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Estimation of tunnel support pattern selection 1 

using artificial neural network 2 

Abstract: Effective selection of tunnel support patterns is one of the key factors affecting the 3 

safety and operation cost of tunnel engineering. This study developed an artificial neural 4 

network (ANN) model for estimating tunnel support patterns ahead of tunnel face. In this 5 

respect, measure while drilling (MWD) data sets and tunnel support patterns during 6 

construction are introduced to the ANN models. The nonlinear relationship between the 7 

MWD data and the support patterns is estimated. The MWD data includes penetration rate 8 

(PR), hammer pressure (HP), rotation pressure (RP), feed pressure (FP), hammer frequency 9 

(HF) and specific energy (SE), which were collected from 97 drill holes of a high-speed 10 

railway tunnel project that is 3.88 kilometers long in Japan. A multi-layer perceptron analysis 11 

method is used based on different input sample sizes and different ANN structures. The 12 

results show that a strong correlation exists between MWD data and support patterns. It is 13 

traced that a neural network with six inputs (PR, HP, RP, FP, HF and SE) and one hidden layer 14 

is sufficient for the estimation of the support patterns. The increase in input sample size and 15 

hidden layer node has a positive optimizing effect on the performance of the ANN. However, 16 

an input sample size more than 6000 samples and a hidden layer larger than 30 nodes do not 17 

have a significant effect on optimizing the performance of the ANN. The size of input samples 18 

of 6000 and a three-layer neural network with topology 6-30-6 were found to be optimum. 19 

The proposed ANN model is suitable for selecting support patterns in practical engineering. 20 

 21 
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Introduction 1 

The selection of tunnel support patterns heavily relies on the detailed detection of engineering 2 

rock mass characteristics (Bathke 1997; El-Naqa 2001; Marinos et al. 2006; Kaya et al. 2011; 3 

Morelli 2015; Cheng et al. 2019). In the past, the preliminary design of the support patterns 4 

was mainly based on empirical calculations and standardized rock mass classification systems. 5 

Due to the uncertainties in the rock mass behavior, the final selection of the support patterns 6 

was determined in construction process according to the exposed geological characteristics. 7 

The instability of such support patterns often occurs because of the sudden change of 8 

geological conditions ahead of the tunnel face (Kontogianni et al. 2004; Li et al. 2012; Wang 9 

et al. 2019). With the advancement of advanced detection technologies, it is possible to use 10 

advanced measure while drilling (MWD) technology for geological evaluation ahead of 11 

tunnel face (as shown in Fig. 1) (Schunnesson 1996; Sugawara et al. 2003; Høien and Nilsen 12 

2014; Galende-Hernández et al. 2018). At the same time, applications of artificial neural 13 

networks (ANN) in decision-making and estimation of engineering problems have been 14 

attracted substantial interest to various computation sciences and engineering disciplines, 15 

since neural networks have the strong non-linear analysis capabilities and can provide 16 

engineers with scientific methods for optimal decision-making (Cai et al. 1998; Caglar and 17 

Arman 2007; Sarkar et al. 2010; Adoko et al. 2013; Gordan et al. 2016; Ozer et al. 2019). 18 

In tunnel construction, although the site survey including rough estimation of rock mass 19 

structural properties is generally carried out, unexpected anomalies (i.e., cavities or water 20 

bearing, fractured, or relatively stronger zones) that may influence construction safety often 21 

exist (Otto et al. 2002; Ryu et al. 2011; Park et al. 2017; Han et al. 2020; Liu et al. 2018; Ren 22 

et al. 2019). Such anomalies can be detected by MWD system (Schunnesson 1997), which 23 

records the data information of operational parameters involved in drilling. For rotary drilling, 24 

Teale (1965) defined the concept of specific energy (SE) as the energy required to excavate 25 

unit volume of rock. Rabia (1985) compared different bit selections based on both cost per 26 

foot and SE and presented a simplified approach to bit selection that uses the principle of SE. 27 

Zhou et al. (2011) proposed an adaptive unsupervised approach based on MWD data to 28 

estimate the rock types and demonstrated that the proposed approach has a satisfactory 29 
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performance in identification of rock types by experiments on actual data. Leung and 1 

Scheding (2015) proposed a novel measure called modulated specific energy (SEM) for 2 

characterizing drilled material in open-pit coal mining, which can overcome the problems of 3 

low specificity and high variability observed in existing MWD approaches. Khorzoughi et al. 4 

