, according to the method of Suzuki et al. [29]. As those authors stated, such an analysis provides a more detailed examination of warm rain formation than Figure 5 in terms of cloud properties in the two-dimensional representation, making the maximum use of the MODIS cloud retrievals.

9 Figure 6 shows fractional occurrences of precipitation categories as a function of τ_c and r_e over land (a–c) and ocean (d–f). The overall behaviors of the contributions of 10 11 $\tau_c - r_e$ to differences between non-precipitating and precipitation categories were similar 12between land and oceanic clouds. For example, the non-precipitating category generally 13occurs in the region of small τ_c with broad r_e values and small r_e with broad τ_c values, showing an L-like shape. The drizzle category mainly appears over the intermediate 1415region between larger τ_c and smaller r_e to smaller τ_c and larger r_e . The precipitating 16 category occupies the remaining upper-right region having larger τ_c and r_e values. 17Nevertheless, the precipitation category displays greater differences between land and 18 oceanic clouds when compared to the other categories, such as greater frequencies of the 19 precipitating category over larger values of τ_c and r_e for oceanic clouds. It should be noted 20that the parameters of regional analyses such as ours, which do not cover the entire plane, are inherently different from those of Suzuki et al. [29], who have conducted global ocean
 analyses.

3 Figure 7 shows fractional occurrences of the precipitation categories as a 4 function of LWP and N_c over land (a–c) and ocean (d–f). The non-precipitating category $\mathbf{5}$ was shown to occur generally over small LWP with broad N_c values. The drizzle category was found to take place over larger LWP and smaller N_c than the non-precipitating 6 $\mathbf{7}$ category. The precipitating category was shown to occur in the lower-right region of the 8 N_c -LWP plane, corresponding to larger LWP and smaller N_c . As in the τ_c - r_e case, the 9 precipitation characteristics in terms of the LWP– N_c plane are similar between land and 10 oceanic clouds, although land clouds have smaller N_c values than oceanic clouds. For both 11 the $\tau_c - r_e$ and LWP-N_c cases, fractional frequencies of the precipitation categories are 12systematically shifted among non-precipitating, drizzle, and precipitating categories. As 13pointed out by Suzuki et al. [29], this approach can reveal how cloud properties contribute to each precipitation category, and how they tend to systematically vary among each 1415precipitation category.

16

17 *3.6 Vertical structure shown by a contoured frequency by optical depth diagram*

18 *(CFODD)*

19

By combining the specific attributes of CloudSat and MODIS data, detailed
vertical features and structures of cloud microphysical process can be revealed as

1	previously reported by Nakajima et al. [14] and Suzuki et al. [15]. These studies offered a
2	new diagram called the contoured frequency by optical depth diagram (CFODD) using
3	optical depth as the vertical coordinate, instead of geometric height, to describe the
4	vertical profile of the radar reflectivity, which is taken as the horizontal coordinate. Suzuki
5	et al. [15] utilized the cloud adiabatic model to distribute in-cloud optical depth from the
6	total optical depth determined from MODIS shortwave radiances, providing a vertical
7	slicing of the optical depth in a manner independent of the radar reflectivity profile
8	information. We adopted this CFODD approach to investigate the vertical structures of
9	water clouds over land and ocean. We classified CFODDs according to N_c to directly
10	interpret the relationships of cloud parameters in the context of the aerosol indirect effect,
11	following KS12. This approach differs from those of Nakajima et al. [14] and Suzuki et al.
12	[15], who classified CFODDs according to r_e . To examine the transitional characteristics
13	of cloud vertical profiles, three N_c categories, referred to as N_1 , N_2 , and N_3 , were
14	introduced to correspond with higher, moderate, and lower cloud droplet number
15	populations, respectively. Thresholds of 80 cm ⁻³ and 120 cm ⁻³ were used to divide these
16	categories for both land and oceanic cloud analyses.
17	The CFODDs for N_1 , N_2 , and N_3 are shown in Fig. 8(a–c) and (d–f) for
18	measurements over land and ocean, respectively. Overall, the main features describing a
19	transition from N_1 to N_3 were similar between oceanic and land clouds. More specifically,
20	high-frequency regions shifted to a larger Z_e and a smaller τ_c as N_c decreased from N_1 to
21	N_3 . KS12 interpreted this phenomenon as follows: after the cloud development stage, N_c

