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Abstract 

In anisotropic rock mass, the dynamic response of a non-circular tunnel with imperfect 

interface is theoretically presented under an incidence of an anti-plane SH wave. For the 

anti-plane problem in anisotropic medium, three elastic constants can describe the 

characteristics of medium anisotropy according to the generalized Hooke’s Law. The wave 

function expansion method and the complex function are applied to express the wave fields 

with three unknown coefficients. By introducing the spring elastic model, the imperfect 

boundary condition around the tunnel lining can be satisfied to determine the coefficients. In 

numerical examples, effects of rock anisotropy and imperfect interface around the tunnel 

lining are discussed in detail, accompanied with incident angle and wave frequency. 

Analytical solutions show that both rock anisotropy and interface have considerable influence 

on the dynamic response of underground structures, which should be paid attention to for the 

design and construction of deep underground tunnels. 
Keywords: dynamic response; imperfect interface; rock anisotropy; SH wave; non-circular 

tunnel 

1. Introduction 

Knowledge of response of and potential damage to underground structures is of great 

importance for the design and construction of deep underground tunnels under different kinds 

of loadings, especially strong earthquakes. As the effective tools to tackle problems such as 

complicated geological condition and arbitrary shape of tunnel lining, numerical methods 

including the finite element method (Ren et al., 2005; Wang et al., 2014; Wu et al., 2015; Yu 

et al., 2016), the finite difference method (Shen et al., 2014), the boundary element method 

(Zimmerman et al., 1993; Yu et al., 2010; Dravinski et al., 2011) and the discrete element 

method (Duan et al., 2018) have been widely applied to analyze the response of underground 

tunnels under static overburden or dynamic loadings. Even though there is wide application of 

the numerical methods, analytical methods remain the convenient and efficient ways of 

providing the direct qualitative insights into the physical mechanism (Liu et al., 2013; Fang et 



al., 2016a). Using the wave function expansion method, varieties of studies have taken into 

consideration plane or anti-plane stress and displacement of underground tunnels with or 

without lining embedded in a homogeneous, isotropic and linear elastic full or half space (Pao 

and Mow, 1973; Davis et al., 2001; Smerizini et al., 2009; Lin et al., 2010; Liu et al., 2012, 

2013). For a non-circular tunnel, such as a rectangular tunnel, semi-circular tunnel or 

horseshoe-shaped tunnel which are common in engineering applications, the complex variable 

method and the weighted residual method are introduced to solve the problem caused by the 

scattering and diffraction of the seismic wave (Wang et al., 2005; Gatmiri and Eslami, 2007; 

Liu et al., 2016).  

As a matter of fact, the tunnel excavation, especially using drilling and blasting, may result in 

a very irregular and rough excavation surface. Therefore, due to the existence of micro-cracks 

or interstitial media, the interface between the tunnel lining and its surrounding rock mass is 

not always perfect. The stress and displacement behaviors of tunnel lining are very dependent 

on the surface status (Son and Cording, 2007). From the qualitative and quantitative point of 

view, the analytical results are different from the true ones if a correct interface is not placed 

around the tunnel lining. Recently, several imperfect interface models involving the elastic 

interface model (Yi et al., 2014; Fang et al., 2015, 2016a) and time-dependent visco-elastic 

model (Fang et al., 2016b, 2017) have been introduced. 

For convenience of derivation, the rock mass is usually assumed to be isotropic. In practical 

engineering, due to the mineral foliation in metamorphic rocks, stratification in sedimentary 

rocks and discontinuities in the rock mass, many rocks have anisotropic characteristics, i.e. 

their mechanical, thermal, seismic, and hydraulic properties. Generally speaking, rock 

anisotropy causes a non-uniform stress state and displacement around the boundary of an 

underground opening, creates a non-uniform depth of failure and allows for stress-induced 

failure (near wall degradation) to possibly occur at relatively low stress levels and under 

unexpected stress conditions (Bewick and Kaiser, 2009). Rock anisotropy is one of the most 

distinct features that must be considered in rock engineering disciplines. And a few studies 

have been devoted to investigating the anisotropy effect (Liu, 1988; Shi et al., 1996; Han and 

Liu, 1997; Chen, 2012, 2015). But previous research has failed to consider the effect of an 

imperfect interface on the dynamic response of an underground tunnel. 



This study aims to clarify the effects of rock anisotropy and an imperfect interface on the 

dynamic response of underground structures. Here, the wave function expansion method and 

complex function are used to describe the wave fields. The mapping function is adopted to 

describe the horseshoe-shaped tunnel lining, the elastic spring model is used to represent the 

imperfect interface. Through a series of numerical results, the effects of rock anisotropy and 

imperfect interface on the dynamic stress concentration are examined in detail, accompanied 

with the incident angle and wave frequency. 