(2018) correlated drill performance variables (MWD data) with measured fracture logs and 5 

identified that drill performance variables can accurately determine open versus closed 6 

fractures. In relation to studies developed for percussive and rotary-percussive drilling, Aoki 7 

et al. (1999) reported that a drill logging system had been developed in 1995 to evaluate the 8 

ground conditions at various depths by the data obtained while boring through the rock with a 9 

hydraulic drill. Yue et al. (2004) presented a methodology for identifying zones of volcanic 10 

weathering and decomposition grades in the ground through the MWD data monitored from 11 

rotary-percussive drilling. Factual data showed that the penetration rate parameter had a close 12 

correlation with decomposition grades in the ground. Peng et al. (2005) and Tang (2006) 13 

investigated the characteristics of void/fracture and the rock mass properties in roof rocks. 14 

The clear correlation between such geological properties and drilling parameters was 15 

confirmed. They found that the feed pressure can be used to detect the anomalies or 16 

discontinuities in the rock and to estimate the rock mass strength. Laudanski et al. (2012) 17 

evaluated the drilling measurements individually as well as combined into compound 18 

parameters to further enhance the ability of MWD to identify strata characteristics. It 19 

demonstrated that MWD can clearly provide qualitative evaluation of soil types, density and 20 

permeability using both rotary and percussion drilling methods. Ghosh et al. (2015) used 21 

MWD data to evaluate data trends among logged parameters and calculated average SE. They 22 

found that the estimation of SE through penetration rate and feed force was affected greatly 23 

by the hole length. From the correlation of MWD data with rock mass geo-mechanical 24 

features, Ghosh et al. (2017) suggested a method for distinguishing solid rock, fracture zones, 25 

cavities and damaged rock, based on the responses from the drill monitoring system. Navarro 26 

et al. (2018) investigated the mutual relation between MWD parameters. They determined 27 

that the feed pressure is a lead parameter that drives the adjustment of other parameters. The 28 

MWD method is usually implemented to quantify and visualize the geological conditions 29 

ahead of the tunnel face, yet directly estimating the support pattern selection is absent because 30 
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of the difficulty of carrying out the MWD detection during the whole length of tunnel 1 

construction. 2 

Furthermore, in the last few years, artificial neural network (ANN) has been proved to be a 3 

powerful tool to settle geotechnical engineering problems (Alimoradi et al. 2008; Yilmaz 4 

2009; Ocak and Seker 2012; Dantas Neto et al. 2017; Elkatatny 2019). Kanamoto et al. (2005) 5 

and Kimura et al. (2005) accurately estimated the different rock mass rating of a part of one 6 

tunnel using ANN based on partial MWD parameters. Guan et al. (2009) proposed a 7 

rheological parameter estimation technique using error backpropagation neural network 8 

(BPNN) and genetic algorithm, which was proved that the proposed technique can provide an 9 

optimal estimation of the rheological parameters and estimate the long-term deformations of 10 

mountain tunnels in the future. Mahdevari and Torabi (2012) developed a method based on 11 

ANN for estimation of convergence in tunnels and carried out a correlation analysis of the 12 

convergence data sets with geo-mechanical and geological parameters. They determined that 13 

cohesion, internal friction angle, Young’s modulus and uniaxial compressive strength are the 14 

most effective factors and uniaxial tensile strength is the least effective one. Avunduk et al. 15 

(2014) suggested a model for estimation of the roadheaders based on ANN and concluded that 16 

the estimation capacity of ANN is better than the empirical models developed previously. 17 

Hasanipanah et al. (2016) proposed a new hybrid model of ANN optimized by particle swarm 18 

for estimating the maximum surface settlement caused by tunneling. Ghorbani and Firouzi 19 

Niavol (2017) applied ANN and evolutionary polynomial regressions to propose a method 20 

which can accurately reflect both static and coupled static-dynamic settlements. Ghorbani et 21 

al. (2018) used two different classes of ANNs to estimate the estimation of the support 22 

pressure of circular tunnels in elasto-plastic, strain-softening rock mass. There were many 23 

studies focused on geological and geo-mechanical interpretation of rock mass using MWD 24 

data and on solution of geotechnical engineering problems by using ANN. However, the 25 

studies involving the estimation of support patterns ahead of tunnel face based on MWD data 26 

using ANN, especially for the different support pattern selection under the same rock mass 27 

rating, have seldom been reported. 28 

This paper aims at proposing an ANN model, based on the MWD data, to estimate the 29 

support pattern selection according to the rock mass condition ahead of the tunnel face. A total 30 
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of 318, 649 MWD data sets along the whole length of a tunnel ware used for this assignment 1 

by BPNN algorithm. Also, the feasibility of using ANN to estimate the support pattern 2 

selection was investigated. The effects of different input sample sizes and different neural 3 

network structures on the estimation performance of the ANN for tunnel support patterns 4 

were analyzed. Finally, the ANN model with optimal estimation performance was 5 

recommended. 6 

Case description 7 

The data sets used in the study were obtained from the new Nagasaki (east) tunnel project in 8 