1	decreases and r_e increases through coalescence, resulting in a decrease in τ_c due to a
2	reduction in the total cross-section of particles. Moreover, the total water within clouds
3	decreases with precipitation events. Evaporation might also decrease the particle size and
4	eliminate particles, both of which result in τ_c decreasing via liquid water loss. Figure 8(a)
5	and Fig. 8(d) for the N_l case are generally similar and frequent at smaller Z_e . Figure 8(b)
6	and Fig. 8(e) of the N_2 case are also similar, moving to slightly larger Z_e than the N_1 case.
7	As for the N_3 case, Fig. 8(f) shows that oceanic clouds are more frequent in optically
8	thicker and larger Z_e regions, which suggests more precipitation, compared to the land
9	clouds shown in Fig. 8(c). A larger Z_e corresponds to larger r_e , which is consistent with
10	the larger r_e of oceanic clouds. Moreover, the N_3 cases are even more different from the
11	N_1 and N_2 cases, particularly for oceanic clouds.
12	
13	4 Conclusions
14	
15	Following KS12, who analyzed water cloud microphysical and transitional
16	processes over the Amazon and China using a combination of both active radar (CloudSat)
17	and passive radiometer (MODIS) data, we applied the same analysis approach to
18	mid-latitude water clouds to examine land-ocean differences in relationships among
19	cloud droplets, drizzle, and precipitation. The cloud parameters used were τ_c and r_e from
20	MODIS; LWP and N_c as by-products of τ_c and r_e ; and Z_e from CloudSat. We analyzed the
21	following parameters with the synergistic use of active CloudSat and passive MODIS

1 data: 1) PDFs of cloud parameters, 2) PDFs of cloud parameters as a function of Z_e ,

2 3) fractional occurrences of precipitation categories as a function of the LWP,

3 4) fractional occurrences of precipitation categories as a function of τ_c and r_e , and of the

4 LWP and N_c , and 5) vertical cloud structure using CFODD.

5The PDFs of cloud optical and microphysical parameters were reasonable and 6 consistent with previous studies, such that r_e was smaller and N_c was larger for land $\mathbf{7}$ clouds. These results support Twomey's idea regarding the differences in aerosol 8 abundance between land and ocean. Although the distributions of τ_c were similar between 9 land and oceanic clouds, LWP was larger for oceanic clouds owing to larger values of r_e . 10 For the PDF of Z_e , both land and oceanic clouds had bimodal shapes. We also found that 11 the oceanic clouds had a larger mode of Z_e and higher frequencies at the larger Z_e range. 12Then, we classified the precipitation characteristics into the four categories 13non-precipitating, drizzle, precipitating, and total-precipitating, using the thresholds of 14 -15 and 0 dBZ to divide categories. Next, we analyzed the PDFs of cloud parameters as a function of Z_e in order to examine how they tend to change with changing Z_e , taking Z_e as 1516 the horizontal coordinate and the PDFs of cloud parameters as the vertical coordinate. 17Figures 3 (a)–(d) and 4 (a)–(d) illustrate the results over land and ocean for τ_c , r_e , LWP, 18 and N_c , respectively. Although monotonic trends were observed for both land and oceanic 19 cloud parameters, such as positive trends of τ_c , r_e , and LWP and a negative trend of N_c , 20on the whole, land cloud parameters showed less distinct trends for $Z_e > 0$ dBZ. Then, the 21fractional occurrences of these precipitation categories were examined as a function of

