On the Multiplicative Cousin Problem for A(D)

Kenzō Adachi
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki, Japan

(Received Oct. 1, 1978)

Abstract

Let D be a strictly convex domain in C^{n} with C^{2}-class boundary. Let $A(D)$ be the space of functions holomorphic in D that are continuous on \bar{D}. The purpose of this paper is to show that the multiplicative Cousin problem for $\mathrm{A}(\mathrm{D})$ is solvable.

1. Introduction. Let S_{n} be the class of bounded domains D in C^{n} with the properties that there exists a real function ρ of class C^{2} defined on a neighborhood W of $\partial \mathrm{D}$ such that $\mathrm{d} \rho \neq 0$ on $\partial \mathrm{D}, \mathrm{D} \cap \mathrm{W}=\{z \varepsilon \mathrm{~W}: \rho(\mathrm{z})<1\}$ and the real Hessian of ρ is positive definite on W. E. L. Stout [4] proved that the domain $D \varepsilon S_{n}$ is strictly convex and that if 0ε D , then D can be defined by a globally defined function which has a positive definite real Hessian on $C^{n}-\{0\}$. From now on, when we consider $D \varepsilon S_{n}$, we assume that the defining function of D is globally defined.

Let $\mathrm{F}(\mathrm{D})$ be the sheaf of germs of continuous functions on $\overline{\mathrm{D}}$ that are holomorphic in D. I. Lieb [2] proved that $\mathrm{H}^{q}(\overline{\mathrm{D}}, \mathrm{F}(\mathrm{D}))=0$ for $\mathrm{q} \geqq 1$, provided D is a strictly pseudoconvex domain with C^{5}-boundary. Let $\mathrm{D} \varepsilon \mathrm{S}_{\mathrm{n}}$ and let D have a C^{5}-boundary. Then, from the above Lieb's result and $\mathrm{H}^{2}(\mathrm{D}, \mathrm{Z})=0$, by applying the standard exact sequence of sheaves

$$
0 \rightarrow \mathrm{Z} \rightarrow \mathrm{~F}(\mathrm{D}) \xrightarrow{\exp } \mathrm{F}(\mathrm{D})^{-1} \rightarrow 0
$$

one can solve Cousin II problems with data from the sheaf $F(D)$.
In this paper, without using the above cohomology theory, we can prove directly that the multiplicative Cousin problem for $\mathrm{A}(\mathrm{D})$ is solvable. Explicitly, our result is the following :

THEOREM. Let $\mathrm{D} \varepsilon \mathrm{S}_{\mathrm{n}}$. Let $\left\{\mathrm{V}_{\alpha}\right\}_{\alpha_{\varepsilon \mathrm{I}}}$ be an open covering of $\overline{\mathrm{D}}$, and for each $\alpha, \mathrm{f}_{\alpha}$ $\varepsilon \mathrm{A}\left(\mathrm{V}_{\alpha} \cap \mathrm{D}\right)$. If for all $\alpha, \beta \in \mathrm{I}, \mathrm{f}_{\alpha} \mathrm{f}_{\beta}^{-1}$ is an invertible element of $\mathrm{A}\left(\mathrm{V}_{\alpha} \cap \mathrm{V}_{\beta} \cap \mathrm{D}\right)$, then there exists a function $\mathrm{F} \in \mathrm{A}(\mathrm{D})$ such that for all $\alpha \varepsilon \mathrm{I}, \mathrm{Ff}_{\alpha}{ }^{-1}$ is an invertible element of $\mathrm{A}\left(\mathrm{V}_{\alpha} \cap \mathrm{D}\right)$.