Japan. The new Nagasaki (east) tunnel is located within the Nagasaki City in the southern part 9 

of Japan with an East-Westward trend as shown in Fig. 2. The tunnel is in the form of 10 

Single-Arch with a length of 3.88 kilometers. The approximate project cost is 60 million USD. 11 

The project started in 2013 and has finished in 2017. The tunnel was excavated using the new 12 

austrian tunnelling method. In this tunnel construction, many support patterns were applied, 13 

namely I-2-A(RC)(B), I-2-A(B), I-2-A(C), I-2-A(D), I-2-B(B), I-2-B (B) C, I-2- B(B) D 14 

[I-2-B (B) E], I-2- B (B) F, II-A-B(B) and II-B(B). It should be noted that due to the lack of 15 

part of the drilling data [corresponding to the tunnel with support patterns I-2-A(RC)(B), 16 

I-2-A(C), I-2-A(D) and I-2-B(B)F, totaling about 190 meters] collected from the construction 17 

site, the selection of the remaining six tunnel support patterns was predicted and analyzed in 18 

this study. A general view of the tunnel support patterns used in the on-site construction is 19 

shown in Fig. 3. Six support patterns were analyzed in this study. The class number of support 20 

patterns is shown in Table 1. The details of the six support patterns are exhibited in Fig. 4 and 21 

Table 2. 22 

The hydraulic rotary-percussive drill as shown in Fig. 5a was used for drilling investigation 23 

ahead of tunnel face. The MWD data as shown in Fig. 6 obtained from the data collection 24 

device as shown in Fig. 5b include penetration rate (PR), hammer pressure (HP), rotation 25 

pressure (RP), feed pressure (FP), hammer frequency (HF) and SE. Each set of these data and 26 

the class number of the corresponding support pattern constitute a data set. All MWD data are 27 

output from the data recording apparatus in real time approximately every 0.25 seconds. The 28 
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total number of all data sets from 97 drill holes is 318, 649.  1 

In the first stage of the study, an ANN for estimating the class of support patterns was 2 

constructed using the numerous data sets. The parameters PR, HP, RP, FP, HF and SE were 3 

used as input parameters and the class number was used as output parameter. The range and 4 

distribution of the MWD data are tabulated in Table 3, in which the data are quite widely 5 

distributed. 6 

Model development 7 

ANN is a simplified mathematical model inspired by the biological structure and functioning 8 

of the brain. French and Recknagel (1970) and Park et al. (1991) defined an ANN as a 9 

structure consisting of closely connected adaptive processing elements that can perform 10 

large-scale parallel computing for data processing. The purpose of ANN studies is to adapt 11 

biological neural networks for data processing. Multi-layer perception is a development of the 12 

ANN. A typical network topology consists of the input layer, one or more hidden layers and 13 

the output layer. The ANN model has a high performance in the modeling of nonlinear 14 

multivariable problems, so which is also a powerful tool in geological engineering 15 

applications.  16 

The input from the previous layer (xi) of each processing unit (PE) is multiplied by an 17 

adjustable connection weight (wij) and summed at each PE and then a threshold (θj) is added. 18 

This summation result is then used as the input (Hj) of the nonlinear transfer function, f, 19 

through which the output yi of the PE is generated. The output of each PE is used as the input 20 

of each PE of the next layer. This process is summarized in Eqs. 1 and 2 (Zurada 1992). 21 

=
n

ij ij j
i

H w x θ+                                     (1) 22 

( )= ijy f H                                         (2) 23 

The transfer function, also called the activation function, is designed to map a neuron, or 24 

layer, net output to its actual output. The class selection of these transfer functions, including 25 

simple linear or nonlinear step functions, depends on the purpose of the ANN. The most 26 

common transfer function implemented in the literature is the sigmoid function (Mitchell 27 
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1997). The sigmoid function is preferred as the transfer function in this study. The generic 1 

formula of the sigmoid function is given in Eq. 3. 2 

( ) 1=
1 xf x

e−+
                                        (3) 3 

There are many algorithms that can be applied to ANNs, however the BPNN algorithm is 4 

more general technology. It provides an effective learning method for multilayer perception 5 

