Bundle Struture of the Homeomorphism Groups of Locally Compact Homogeneous Spaces

Takashi KARUBE

Department of Mathematics, Faculty of Education Nagasaki University, Nagasaki (Received Oct. 31, 1982)

Abstract

The space $\mathcal{H}(X)$ of homeomorphisms on a locally compact homogeneous space X with a local cross-section is a bundle space over X. If X is separable metrizable and admits a nontrivial flow in addition, then $\mathcal{H}(X)$ is an l_2 -manifold if and only if X is an ANR and $\mathcal{H}(X,a)$ is an l_2 -manifold, where $\mathcal{H}(X,a)$ is the subspace of $\mathcal{H}(X)$ consisting of all those which leave a point a of X fixed. If X is a locally connected, compact metrizable homogeneous space that is an ANR and admits a local cross-section and a nontrivial flow, then $\mathcal{H}(X)$ is an l_2 -manifold if and only if $\mathcal{H}(X-a)$ is an l_2 -manifold, where $\mathcal{H}(X-a)$ is the space of homeomorphisms on X-a $(a \in X)$.

Introduction

McCarty [8] has shown that for a locally connected, locally comact Hausdorff homogeneous space X with a local cross-section, its full homeomorphism group $\mathscr{H}(X)$ with compact-open topology is a principal fiber bundle over X, and in particular if the set X is a locally connected, locally compact Hausdorff topological group then $\mathscr{H}(X)$ is a product bundle. And noting the existence of a natural exact homotopy sequence he studied homeotopy groups of several manifolds. On the other hand Keesling ([7], p. 15) has remarked that if X is a locally compact Hausdoff topological group then $\mathscr{H}(X)$ is homeomorphic to the product space $X \times \mathscr{H}(X, e)$ where e is the identity of X.

We consider first whether the McCarty's conclusion holds or not without the assumption "local connectedness". The answer is given in § 2. In § 1 we show that $\mathcal{H}(X)$ is a bundle space over X without the assumption "local connectedness". The same conclusion as this has been obtained in [5] already, and

yet here we try to generalize its premise and to improve the proof. The result not only contains the Keesling's remark as a special case but also yields the natural exact homotopy sequence as in [8]. Next we treat applications of our Theorem 1 in §3. There our concern now is mainly in several local connectivities of $\mathcal{H}(X)$, and particularly in local l_2 property. Our main results are Theorems 3 and 4. These are slight generalizations of Theorems 2 and 3 in [5] respectively.

Notations

- H(*): The group of all homeomorphisms on a topological space *, endowed with the compact-open topology — only in § 2 another topology is considered also.
- $\mathcal{H}(*,a)$: The subspace of $\mathcal{H}(*)$, consisting of all those which leave a point a fixed $(a \in *)$.
- X = G/H: The left coset space of a Hausdorff topological group G by a closed subgroup H—in the paper we call such a space a homogeneous space.

 π : The natural projection of G onto X.

These notations will keep these meanings throughout the paper.

1. Bundle structure of $\mathcal{H}(X)$.

We consider a bundle structure of $\mathcal{H}(X)$ after clarifying two concepts used in Theorem 1.

Let p be a continuous map of a space E into another space B. We say that the space B has a local cross-section f (at a point b in B) relative to p, if f is a continuous map from a neighborhood U of b into E such that pf(u) = u for each $u \in U$

Let p, E, and B be the same as above. The space E is called a bundle space over the base space B relative to the projection p if there exists a space D such that, for each $b \in B$, there is an open neighborhood V of b in B together with a homeomorphism

$$\psi_V: V \times D \rightarrow p^{-1}(V)$$

of $V \times D$ onto $p^{-1}(V)$ satisfying the condition

$$p\psi_{V}(v,d)=v$$
 $(v\in V, d\in D)$

This terminology is the same as in [3]

THEOREM 1. Let X = G/H be a homogeneous space, a an arbitrary but fixed point of X, p the map of $\mathcal{H}(X)$ to X defined by $p(\psi) = \psi(a)$ ($\psi \in \mathcal{H}(X)$), and $\mathcal{H}^* = \mathcal{H}(X)/\mathcal{H}(X,a)$ the left coset space (with quotient topology) of

 $\mathcal{H}(X)$ by $\mathcal{H}(X, a)$. Then we have the following.