In the case when D is an open unit polydisc in C^{n}, the theorem has been proved by E. L. Stout [3].
2. Proof of theorem. Let $D \varepsilon S_{n}$. By the Cauchy-Fantappiè integral formula, if $f \varepsilon$

A(D), then for $w \varepsilon D$,

$$
\mathrm{f}(\mathrm{w})=\int_{\partial \mathrm{D}} \mathrm{f}(\mathrm{z}) \frac{\mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\left\langle\mathrm{w}-\mathrm{z}, \nabla(\mathrm{z})>^{\mathrm{n}}\right.}
$$

where k is a continuous function, dS is the element of surface area on $\partial \mathrm{D}, \rho$ is a defining function of D and $<w-z, \nabla \rho(z)\rangle=\sum_{j=1}^{n}\left(w_{j}-z_{j}\right) \frac{\partial \rho(z)}{\partial z_{j}}$.
We have the following lemma proved by G. M. Henkin [1〕 for the Ramírez-Henkin integral. The proof of the lemma is essentially the same as the proof of G. M. Henkin [1], so we omit the proof.

LEMMA 1. Let $\mathrm{D} \varepsilon \mathrm{S}_{\mathrm{n}}$ and let $\mathrm{f} \varepsilon \mathrm{A}(\mathrm{D})$. If ϕ is defined and satisfies a Lipschitz condition on C^{n}, then $\mathrm{f} \phi$ defined by

$$
\mathrm{f} \phi(\mathrm{w})=\int \frac{\mathrm{f}(\mathrm{z}) \phi(\mathrm{z}) \mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\partial \mathrm{D}<\mathrm{w}-\mathrm{z}, \nabla \rho(\mathrm{z})>\mathrm{n}}
$$

belongs to $\mathrm{A}(\mathrm{D})$.
Let $D \varepsilon S_{n}$. Let
$\mathrm{M}=\max \left\{\mathrm{x}_{2 \mathrm{n}}\right.$: for some $\left.\mathrm{z} \varepsilon \overline{\mathrm{D}}, \mathrm{z}=\left(z_{1}, \cdots, z_{\mathrm{n}}\right), \mathrm{x}_{2 \mathrm{n}}=\operatorname{Im} z_{\mathrm{n}}\right\}$, and let m be the corresponding minimum. Let ε_{0} satisfy $0<\varepsilon_{0}<\frac{1}{12}(\mathrm{M}-\mathrm{m})$. Let $\eta_{i}, \mathrm{i}=1,2$, be real valued functions of a real variable such that
(1) η_{i} is of class $\mathrm{C}^{2}, \mathrm{i}=1,2$.
(2) $\eta_{1}(\mathrm{t})=0$ if $\mathrm{t} \leqq \frac{1}{2}(\mathrm{M}+\mathrm{m})+\frac{5}{2} \varepsilon_{0}$, $\eta_{2}(\mathrm{t})=0$ if $\mathrm{t} \geqq \frac{1}{2}(\mathrm{M}+\mathrm{m})-\frac{5}{2} \varepsilon_{0}$,
(3) $\quad \eta_{1}(\mathrm{t}) \geqq 2$ if $\mathrm{t} \geqq \frac{1}{2}(\mathrm{M}+\mathrm{m})+3 \varepsilon_{0}$,
$\eta_{2}(\mathrm{t}) \geqq 2$ if $\mathrm{t} \leqq \frac{1}{2}(\mathrm{M}+\mathrm{m})-3 \varepsilon_{0}$,
(4) $\eta_{1}^{\prime \prime}(\mathrm{t})>0$ if $\mathrm{t}>\frac{1}{2}(\mathrm{M}+\mathrm{m})+\frac{5}{2} \varepsilon_{0}$,
$\eta_{2}{ }^{\prime \prime}(\mathrm{t})>0$ if $t<\frac{1}{2}(\mathrm{M}+\mathrm{m})-\frac{5}{2} \varepsilon_{0}$,
Let ρ be a defining function of D , and let $\mathrm{D}_{1}=\left\{\mathrm{z}: \rho(\mathrm{z})+\eta_{1}\left(\mathrm{x}_{2 \mathrm{n}}\right)<1\right\}, \mathrm{D}_{2}=\{\mathrm{z}: \rho(\mathrm{z})$ $\left.+\eta_{2}\left(\mathrm{x}_{2 \mathrm{n}}\right)<1\right\}$. Then it is easily verified that $\mathrm{D}_{1}, \mathrm{D}_{2}$ and $\mathrm{D}_{1} \cap \mathrm{D}_{2}$ are elements of S_{n}.