neural networks (Law 2000). One of the purposes of this study is to calculate the best possible 6 

values of network weights. In this calculation, the BPNN algorithm is implemented by 7 

changing the weights and thresholds according to the results of the output layer. After seeing 8 

each input-output pair, the weights of the algorithm will be updated incrementally. The 9 

completion of one epoch means that all input-output pairs have been successfully seen and all 10 

corresponding weights have successfully adjusted. The process is then repeated for as many 11 

epochs as set. In this study, weight updating is an unsupervised iteration.  12 

The input and output layer sizes 13 

The input layer size is equal to the number of input layer nodes multiplied by the number of 14 

input samples corresponding to each node. Staufer and Fischer (1997) stated the input layer 15 

size is one of the important factors affecting the performance of neural networks. Garson 16 

(1998) suggested that input layer size should be 10-30 times the number of input nodes. 17 

However, in order to achieve near optimal performance, Hush (1989) recommended to use 18 

[60×numbers of input nodes× (numbers of input nodes+1)] training samples in the 19 

performance analysis of neural networks for classification problems while Swingler (1996) 20 

and Looney (1996) suggested using 20% and 25% of the data for testing, respectively. In the 21 

present study, in order to investigate the effect of the input layer size on the estimation 22 

performance of neural networks, 3000, 6000, 9000, 12000, 15000, 18000 and 21000 data sets 23 

(corresponding to 500, 1000, 1500, 2000, 2500, 3000 and 3500 data sets of each class of 24 

support patterns) were used in the training stage, and  600 data sets (corresponding to 100 25 

data sets of the remainder of each class) were used in testing stage. 26 

Network structure 27 

Determining the number of hidden layers and the number of nodes in these layers is a major 28 

task in designing neural networks (Kavzoĝlu 2001). Garson (1998) and García-Pedrajas et al. 29 



9 
 

(2005) reported that a single hidden layer is usually sufficient to solve most problems, 1 

especially classification issues. Kanellopoulos and Wilkinson (1997) stated that a second 2 

hidden layer is recommended when the output layer of the neural network has 20 (or more) 3 

nodes. Lippmann (1987) and Rumelhart et al. (1985) indicated that there is rarely an 4 

advantage in using more than one hidden layer. Therefore, one hidden layer was preferred in 5 

this study. However, the number of nodes in hidden layers is the most critical task in the 6 

BPNNs structure. The heuristics proposed for this purpose are summarized in Table 4. The 7 

number of nodes that may be used in the hidden layer varies between 6 and 18, depending on 8 

the proposed heuristics in the literature. However, in order to comprehensively analyze the 9 

influence of the number of hidden layer nodes on the classification performance of the neural 10 

networks, the number of hidden layer nodes was set as 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 11 

60, 70, 80, 90 and 100 separately to conduct conducted trials. 12 

The learning rate and the momentum term 13 

The main disadvantage of the BPNN algorithm is the slow convergence rate, which is mainly 14 

related to the selected learning rate (η). If the selected η values is larger, the modification of 15 

the weight will be greater and the network convergence will be faster. However, the too large 16 

η values will cause oscillations of updating process of weights. And, too small η values will 17 

slow the convergence of the network and make the weight difficult to stabilize. The 18 

momentum term (α) has a stabilizing effect in the BPNN algorithm (Attoh-Okine 1999). It 19 

can be used to improve the convergence while reducing the oscillations of updating process of 20 

weights. Refenes et al. (1994) reported that for a layer and a two-layer network, η= 0.2 and 21 

the momentum term of 0.3< α ≤0.5 is the best combination of convergence. Wythoff (1993) 22 

set the momentum term between 0.4 and 0.9. After several trials, η values = 0.01 and α = 0.5 23 

were set to ensure the convergence of the algorithm before 500 iterations. 24 

Results and discussion 25 

In this study, different BPNN models were set up applying MATLAB software according to 26 

the combination of different numbers of training samples and different network structures 27 

defined above to search for the most effective ANN architecture. This study used MATLAB 28 
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software to develop its own code, without using built-in ANN tool of the software. In these 1 

trials, η of 0.01 and α of 0.5 were used. Testing and validation of the BPNN models were done 2 

with date sets shown above. These date sets were randomly selected from the total data sets. 3 

The results are presented to demonstrate the performance of the networks. Average accuracy 4 