- (a) The map p is a continuous surjection. $\mathscr{H}(X) = \mathscr{L} \circ \mathscr{H}(X,a)$ where \mathscr{L} is the group of all left translations in X. And $\mathscr{L} \cap \mathscr{H}(X,a)$ consists of just one element if and only if H coincides with the maximal normal subgroup of G which is contained in H.
- (b) Assume that X has a local cross-section relative to the natural projection $\pi: G \rightarrow X$. Then
 - i) X has a local cross-section relative to p,
- ii) X is homeomorphic to \mathcal{H}^* in a natural way, and p is a quotient map. And so we can identify X with \mathcal{H}^* .
- (c) Assume that X is locally compact and has a local cross-section relative to π . Then $\mathcal{H}(X)$ is a bundle space over the base space X relative to the projection p. Proof. It is easy to see (a). We give proofs for (b) and (c).
- (b), i): For each element g of G, let $\omega(g)$ be the left translation in X by g. The map $\omega: g \to \omega(g)$ ($g \in G$) is a continuous (algebraic) homomorphism of G into $\mathscr{H}(X)$. Now let f be a local cross-section from a neighborhood G of a point G into G. For any fixed point G of G into G be the map of G into G defined by
 - $q(u) = \omega(f(u) \cdot g_0^{-1}) \ (u \in U).$
- Put W=q(U). Then both maps $q:U\to W$ and $p\mid W:W\to U$ are homeomorphisms and inverses each other. In particular q is a local cross-section $U\to \mathcal{H}(X)$ relative to p.
- (b) ii): Let π^* be the natural projection of $\mathscr{H}(X)$ onto \mathscr{H}^* , and put $r=p\circ\pi^{*-1}$. r is well-defined as a map $\mathscr{H}^*\to X$, and it is a continuous bijection. Now we will show that p is a quotient map. Let O be any nonempty subset of X such that $p^{-1}(O)$ is open in $\mathscr{H}(X)$. For any point x of O, take a local cross-section f at x relative to $\pi:G\to X$, which is defined on a neighborhood U of x in X. For such f and U, take the local cross-section $q:U\to\mathscr{H}(X)$ and the set W as in the proof of (b), i). Let w=q(x) and take a neighborhood V of w in $\mathscr{H}(X)$ such that $V\subset p^{-1}(O)$. Then it is easy to see that $p(V\cap W)$ is a neighborhood of x in X, which is contained in O. Thus p is a quotient map. Therefore the map r is a homeomorphism of \mathscr{H}^* onto X
- (c): For any point x of X, take an open neighborhood U of x and the set W as in the proof of (b), i). Let Φ be the map of the product space $W \times \mathscr{H}(X,a)$ onto $W \circ \mathscr{H}(X,a)$ (= $p^{-1}(U)$) defined by $\Phi(w,\psi)=w \circ \psi$. It is easy to see that Φ is a bijection. Since X is locally compact Hausdorff, Φ is continuous. To show the continuity of Φ^{-1} , in the following let w and ψ be any element of W and $\mathscr{H}(X,a)$ respectively. The map that carries $w \circ \psi$ to w is continuous, for $w=(q \circ p)(w \circ \psi)$. The map that carries w to w^{-1} is continuous, for

$$w^{-1} = \omega \left(\left\lceil f \rho \left(w \right) \cdot g_0^{-1} \right\rceil^{-1} \right).$$

Hence the map that carries $w \circ \psi$ to ψ is continuous, for

$$\psi = w^{-1} \circ (w \circ \psi)$$
.

Consequently Φ^{-1} is continuous. Hence Φ is a homeomorphism. From the fact we can show that $\mathcal{H}(X)$ is a bundle space over the base space X relative to the projection p.

COROLLARY 1 (J. Keesling [7]). If X is a locally compact Hausdorff topological group, then \mathcal{L} is isomorphic to X as topological groups and $\mathcal{H}(X)$ is homeomorphic to the product space $X \times \mathcal{H}(X, a)$.