LEMMA 2. Let $\mathrm{D}, \mathrm{D}_{1}, \mathrm{D}_{2}$ be as above. If $\mathrm{f} \varepsilon \mathrm{A}\left(\mathrm{D}_{1} \cap \mathrm{D}_{2}\right)$, then there exist functions $\mathrm{f}_{1} \varepsilon \mathrm{~A}\left(\mathrm{D}_{1}\right)$ and $\mathrm{f}_{2} \varepsilon \mathrm{~A}\left(\mathrm{D}_{2}\right)$ satisfying $\mathrm{f}(\mathrm{z})=\mathrm{f}_{1}(z)+\mathrm{f}_{2}(z)$ for $z \varepsilon \mathrm{D}_{1} \cap \mathrm{D}_{2}$.

PROOF. Let ψ be a function on C^{n} which satisfies a Lipschitz condition and which has the properties that

$$
\begin{aligned}
& \psi=0 \text { on }\left\{z \varepsilon \partial\left(D_{1} \cap D_{2}\right): x_{2 n}<\frac{1}{2}(M+m)-\varepsilon_{0}\right\}, \\
& \psi=1 \text { on }\left\{z \varepsilon \partial\left(D_{1} \cap D_{2}\right): x_{2 \mathrm{n}}>\frac{1}{2}(M+m)+\varepsilon_{0}\right\} .
\end{aligned}
$$

Let $\tilde{\rho}$ be a defining function of $\mathrm{D}_{1} \cap \mathrm{D}_{2}$, Write f as a Cauchy-Fantappiè integral. For w $\varepsilon \mathrm{D}_{1} \cap \mathrm{D}_{2}$, we have

$$
\mathrm{f}(\mathrm{w})=\int_{\partial\left(\mathrm{D}_{1} \cap \mathrm{D}_{2}\right)} \frac{\mathrm{f}(\mathrm{z}) \mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\langle\mathrm{w}-\mathrm{z}, \nabla \tilde{\rho}(\mathrm{z})\rangle^{\mathbf{n}}}=\mathrm{f}_{1}(\mathrm{w})+\mathrm{f}_{2}(\mathrm{w})
$$

where

$$
\begin{aligned}
& \mathrm{f}_{1}(\mathrm{w})=\int \partial\left(\mathrm{D}_{1} \cap \mathrm{D}_{2}\right) \frac{\mathrm{f}(\mathrm{z}) \psi(\mathrm{z}) \mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\left\langle\mathrm{w}-\mathrm{z}, \nabla \tilde{\rho}(\mathrm{z})>^{\mathrm{n}}\right.} \\
& \mathrm{f}_{2}(\mathrm{w})=\int \partial\left(\mathrm{D}_{1} \cap \mathrm{D}_{2}\right) \frac{\mathrm{f}(\mathrm{z})(1-\psi(\mathrm{z})) \mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\langle\mathrm{w}-\mathrm{z}, \nabla \tilde{\rho}(\mathrm{z})\rangle^{\mathrm{n}}}
\end{aligned}
$$

By lemma $1, f_{1} \varepsilon A\left(D_{1} \cap D_{2}\right), f_{2} \varepsilon A\left(D_{1} \cap D_{2}\right)$. Moreover we can write

$$
\mathrm{f}_{1}(\mathrm{w})=\int \frac{\mathrm{f}(\mathrm{z}) \psi(\mathrm{z}) \mathrm{k}(\mathrm{z}) \mathrm{dS}(\mathrm{z})}{\bar{\Gamma}\langle\mathrm{w}-\mathrm{z}, \nabla \tilde{\rho}(\mathrm{z})>\mathrm{n}}
$$