( A , A = the correctly estimated number of output samples / total number of output samples) 5 

and average computing time (T ) were taken as the performance measures to assess the 6 

performance and stability of neural networks. And, average accuracy ( A , A  = A / 10) and 7 

average computing time (T ) (T = T / 10) were obtained from 10 trials under the same 8 

experimental conditions.  9 

The results obtained for these models are listed in Appendix (A) and shown in Figs. 7 10 

and 8. Figure 7 shows a graph with variations in As  with different numbers of training 11 

samples and hidden layer nodes. For all training samples, the As  of the estimated results of 12 

the BPNN models increase with the increase in the number of hidden layer nodes. The growth 13 

curves become horizontal, until the hidden layer node equals 30. In addition, the As  are 14 

lowest as the number of samples is 3000, and the difference is small when the number of 15 

samples is 6000, 9000, 12000, 15000, 18000 and 21000. For example, when the number of 16 

the hidden layer node equals 30, the A s equal to 0.839, 0.839, 0.843, 0.841, 0.847 and 0.844 17 

respectively (as the number of training samples is 6000, 9000, 12000, 15000, 18000 and 18 

21000, respectively). 19 

Figure 8 illustrates variations in the T  per node (T  per node = T / the number of nodes 20 

in hidden layer) with different numbers of training samples and hidden layer nodes. For 21 

different training samples, when the number of nodes in hidden layer is more than 30, the T  22 

per node value tend to fixed values of 4, 8, 11, 15, 20, 23 and 27 (as the number of training 23 

samples is 3000, 6000, 9000, 12000, 15000, 18000 and 21000, respectively). When the 24 

number of nodes in hidden layer is more than 30, the T  value can be calculated by the 25 

formula: hfT T N= (where, fT = the fixed value of the T  per node, hN = the number of 26 

nodes in hidden layer), but the performance of the network does not improve. Thus, observing 27 

Figs. 7, 10, and Appendix (A) and considering the less T  and the guaranteed performance, 28 
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the optimal neural network model is proposed with the number of training samples of 6000 1 

and the hidden layer nodes of 30. The estimation results of six classes of the support patterns 2 

for the preferred BPNN model have relatively high As , as shown in Table 5. 3 

Figure 9 illustrates variations in As  of estimation results for each class of support 4 

patterns in 10 trials based on the preferred BPNN model. The As  of estimation results of the 5 

six support patterns have a high robustness, especially for class 1 and class 2. In addition, the 6 

comparison between the estimation results and the real classes of the second experiment is 7 

shown in Fig. 10. The A  value of 0.884, 0.866, 0.819, 0.742, 0.805 and 0.920 8 

(corresponding to six classes of support patterns, respectively). Except for the A  value of 9 

class 4 is less than 0.8, the other classes obtain a higher A  value. This result indicates that 10 

the MWD data can characterize the rock mass condition ahead of tunnel face and there is a 11 

high correlation between such measured data and support patterns. 12 

Conclusions 13 

This study presented an artificial neural network (ANN) model to estimate support pattern 14 

selection ahead of tunnel face based on measure while drilling (MWD) data. The MWD data 15 

was obtained from 97 drill holes of a high-speed railway tunnel project carried out along 3.88 16 

kilometers long in Japan. In order to obtain the optimal neural network model, controlled 17 

trials are conducted considering different input sample sizes and hidden layer sizes. An ANN 18 

with 6 inputs (penetration rate (PR), hammer pressure (HP), rotation pressure (RP), feed 19 

pressure (FP), hammer frequency (HF) and specific energy (SE)) and 6 outputs (6 dimensions 20 

correspond to 6 classes of support patterns) is designed for estimating  the selection of 21 

support patterns. The architecture of the error backpropagation neural network (BPNN) 22 

consists of 1 hidden layer. Numerous training trials are performed starting from a single node 23 

to 100 nodes in the hidden layer. Accuracy and computing time of each trial are recorded to 24 

obtain the performance index. 25 

The results show that strong correlation exists between MWD data and support patterns, 26 

with the optimal estimation results of the average accuracy ( A ) values corresponding to six 27 
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classes of support patterns are, respectively, 0.884, 0.866, 0.819, 0.742, 0.805 and 0.920.  1 

The selection of tunnel support patterns is mainly influenced by the geotechnical condition of 2 

the rock mass. The estimation performance of ANN is affected by the input sample sizes and 3 

the hidden layer sizes. An input sample size greater than 6000 samples and a hidden layer size 4 

greater than 30 neurons do not have an optimizing effect on the performance. An optimal 5 

ANN model is obtained with 6000 samples in input layer and 1 hidden layer with 30 nodes. 6 