Proof. In the case we can consider in the proof of Theorem 1 that $X=G/\{e\}=U\approx W=\mathscr{L}=\omega(G)$,

where e is the identity of G and \approx means "is homeomorphic to". Then W is a topological group, and the map Φ gives a homeomorphism of $W \times \mathcal{H}(X, a)$ onto $\mathcal{H}(X)$.

2. Fiber bundle structure of $\mathcal{H}(X)$.

We use the following notations τ_c and τ_g only in this section.

 τ_c : The compact-open topology on $\mathcal{H}(X)$.

 $\tau_{\mathcal{E}}$: The g-topology, named by R. Arens [1], on $\mathscr{H}(X)$ as follows. If A and B are closed and open subsets, respectively, of X, and either A or the complement of B in X is compact, then let [A, B] be the set of $\psi \in \mathscr{H}(X)$ such that $\psi(A) \subset B$. The totality of sets [A, B] are taken as a subbase for the g-topology.

THEOREM 2. Let the topology τ_g be given on $\mathcal{H}(X)$ in place of τ_c . Then Theorem 1 holds, and moreover, under the assumption of (c) in Theorem 1, $\mathcal{H}(X)$ is a principal fiber bundle over X with fiber and group $\mathcal{H}(X, a)$.

Proof. For the latter assertion, noting the fact that $\mathcal{H}(X)$ with τ_g becomes a topological group ([1], Th. 3) and (b) in Theorem 1, standard application of the bundle structure theorem (cf. [9]) yields the conclusion.

REMARK 1. Under the topology τ_c the latter assertion in Theorem 2 is not true in general. In fact Braconnier [2] gave an example of a totally disconnected, non-compact, locally compact, abelian topological group X whose automorphism group $\mathcal N$ is not a topological group under the topology τ_c . Since $\mathcal M \subset \mathcal H(X,e)$ where e is the identity of X, $\mathcal H(X,e)$ is not a topological group under τ_c .

REMARK 2. The topology τ_g is finer than the topology τ_c in general, and if X is a locally compact homogeneous space then τ_g is the coarsest topology for $\mathcal{H}(X,a)$ to become a topological group. Thus for the latter assertion in Theorem 2, τ_g is the most desirable topology on $\mathcal{H}(X)$

COROLLARY 2. Let X be a homogeneous space with a local cross-section relative to π . If i) X is locally connected and locally compact, or ii) X is compact, then $\mathcal{H}(X)$ with topology τ_c is a principal fiber bundle over X with fiber and group $\mathcal{H}(X,a)$.

Proof. For the case i), by Theorems 3 and 4 of [1] and the fact $\tau_c \subset \tau_g$, τ_g coincides with τ_c on $\mathscr{H}(X)$. For the case ii) it is seen at once that τ_g coincides with τ_c . Hence Theorem 2 yields the conclusion.

In $\lceil 8 \rceil$ the case i) above was used.

3. Some applications.

Hereafter it is assumed again that the compact-open topology is endowed on every set of homeomorphisms.

A. Homotopy property.

Here we follow the terminology of Hu [3]. As corollaries to Theorem 1 we have the following Corollaries 3 and 4 below.

COROLLARY 3. If X is a locally compact homogeneous space with a local cross-section relative to π , then $\mathcal{H}(X)$ is a fiber space over X relative to p.

Proof. From (c) in Theorem 1 and Theorem 4.1 in [3] on p. 65.

Thus the powerful machinery of homotopy theory of fiber spaces is available on such $\{ \mathcal{H}(X), X, p \}$.

B. Local property.

DEFINITION. A topological property P is called a *finite product local property* abbreviated FPL property, if i) a topological space has the property P then every open subspace has the property P, and ii) a product space $A \times B$ has the property P if and only if both spaces A and B have the property P.