where $\Gamma=\partial\left(D_{1} \cap D_{2}\right) \cap\left\{\mathrm{x}_{2 n} \geqq \frac{\mathrm{M}+\mathrm{m}}{2}-\varepsilon_{0}\right\}$. If $\mathrm{E}=\left\{\mathrm{z} \varepsilon \mathrm{D}: \mathrm{x}_{2 \mathrm{n}} \leqq \frac{\mathrm{M}+\mathrm{m}}{2}-2 \varepsilon_{0}\right\}$, then the distance between E and the tangent plane of $\partial\left(\mathrm{D}_{1} \cap \mathrm{D}_{2}\right)$ at z is positive, where z is contained in Γ. Therefore $f_{1} \varepsilon A\left(D_{1}\right)$. Similarly $f_{2} \varepsilon A\left(D_{2}\right)$. Therefore lemma 2 is proved.

PROOF OF THEOREM. Suppose that no F with the stated properties exists. Suppose there exist $\mathrm{F}_{1} \varepsilon 0\left(\mathrm{D}_{1}\right)$ and $\mathrm{F}_{2} \varepsilon 0\left(\mathrm{D}_{2}\right)$ such that for all $\alpha, \mathrm{F}_{1} \mathrm{f}_{\alpha}{ }^{-1}$ and $\mathrm{F}_{2} \mathrm{f}_{\alpha}{ }^{-1}$ are invertible elements of $A\left(V_{\alpha} \cap D_{1}\right)$ and $A\left(V_{\alpha} \cap D_{2}\right)$, respectively. Then $f_{0}=F_{1} F_{2}^{-1}$ is an invertible element of $A\left(D_{1} \cap D_{2}\right)$. If $f_{0}=\exp (f)$, then $f \varepsilon A\left(D_{1} \cap D_{2}\right)$. By lemma 2, we can write $f=f_{1}+f_{2}$, where $f_{1} \varepsilon A\left(D_{1}\right)$ and $f_{2} \varepsilon A\left(D_{2}\right)$. Define G on D by $G=F_{1} \exp \left(-f_{1}\right)$ on D_{1}, $\mathrm{G}=\mathrm{F}_{2} \exp \left(\mathrm{f}_{2}\right)$ on D_{2}. Then $\mathrm{G} f_{\alpha}^{-1}$ is an invertible element of $\mathrm{A}\left(\mathrm{V}_{\alpha} \cap \mathrm{D}\right)$. We have supposed that no such function G exists, so either F_{1} or F_{2} does not exist. Say F_{1}. The $\mathrm{x}_{2 \mathrm{n}}-$ width of D_{1}, i. e., the number $\max \left|\mathrm{x}^{\prime}{ }_{2 \mathrm{n}}-\mathrm{x}^{\prime \prime}{ }_{2 \mathrm{n}}\right|$, the maximum taken over all pairs of points $z^{\prime}, z^{\prime \prime}$ in D_{1}, is not more than three fourths of the $\mathrm{x}_{2 \mathrm{n}}$-width of D . We now treat D_{1} as we treated D, using the coordinate $x_{2 n-1}$ rather than $x_{2 n}$, and we find a smaller set $D_{11} \subset D_{1}$ on which the problem is not solvable and which has the property that the $\mathrm{x}_{2_{\mathrm{n}}-1}$-width of D_{11} is not more than three fourths that of D_{1}. We iterate this process, running cyclically through the real coordinate of C^{n}, and we obtain a shrinking sequence of sets on which our problem is not solvable. The sets we obtain eventually lie in some element V_{α}, and on V_{α}, the function f_{α} is a solution to the induced problem. Thus we have a contradiction. Therefore theorem is proved.

References

1) G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Math. USSR Sb., 7(1969), 597-616.
2) I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten: Stetige Randwerte, Math. Ann., 199(1972), 241-256.
3) E. L. Stout, The second Cousin problem with bounded data, Pacific J. Math., 26(1968), 379 -387 .
4) E. L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup., XXVII(1973), 1-17.