The ANN draws an excellent performance using only 2% of the total samples as training 7 

samples and is a convenient tool for estimating tunnel support pattern selection ahead of 8 

tunnel face. It can be stated that the estimation of tunnel support pattern selection using ANN 9 

can be used as an essential knowledge of project engineers for improving the safety and 10 

reliability of tunnel engineering. 11 

In the present study, the commonly used BPNN model is utilized to demonstrate the 12 

correlation between the MWD data and the support pattern selection. As a prior work, the 13 

ANN models with other outstanding algorithms are not adopted but will be considered in the 14 

future studies. The present study established the BPNN models with all the MWD data 15 

parameters, which is therefore merely an initial step to explore the concerned topic. More 16 

combinatorial and complex parameters based on the MWD data parameters need to be 17 

considered to improve the estimation performance of the ANN. Besides, more verification and 18 

analysis based on other tunnel projects under similar geological conditions should be carried 19 

out to understand the adaptability of the proposed ANN estimation model in the future works. 20 

21 
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Appendix (A) 1 

The results obtained for different models (Nts: Number of training samples A : average accuracies 2 
 T : average computing times) 3 

No. Nts Network 
structure A  T  No. Nts Network 

structure A  T  

1 3000 6-6-6 0.625 32.52 57 12000 6-30-6 0.844 481.93 
2 3000 6-8-6 0.726 39.60 58 12000 6-40-6 0.843 627.40 
3 3000 6-10-6 0.743 46.99 59 12000 6-50-6 0.857 785.90 
4 3000 6-12-6 0.777 53.73 60 12000 6-60-6 0.864 902.55 
5 3000 6-14-6 0.781 61.04 61 12000 6-70-6 0.857 1044.66 
6 3000 6-16-6 0.778 67.79 62 12000 6-80-6 0.863 1185.99 
7 3000 6-18-6 0.807 75.32 63 12000 6-90-6 0.851 1329.98 
8 3000 6-20-6 0.801 81.85 64 12000 6-100-6 0.866 1482.69 
9 3000 6-30-6 0.820 117.16 65 15000 6-6-6 0.658 170.31 

10 3000 6-40-6 0.836 156.77 66 15000 6-8-6 0.700 207.90 
11 3000 6-50-6 0.840 191.76 67 15000 6-10-6 0.748 260.11 
12 3000 6-60-6 0.834 226.58 68 15000 6-12-6 0.784 290.86 
13 3000 6-70-6 0.847 258.01 69 15000 6-14-6 0.789 332.43 
14 3000 6-80-6 0.840 288.74 70 15000 6-16-6 0.814 370.22 
15 3000 6-90-6 0.838 323.84 71 15000 6-18-6 0.819 409.76 
16 3000 6-100-6 0.850 358.32 72 15000 6-20-6 0.835 452.75 
17 6000 6-6-6 0.667 64.34 73 15000 6-30-6 0.841 646.23 
18 6000 6-8-6 0.713 77.29 74 15000 6-40-6 0.848 832.62 
19 6000 6-10-6 0.767 92.09 75 15000 6-50-6 0.858 1025.32 
20 6000 6-12-6 0.804 105.59 76 15000 6-60-6 0.862 1217.78 
21 6000 6-14-6 0.792 119.72 77 15000 6-70-6 0.858 1393.02 
22 6000 6-16-6 0.812 133.91 78 15000 6-80-6 0.859 1594.97 
23 6000 6-18-6 0.821 146.61 79 15000 6-90-6 0.861 1785.53 
24 6000 6-20-6 0.823 160.08 80 15000 6-100-6 0.857 1982.60 
25 6000 6-30-6 0.839 238.43 81 18000 6-6-6 0.649 210.49 
26 6000 6-40-6 0.847 310.50 82 18000 6-8-6 0.728 257.58 
27 6000 6-50-6 0.843 380.44 83 18000 6-10-6 0.758 304.03 
28 6000 6-60-6 0.848 451.46 84 18000 6-12-6 0.791 351.97 
29 6000 6-70-6 0.850 527.90 85 18000 6-14-6 0.811 385.43 
30 6000 6-80-6 0.854 594.81 86 18000 6-16-6 0.817 410.93 
31 6000 6-90-6 0.856 647.51 87 18000 6-18-6 0.814 446.27 
32 6000 6-100-6 0.853 715.04 88 18000 6-20-6 0.827 488.55 
33 9000 6-6-6 0.655 97.71 89 18000 6-30-6 0.847 701.35 
34 9000 6-8-6 0.724 125.41 90 18000 6-40-6 0.852 912.10 
35 9000 6-10-6 0.763 147.86 91 18000 6-50-6 0.862 1121.67 
36 9000 6-12-6 0.785 162.22 92 18000 6-60-6 0.859 1346.63 
37 9000 6-14-6 0.789 186.46 93 18000 6-70-6 0.860 1564.15 
38 9000 6-16-6 0.807 213.57 94 18000 6-80-6 0.856 1775.91 
39 9000 6-18-6 0.798 226.23 95 18000 6-90-6 0.861 1992.42 
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40 9000 6-20-6 0.814 248.16 96 18000 6-100-6 0.863 2202.52 
41 9000 6-30-6 0.839 354.97 97 21000 6-6-6 0.641 264.03 
42 9000 6-40-6 0.845 466.27 98 21000 6-8-6 0.712 269.94 
43 9000 6-50-6 0.849 570.81 99 21000 6-10-6 0.769 317.92 
44 9000 6-60-6 0.850 681.77 100 21000 6-12-6 0.779 384.37 
45 9000 6-70-6 0.854 795.41 101 21000 6-14-6 0.798 421.30 
46 9000 6-80-6 0.847 879.06 102 21000 6-16-6 0.807 466.45 
47 9000 6-90-6 0.860 984.95 103 21000 6-18-6 0.829 536.72 
48 9000 6-100-6 0.853 1089.28 104 21000 6-20-6 0.830 585.45 
49 12000 6-6-6 0.673 137.86 105 21000 6-30-6 0.844 845.34 
50 12000 6-8-6 0.707 166.43 106 21000 6-40-6 0.865 1064.07 
51 12000 6-10-6 0.766 189.64 107 21000 6-50-6 0.853 1374.39 
52 12000 6-12-6 0.792 221.92 108 21000 6-60-6 0.863 1631.82 
53 12000 6-14-6 0.800 251.86 109 21000 6-70-6 0.856 1890.87 
54 12000 6-16-6 0.799 277.25 110 21000 6-80-6 0.860 2144.15 
55 12000 6-18-6 0.815 305.10 111 21000 6-90-6 0.863 2401.31 
56 12000 6-20-6 0.830 339.63 112 21000 6-100-6 0.870 2655.73 
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Fig.1 Diagram of direct drilling method 25 
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Fig.2 Location of new Nagasaki (east) tunnel, Nagasaki, Japan 28 
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Fig.3 General view of the tunnel support patterns 31 
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Fig.4 The details of the six support patterns 34 
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Fig.5 The drill and data collection device:(a) the hydraulic rotary percussion drill, (b) the measure while 38 