2. Computation model and governing equations 

A deep underground tunnel with horseshoe-shaped lining is embedded in a homogeneous, 

anisotropic, and linearly elastic rock medium. An anti-plane shear wave (SH wave) 

propagates into the cross-section of the tunnel lining with an incidence angle α. Due to the 

geometrical condition and the character of applied loading, this problem can be simplified 

into a plane strain problem. A vertical cross-section of the essentially two-dimensional 

problem and the adopted coordinated systems are shown in Fig. 1. Two coordinates systems 

are introduced as one Cartesian coordinate systems (x, y) in the Z plane and one polar 

coordinate system (r, θ) in the ζ plane having a common origin at the center of the tunnel as 

system (x, y). The z-axis denotes the axis of the tunnel lining, not being plotted in Fig. 1. 

For an anisotropic material, 36 elastic constants are required to describe its property according 

to the generalized Hooke’s Law. Since anti-plane SH wave is considered in the present study, 

only three elastic constants C44, C45, C55 can describe the deformation of the surrounding rock 

medium. Since the strain energy density is positive, the following constraint C44 > 0, C44C55 - 

C452 > 0 should be incorporated. Besides, the density of the surrounding rock medium is 

characterized by ρR. The tunnel lining with outer radius R1 and inner radius R2 is assumed to 

be homogeneous, isotropic, linearly elastic material with properties characterized by Lamé 

constants λL, μL and density ρL. The imperfect interface between the tunnel lining and its 

surrounding rock medium is taken into consideration.  



 
(a)                                     (b) 

Figure 1 A horseshoe-shaped tunnel with imperfect interface under anti-plane shear wave in the Z plane (a) 

and its mapping ring region in the ζ plane (b). 

In a fixed Cartesian coordinate system (x, y, z), let ux, uy, uz be the displacement in the three 

directions, respectively. For the anti-plane deformation, only the out-of-plane displacement W 

is considered, that is, 

0== yx uu ; ),,(W tyxuz =                                                   (1) 

in which t is the time variable. The governing equation in the anisotropic mass in the Z plane 

is (Liu, 1988): 
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where iyxZ += and iyxZ −=  are a complex variable and its complex conjugate, 

respectively. 

To express the analytical solution of wave fields around the tunnel, the conforming mapping 

method of a complex function is employed as follows: 
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where c and cm are coefficients of the complex function; ξ and η are the rectangular 

coordinate axes in the ζ plane; ρ and θ denote the polar coordinates in the ζ plane; and i2=-1. 

The mapping function transforms the boundaries L1 and L2 (Fig. 1a) in the Z plane into two 

concentric circles S1 and S2 (Fig. 1b) with R2 (<1) and unit radius (R1) in the ζ plane.  

Submitting Eq. (3) into Eq. (2), the governing equation is written as follows: 
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Additional variables on the complex function in Eq. (4) are introduced as: 
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where γ is a complex constant and is determined by 44
2
4544554445 // CCCCiCC −+−=γ . 

Then, considering the steady solution, i.e. W=we-iωt (ω is circular frequency of the SH wave; 

w is the anti-plane deformation ignoring the time variable t), and submitting Eq. (5) into Eq. 

(4), the governing equation in the ζ plane is rewritten as follows: 
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where 44
2
455544IRIIII /)(,/,/ CCCCμρμCCωK −=== . It is noted that the time-dependent 

term e-iωt of the incident wave and the following wave fields is omitted. 

3. Wave fields and stresses in the rock mass and tunnel lining 

3.1 Wave fields and stresses in the anisotropic rock mass  

(1) Incident wave: The anti-plane SH wave with incident angle α is expanded as complex 

form in the ζ plane as follows (Liu, 1988): 
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where w0 denotes an amplitude of the incident SH wave; Ka is the wave number in the rock 

mass determined by ω=KaCa with ( )[ ]2
1

2
4445

2
55 /sincossin2cos Ra CCCC ραααα ++= ; and 

Jn(·) is the nth Bessel function of the first kind.  

The stresses resulting from the incident wave are expressed as Eqs. (8) and (9). 
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where 5544 / CC=β and 5545 / CC=κ , representing the degree of rock anisotropy. It is 

assumed that C44 is less than C55, that is 1<β . Then, with a higher κ and smaller β, the 

medium has a higher degree of rock anisotropy. Since the elastic parameters C55, C44, C45 

satisfy the positive definite condition of the elastic matric, β and κ should meet condition of 

02 >− κβ . 