1	the LWP (Fig. 5). General trends were found to be very similar between land and oceanic
2	clouds, such as a monotonically decreasing trend in the non-precipitating, a convex shape
3	for the drizzle, and monotonically increasing trends of both the precipitating and
4	total-precipitating categories. Although both land and oceanic clouds showed the convex
5	shape for the drizzle category, the peak value of LWP was larger for land clouds,
6	implying that more cloud water is required for drizzle particles to form over land than
7	over ocean because of smaller cloud droplets over land. The same tendencies were also
8	found in the precipitating category that shows larger LWP values over land for the
9	fractional occurrence to reach the same value as over ocean.
10	We further analyzed the fractional occurrences of the precipitation categories in
11	terms of two-dimensional representations of cloud parameters, such as combinations of
12	$\tau_c - r_e$ and LWP– N_c , instead of the LWP alone. Systematic changes in the transition
13	regarding pairs of the cloud parameters were captured well for all precipitation categories.
14	The transition pattern was generally similar between land and oceanic clouds. As Suzuki
15	et al. [29] suggested, use of this two-dimensional method can reveal the detailed
16	characteristics of cloud parameters and fractional occurrences of each precipitation
17	category. Finally, the CFODD diagram, with τ_c as the vertical coordinate and Z_e as the
18	horizontal coordinate, was used to classify cloud development stages in terms of N_c . This
19	CFODD approach may also reveal the transitional characteristics of cloud vertical
20	structure. In particular, oceanic clouds were found to produce heavier precipitation from
21	optically thicker regions than land clouds in N_3 . This is consistent with Fig. 2(e), which

 $\mathbf{2}$ larger Z_e range. However, whether a cloud was of land or oceanic origin made little 3 difference in N_1 . 4 At last, let us summarize the discussion on relations among τ_c , r_e , LWP and N_c . The LWP and N_c , which were derived from and were not independent of τ_c and r_e in this $\mathbf{5}$ 6 study, are important parameters in current analyses such that the LWP is taken as the 7x-axis in fractional occurrences of the precipitation category of Fig. 5, and N_c is used as 8 the threshold in the CFODD of Fig. 8. From the viewpoint of cloud physics, the 9 behaviors of τ_c , r_e , LWP, and N_c so obtained can be summarized as follows. Using the 10 PDFs as a function of the Z_e in Figs. 3 and 4, τ_c , r_e , and the LWP monotonically increase 11 with Z_e , storing water mass inside the cloud layer, while N_c is decreased due to the 12collision-coalescence process, which produces raindrops and whose temporal progress 13can be seen from the left to the right in Figures 3 and 4. 14 Future work regarding this study can be mentioned as follows. It would be useful 15to extend these kinds of analyses to various locations across the globe, in addition to the 16 mid-latitudes examined in this study, and to determine differences and similarities in 17microphysical features. Recently, Zhu et al. [30] proposed a mechanism for the aerosol 18 concentration increase due to weakening of the East Asian summer monsoon. It would be 19 quite interesting in this context to examine the correlation between the aerosol 20concentration and precipitating/non-precipitating frequencies over various locations, as

shows that the oceanic clouds had larger modes of Z_e and were more frequent in the

1

21 well as over East Asia. Furthermore, Lebsock et al. [3] derived vertical profiles of

1	precipitation rate and discussed the ratios of rain and cloud water for oceanic low-level
2	clouds. A vertical analysis of precipitation rate, when combined with the current approach,
3	may help to clarify the transitional processes involved in cloud droplet, drizzle, and
4	precipitation formation inside the cloud layer.
5	
6	Acknowledgments.
7	K. Kawamoto was supported by the Mitsui & Co., Ltd., Environment Fund, Grant-in
8	aid for Scientific Research (B) and Grant-in aid for Scientific Research on Innovative
9	Areas. The CloudSat data products of 2B-GEOPROF and MODIS-AUX and
10	ECMWF-AUX were provided by the CloudSat Data Processing Center at CIRA/Colorado
11	State University. Part of the research was carried out at the Jet Propulsion Laboratory,
12	California Institute of Technology, under a contract with the National Aeronautics and
13	Space Administration.
14	
15	
16	
17	References
18	[1] L'Ecuyer TS, Berg W, Haynes JM, Lebsock MD, Takemura T. Global observations of
19	aerosol impacts on precipitation occurrence in warm maritime clouds. J Geophys Res

20 2009;114:D09211, doi:10.1029/2008JD011273.