drilling (MWD) device 39 
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Fig.6 Visualization of the MWD data recorded 43 
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Fig. 7 Variations of the average accuracies with different number of training samples and nodes in 46 

hidden layer 47 
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Fig. 8 Variations of the average computing time per node 51 
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Fig.9 Variations of the accuracies of estimation with each support pattern in 10 trials 55 
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Fig. 10 Estimated results for the test sample 58 
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Table 1 The classification number of support patterns 60 

Mileage Distance (m) Support pattern Class No. 

57K840.0～57K900.0 60.0 I-2-A(RC) (B) - 
57K900.0～57K948.0 48.0 I-2-A(B) - 
57K948.0～58K150.0 202.0 II-A(B) 1 
58K150.0～58K167.0 17.0 II-A-B (B) 1 
58K167.0～58K259.4 92.4 I-2-A(B) 2 
58K259.4～58K750.9 491.5 II-A(B) 1 
58K750.9～58K766.5 15.6 I-2-A(B) 2 
58K766.5～58K860.4 93.9 II-A(B) 1 
58K860.4～58K890.4 30.0 I-2-A(B) 2 
58K890.4～59K269.9 379.5 II-A(B) 1 
59K269.9～59K303.5 33.6 I-2-A(B) 2 
59K303.5～59K339.5 36.0 I-2-A(D) - 
59K339.5～59K460.1 120.6 I-2-A(B) 2 
59K460.1～59K555.1 95.0 I-2-A(C) - 
59K555.1～59K746.1 191.0 I-2-A(B) 2 
59K746.1～59K747.1 1.0 I-2-B(B) 3 
59K747.1～59K756.1 9.0 II-B(B) - 
59K756.1～60K077.7 321.6 I-2-B(B) 3 
60K077.7～60K168.4 90.7 II-B(B) 4 
60K168.4～60K269.2 100.8 I-2-B(B) 3 
60K269.2～60K275.2 6.0 I-2-B(B)C 5 
60K275.2～60K582.7 307.5 II-B(B) 4 
60K582.7～60K705.1 122.4 I-2-B(B) 3 
60K705.1～60K856.3 151.2 I-2-B(B)C 5 
60K856.3～61K206.7 350.4 I-2-B(B) 3 
61K206.7～61K222.3 15.6 I-2-B(B)D 6 
61K222.3～61K234.3 12.0 I-2-B(B)E 6 
61K234.3～61K719.1 484.8 I-2-B(B) 3 
61K719.1～61K720.0 0.9 I-2-B(B)F - 