REMARK 3. Among those local properties of $\mathscr{H}(M)$ studied for spaces M, for example, the following are FPL properties: locally connected, locally arcwise connected, $LC^n LC^{\omega}$, locally contractible, ANR. Note that each of these is a kind of property concerning local connectivity. On the other hand though local compactness is also a FPL property, it can be considered on $\mathscr{H}(M)$ only for non-standard spaces M. Because for a metric space M if $\mathscr{H}(M)$ is locally compact then $\mathscr{H}(M)$ is zero-dimensional (cf. [6]), while for a Hausdorff space M at least one point of which is locally Euclidean, $\mathscr{H}(M)$ is infinite-dimensional (cf. [4], Th. 1.5).

COROLLARY 4. Let X be a locally compact homogeneous space with a local cross-section relative to π . Then $\mathcal{H}(X)$ has a FPL property if and only if both X and $\mathcal{H}(X, a)$ have the FPL property.

Proof. From (c) in Theorem 1, $\mathcal{H}(X)$ is locally homeomorphic to the product space $X \times \mathcal{H}(X, a)$.

DEFINITION. A space is called an l_2 -manifold if it is separable metrizable space and is locally homeomorphic to l_2 , i.e. the Hilbert space of square-summable sequences.

For about thirteen years now it has been conjectured that $\mathcal{H}(M)$ is an l_2 -manifold for a compact metric n-manifold M, and no affirmative answer has been obtained except the cases where n (=dim M) is 1, 2, or ∞ as far as we know.

THEOREM 3. Let X be a separable metrizable locally compact homogeneous space. Assume that X has a local cross-section relative to π , and admits a nontrivial flow. Then $\mathcal{H}(X)$ is an l_2 -manifold if and only if X is an ANR and $\mathcal{H}(X,a)$ is an l_2 -manifold.

(Here "ANR" means absolute neighborhood retract for the class of all metrizable spaces.)

Proof. The same proof for Th. 2 in [5] is valid, though our assumption on local compactness of X is slightly generalized from Th. 2 in [5]. It is essentially an application of a theorem of Toruńczyk [10] to Corollary 4.

REMARK 4. As partial results of Corollary 4 and Theorem 3, for a locally compact homogeneous space X with a local cross-section, we get a criterion which local property must X have when we expect $\mathscr{H}(X)$ to have the local property as stated in this section.

C. Relations between homeomorphism groups of a space and its punctured space.

The following results are slight generalizations from those in [5].

THEOREM 4. Let X be a locally connected, compact metrizable homogeneous space. Assume that X is an ANR and has a local cross-section relative to π , and admits a nontrivial flow. Then $\mathcal{H}(X)$ is an l_2 -manifold if and only if $\mathcal{H}(X-a)$ is an l_2 -manifold.

COROLLARY 5. If X is a compact (positive dimensional) locally Euclidean homogeneous space with a local cross-section, then the same conclusion as in Theorem 4 holds.

As an application of Corollary 5, for several non-compact manifolds M, we know that $\mathcal{H}(M)$ are l_2 -manifolds (see [5]).

References

- [1] R. Arens: Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610.
- [2] J. Braconnier: Sur les groupes topologiques localemant compacts, J. Math. Pures Appl (9) 27 (1948), 1-85.
- [3] S.-T. Hu: Homotopy theory, 1959.

- [4] T. Karube: Hilbert subgroups of the full homeomorphism group of a topological group, Sci. Bull. Fac. Educ., Nagasaki Univ. 28 (1977), 11-22.
- [5] T. Karube: Homeomorphism groups of homogeneous spaces, Sci. Bull. Fac. Educ., Nagasaki Univ. 33 (1982), 5-9.
- [6] J. Keesling: Locally compact full homeomorphism groups are zero-dimensional, Proc. Amer. Math. Soc. 29 (1971), 390-396.
- [7] J. Keesling: Using flows to construct Hilbert space factors of function spaces, Trans. Amer. Math. Soc. 161 (1971), 1-24.
- [8] G. S. McCarty, J_R.: Homeotopy groups, Trans. Amer. Math. Soc. 106 (1963), 275-285.
- [9] N. E. Steenrod: The topology of fibre bundles, 1951.
- [10] H. Toruńczyk: Absolute retracts as factors of normed linear spaces, Fund. Math. 86 (1974), 53-67.