(2) Scattered wave: Following Eq. (6), the scattered wave around the tunnel lining is written 

as follows: 
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where An is an uncertain coefficient of the scattered wave around tunnel lining; Hn(1)(·) is the 

Hankel function of the first kind and the nth order denoting the outgoing wave. 

The stresses resulting from the scattered wave are expressed as Eqs. (11) and (12). 
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where )/1( 44
2
454455
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and 44
2
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3.2 Wave fields and stresses in the isotropic tunnel lining 

(1)Reflected wave: The reflected wave that propagates outwards from the inner boundary of 

the isotropic tunnel lining is expressed as follows: 
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where Bn is an uncertain coefficient of the reflected wave in the tunnel lining and KII is the 

wave number in the tunnel lining determined by LCK II=ω  with LLL uC ρ/= . 

The stresses resulting from the reflected wave are expressed as Eqs. (14) and (15). 
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(2) Refracted wave: The refracted wave being confined into the tunnel lining is expressed as 

follows: 
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where Cn is an uncertain coefficient of the refracted wave in the tunnel lining; Hn(2)(·) is the 

Hankel function of the second kind and the nth order denoting the ingoing wave. 

The stresses resulting from the refracted wave are written as Eqs. (17) and (18): 
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4. Boundary condition 

In the anisotropic rock mass, the total wave fields are produced by the superposition of the 

incident wave and the scattered wave expressed as Eq. (19). 
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In the isotropic tunnel lining, the total wave fields are produced by the superposition of the 



refracted wave and reflected wave expressed as Eq. (20). 
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An elastic model is introduced to analyze the imperfect interface effect. Its validity has been 

verified through theoretical (Yi et al., 2014; Fang et al., 2015, 2016a) and experimental results 

(Honarvar et al., 1998), as well as numerical simulation (Lombard and Piraux, 2006). With 

the elastic model, tractions at the outer boundary (R=R1, L1 in Fig. 1a) of the tunnel lining are 

continuous, but displacements are discontinuous across the interface, described as follows: 
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where k is the stiffness of the imperfect interface, )(
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At the inner boundary (R=R2, L2 in Fig. 1a) of the tunnel lining, tractions are free as expressed 

in Eq. (22). 
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Substituting Eqs. (19) and (20) into Eqs. (21) and (22), we obtain 
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where nnX A1 = , nnX B2 = , nnX C3 = , mj
nK and jQ are presented in Appendix A. 

Then multiplying both sides of Eq. (23) with the orthogonality of e-isθ (s=0, ±1, ±2, ±3…) and 

integrating over the interval [-π, π], the unknown coefficients An, Bn, Cn can be determined 

straightforwardly by solving a set of infinite linear algebraic system with the expression as 

follows: 
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truncation number is tested to be 5 for the low frequency, whereas 7 for the high frequency. 



Liu also pointed out that a smaller truncated number could be adopted when the wave 

frequency is smaller (Liu and Wang, 2012; Liu et al., 2013).  

5. Numerical example and discussion 

To analyze the effects of anisotropy and imperfect interface on the dynamic response around a 

deep underground tunnel subjected to anti-plane SH wave, the dimensionless dynamic stress 

concentration factor (DSCF) is introduced. According to the definition of DSCF by Pao and 

Mao (1973), DSCF of the circumferential stress around the tunnel is written as follows: 
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where 0τ is maximum magnitude of the incident stress and defined as 0550 wKC a=τ ; and 
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anisotropic rock mass and the tunnel lining could be found in Appendix B.  

The detailed properties of the rock mass and tunnel lining, representatively encountered in the 

Tawarayama tunnel in Kumamoto Prefecture, Japan, are listed in Table 1. The Tawarayama 

tunnel runs through three different formations: the Quaternary Holocene, the Quaternary 

Pleistocene and the Tertiary Pliocene. Most of the tunnel is excavated in the Andesite lava 

with class DI (Zhang et al., 2018). Here, the elastic constant C55 is assumed to be equal to the 

elastic modulus of the Andesite lava (Shi et al., 1996). The following dimensionless variables 

and quantities are chosen for computation: the incident wave number is Ka* = KaR2, the 

interface stiffness parameter is k* = kR2/C55. A lower dimensionless wave number Ka*=0.1 and 

a higher dimensionless wave number Ka*=1.0 are taken into consideration, which are the same 

as those in the work of Fang et al (2016b). Three sets of stiffness parameter are selected and 

they are k* = 50.0, 5.0 and 0.5, respectively. In addition, coefficients in the conformal 

mapping function (Eq. (3)) for the horseshoe-shaped tunnel lining are depicted in Table 2. Fig. 