1	[2] Kawamoto K, Hayasaka T. Relative contributions to surface shortwave irradiance over
2	China: A new index of potential radiative forcing. Geophys Res Lett 2008;35:L17809,
3	doi:10.1029/2008GL035083.
4	[3] Lebsock MD, L'Ecuyer TS, Stephens GL. Detecting the ratio of rain and cloud water
5	in low-latitude shallow marine clouds. J Appl Meteor Clim 2011;50:419-432,
6	doi:10.1175/2010JAMC2494.1.
7	[4] Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmos Sci
8	1977;34:1149–52.
9	[5] Albrecht B. Aerosols, cloud microphysics, and fractional cloudiness. Science
10	1989;245:1227–30.
11	[6] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. J Geophys Res
12	1997;102:6831–64.
13	[7] Huang J, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y, Ayers JK. Satellite-based
14	assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia.
15	Geophys Res Lett 2006:33, L19802, doi:10.1029/2006GL026561.
16	[8] IPCC. Climate Change 2007: The Physical Science Basis, Contribution of Working
17	Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
18	Change. Cambridge University Press 2007;996 pp.
19	[9] Han Q, Rossow WB, Lacis AA. Near-global survey of effective droplet radii in liquid
20	water clouds using ISCCP data. J Clim 1994;7:465–97.

[10] Nakajima TY, Nakajima T. Wide-area determination of cloud microphysical
 properties from NOAA AVHRR measurements for FIRE and ASTEX regions. J Atmos Sci
 1995;52:4043–59.

4 [11] Stephens GL, et al. The CloudSat mission and the A-Train. Bull Amer Meteor Soc
5 2002;83:1771–90.

[12] Lebsock MD, Stephens GL, Kummerow C. Multisensor satellite observations of
aerosol effects on warm clouds. J Geophys Res 2008;113:D15205,
doi:10.1029/2008JD009876.

9 [13] Suzuki K, Stephens GL. Global identification of warm cloud microphysical
10 processes with combined use of A-Train observations. Geophys Res Lett 2008;35:
11 L08805, doi:10.1029/2008GL033590.

12 [14] Nakajima TY, Suzuki K, Stephens GL. Droplet growth in warm water clouds

13 observed by the A-Train. Part II: A multi-sensor view. J Atmos Sci 2010;67:1897–1907.

14 [15] Suzuki K, Nakajima TY, Stephens GL. Particle growth and drop collection efficiency

15 of warm clouds as inferred from joint CloudSat and MODIS observations. J Atmos Sci

16 2010;67:3019–32.

17 [16] Kawamoto K, Suzuki K. Microphysical transition in water clouds over the Amazon

18 and China derived from space-borne radar and radiometer data. J Geophys Res

19 2012;117:D05212, doi:10.1029/2011JD016412.

20 [17] Kawamoto K, Effect of precipitation on water cloud properties over China. Geophys

21 Res Lett 2008;35:L20811, doi:10.1029/2008GL035052.

- 1 [18] Polonsky I, Level 2 cloud optical depth product process description and interface
- 2 control document. CloudSat Project 2008;CIRA, Colorado State University, Fort Collins,
- 3 21 pp. [Available online at
- 4 http://www.cloudsat.cira.clostate.edu/ICD/2BTAU/2B-TAU_PDICD_5.0.pdf.]
- 5 [19] Brenguier J, Pawlowska H, Schuller L, Preusker R, Fischer J, Fouquart Y. Radiative
- 6 properties of boundary layer clouds: Droplet effective radius versus number concentration.
- 7 J Atmos Sci 2000;57:803–21.
- 8 [20] Kubar TL, Hartmann DL, Wood R. Understanding the importance of microphysics
- 9 and macrophysics for warm rain in marine low clouds. Part I: Satellite observations. J
- 10 Atmos Sci 2009;66:2953–72.
- [21] Wood R. Relationships between optical depth, liquid water path, droplet
 concentration, and effective radius in adiabatic layer cloud. University of Washington
 2006;3 pp. [Available online at
- 14 http://www.atmos.washington.edu/;robwood/papers/chilean_plume/optical_depth_relation
 15 s.pdf.]
- 16 [22] Mace GG, Marchand R, Zhang Q, Stephens GL. Global hydrometeor occurrence as
- observed by CloudSat: Initial observations from summer 2006. Geophys Res Lett
 2007;34: L09808, doi:10.1029/2006GL029017.
- 19 [23] Marchand R, Mace GG, Ackerman T, Stephens GL. Hydrometeor detection using
- 20 CloudSat An Earth-orbiting 94GHz cloud radar. J Atmos Ocean Tech 2008;25:519–33.