Note: The mark "-" represents no drilling data 61 
62 
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Table 2 The comparison of details of the six support patterns 63 

Parameter Uite Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Number of bolts - 10 10 10 10 6 6 
Space of bolts mm 1500 1200 1200 1500 1200 1200 
Type of I-beam - H100 H125 H125 H100 H125 H125 
Shape of I-beam -       

Eccentric or not logic N N Y Y Y Y 
Initial lining thickness cm 10 12.5 12.5 10 12.5 12.5 
Secondary lining thickness cm 30 30 30 30 30 30 

64 
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Table 3 Basic descriptive statistics for the original MWD data 65 

   Class Support 
pattern 

Number of 
datasets Class Support 

pattern 
Number of 

datasets 
   1 II-A(B) 66514 2 I-2-A(B) 49228 

Parameter Symbol Unit  Ave. Min. Max.  Ave. Min. Max. 

Penetration rate PR m/min  0.93 0.02 17.44  0.89 0.00 22.16 
Hammer pressure HP MPa  15.33 6.00 16.80  14.15 5.10 19.30 
Rotation pressure RP MPa  4.10 0.00 9.10  3.65 0.00 18.20 

Feed pressure FP MPa  4.64 0.10 7.70  3.29 0.10 9.40 
Hammer frequency HF 1/s  37.19 0.00 65.00  30.43 0.00 62.00 

Specific energy SE J/cm3  378.32 1.00 17028.00  332.69 0.00 13062.80

   Class Support 
pattern 

Number of 
datasets Class Support 

pattern 
Number of 

datasets 
   3 I-2-B(B) 75767 4 II-B(B) 81976 

Parameter Symbol Unit  Ave. Min. Max.  Ave. Min. Max. 

Penetration rate PR m/min  0.58 0.00 22.58  0.45 0.02 4.99 
Hammer pressure HP MPa  14.54 5.60 17.80  14.77 5.20 16.80 
Rotation pressure RP MPa  6.40 0.00 20.00  5.15 0.00 12.50 

Feed pressure FP MPa  4.39 0.20 9.10  5.00 0.30 7.40 
Hammer frequency HF 1/s  17.82 0.00 66.00  26.66 0.00 57.00 

Specific energy SE J/cm3  253.51 0.00 13598.00  332.11 18.30 7013.40

   Class 
Support 
pattern 

Number of 
datasets 

Class Support 
pattern 

Number of 
datasets 

   5 I-2-B(B)C 35413 6 I-2-B(B)D 9751 

Parameter Symbol Unit  Ave. Min. Max.  Ave. Min. Max. 

Penetration rate PR m/min  0.49 0.00 3.01  0.76 0.06 4.99 
Hammer pressure HP MPa  14.92 6.10 16.00  14.33 12.50 16.00 
Rotation pressure RP MPa  5.03 2.50 9.90  7.65 3.50 15.10 

Feed pressure FP MPa  3.98 0.50 6.40  3.83 0.70 6.10 
Hammer frequency HF 1/s  26.84 0.00 55.00  20.10 0.00 56.00 

Specific energy SE J/cm3  269.11 0.00 7210.80  182.98 16.90 2389.50
 66 
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Table 4 The proposed number of nodes in hidden layer. (Ni: number of input nodes, N0: number of output 67 
nodes) 68 

Formula This study (Ni=6, N0=6) Reference 

2 1iN× +≤  13≤  Hecht-Nielsen, 1987 
3 iN  18 Hush, 1989 
( ) 2i 0N N+  6 Ripley, 1993 

22 0.5 ( ) 30 i 0 0 i

i 0

N N N N N
N N

+ × + × + −
+ 13 Paola, 1994 

( 2) 10iN N + +  8 Gao, 1998 
0iN N×  6 Masters, 1993; Kaastra and Boyd, 1996

2 iN  12 Kanellopoulos and Wilkinson, 1997 
69 
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Table 5 The average accuracy rates of prediction of support pattern selections (with the number of nodes 70 
in hidden layer =30, the number of training samples =6000). 71 

Parameter Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Predicted A  0.884 0.866 0.819 0.742 0.805 0.920 

 72 