1	[24] Partain P. Cloudsat ECMWF-AUX auxiliary data process description and interface
2	control document. CloudSat Project, CIRA, Colorado State University, Fort Collins
3	2007;10 pp. [Available online at
4	http://www.cloudsat.cira.colostate.edu/dataICDlist.php?go=list&path=/ECMWF-AUX]
5	[25] Haynes JM, Stephens GL. Tropical oceanic cloudiness and the incidence of
6	precipitation: Early results from CloudSat. Geophys Res Lett 2007;34:L09811,
7	doi:10.1029/2007GL029335.
8	[26] Gultepe I, Isaac GA. Aircraft observations of cloud droplet number concentration:
9	Implications for climate studies. Q J R Meteorol Soc 2004;130:2377–90.
10	[27] Remer LA, et al. The MODIS aerosol algorithm, products and validation. J Atmos
11	Sci 2005;62:947–73.
12	[28] Kawamoto K, Nakajima T, Nakajima TY. A global determination of cloud
13	microphysics with AVHRR remote sensing. J Clim 2001;14:2054-68.
14	[29] Suzuki K, Stephens GL, van den Heever SC, Nakajima TY. Diagnosis of the warm
15	rain process in cloud-resolving models using joint CloudSat and MODIS observations. J
16	Atmos Sci 2011;68:2655-70.
17	[30] Zhu J, Liao H, Li J. Increases in aerosol concentrations over eastern China due to the
18	decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett 2012:39,
19	L09809, doi:10.1029/2012GL051428.
20	

21Figure captions

1	Figure 1. Map of the regions analyzed in this study. The solid and dotted circles represent
2	the land areas (within 1000 km from $35^{\circ}N$ and $105^{\circ}W$ over China) and oceanic areas
3	(within 1000 km of 35°N and 165°E over the northwest Pacific) included, respectively.
4	
5	Figure 2. Probability distribution functions of (a) τ_c , (b) r_e , (c) LWP, (d) N_c , and (e) Z_e for
6	land and oceanic clouds. The two threshold values of -15 and 0 (dBZ) were imposed in
7	Fig. 2(e).
8	
9	Figure 3. Probability distribution functions of (a) τ_c , (b) r_e , (c) LWP and (d) N_c as a
10	function of Z_e for land clouds.
11	
12	Figure 4. As in Fig.3, but for oceanic clouds.
13	
14	Figure 5. Fractional occurrences of (a) non-precipitating, (b) drizzle, (c) precipitation, and
15	(d) total-precipitation as a function of the LWP for land and oceanic clouds.
16	
17	Figure 6. Fractional occurrences of (a) non-precipitating, (b) drizzle, and (c) precipitation
18	as a function of τ_c and r_e for land and oceanic clouds.
19	
20	Figure 7. As in Fig.6, but as a function of LWP and N_c
21	

- Figure 8. CFODDs of the (a) land clouds for N₁, (b) land clouds for N₂, (c) land clouds for
 N₃, (d) oceanic clouds for N₁, (e) oceanic clouds for N₂ and, (f) oceanic clouds for N₃.
 4
- $\mathbf{5}$

Fig.1

Fig.2 (a)

Fig.2 (c)

Fig.2 (d)

Fig.2 (e)

Fig.3

Fig.4

Fractional Occurrence

Fig.5 (a)

Fig.5 (b)

Fractional Occurrence

Fig.5 (c)

Fractional Occurrence

Fig.5 (d)

Fig.8

Fig.8