2 shows the mapping result and the actual dimension of the horseshoe cross-section in 

Tawarayama tunnel. The inner radius of the crown is 4.8 m, and the thickness of the tunnel 

lining is 0.50 m. 

 



Table 1 Input data for the material properties of the model 
Properties of rock mass Properties of tunnel lining 

ER (Gpa) υ ρR (kg/m3) EL (Gpa) υ ρL (kg/m3) t (m) 

13.08 0.3 2200 22.00 0.2 2450 0.50 

Note: ER denotes elastic modulus of the rock mass. 
     EL denotes elastic modulus of the tunnel lining. 

t denotes thickness of the tunnel lining. 
 

Table 2 Coefficients in conformal mapping function 
R1 (m) R2 (m) ρ  c1 c2 c3 c4 c5 c6 

5.3 4.8 0.93 0.00240 -0.04721i -0.04766 0.02038i -0.00333 0.00977i
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Figure 2 Mapping cross-section (red dotted line) for the horseshoe cross-section (black line) in 

Tawarayama tunnel. 

To validate this dynamic model, comparisons with the existing approaches are presented in 

Fig. 3 In this figure, rock mass is isotropic, the interface is perfect, and the tunnel lining is 

circular. By defining β = 1.0, κ = 0.0, rock mass is reduced to be isotropic. After 

trial-and-error, the dimensionless stiffness k* = 104 is sufficient to guarantee the interface 

perfect approximately with the present parameters. The reduced model is consistent with that 

by Fang (2016a). Since distributions of the dynamic stresses around the circular tunnel lining 

are perfectly symmetrical about the incident direction, the maximum dynamic stresses 

DSCFmax_upper and DSCFmax_lower near both ends of the vertical line of the incident direction 

are taken into consideration in the following analysis, as illustrated in Fig. 4. Two types of 

anisotropy degree, i.e. lower degree of anisotropy (LDA) with β = 0.8, κ = 0.2 and higher 

degree of anisotropy (HDA) with β = 0.5, κ = 0.5, are employed. 
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Figure 3 Comparisons of the present solutions with those by Fang (2016a) for circular tunnel under 

horizontal SH-wave in the isotropic rock mass. (a) DSCF of the inner side of the tunnel lining; (b) DSCF of 

the surrounding rock mass at the interface. 

 

 
Figure 4 Schematic of the monitoring area of the tunnel lining subjected to horizontal incident wave (a), 

inclined incident wave (b) and vertical incident wave (c). 

Figs. 5~7 present effect of the anisotropy parameters on the circumferential stresses in the 

lining and medium with different incident wave. When rock mass is isotropic (β = 1.0, κ = 

0.0), distributions of the DSCF are bilaterally symmetric (the black line in Fig. 5). Similar 

with the circular tunnel (Fig. 3), the maximum dynamic stresses of the tunnel lining occur at 

the position θ=90° (DSCFmax_upper) and θ=270° (DSCFmax_lower). When rock mass becomes 

anisotropic (β ≠ 1.0, κ ≠ 0.0), distributions of the DSCF become asymmetric (the blue and red 

lines in Fig. 5). In the LDA rock mass, the maximum dynamic stresses of the tunnel lining 

occur at the position θ = 94° (DSCFmax_upper) and θ = 278° (DSCFmax_lower). In the HDA rock 

mass, the maximum dynamic stresses of the tunnel lining occur at the position θ = 98° 

(DSCFmax_upper) and θ = 286° (DSCFmax_lower). For the cases of inclined and vertical incident 

SH wave (Figs. 6 and 7), distributions of the DSCF in the anisotropic rock mass also become 



asymmetric by comparison with those in the isotropic rock mass. Corresponding maximum 

dynamic stress occurrence positions are listed in Table 3, where it is observed that the 

maximum dynamic stress positions of both the anisotropic cases differ from those of the 

isotropic one, and the dynamic stress redistribution is related to the degree of rock anisotropy, 

especially in the lining above the spring line (θ from 0° to 180°). The conclusion can be 

drawn that rock anisotropy exerts an important influence on the dynamic stress distribution 

around the tunnel lining. Moreover, the case with HDA (β = 0.5, κ = 0.5) exhibits much larger 

value due to the larger difference of rock characteristics in different directions compared with 

the LDA case (β = 0.5, κ = 0.2). 
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Figure 5 Effect of anisotropy on the DSCF of the tunnel lining and rock mass (α = 0°, Ka

* = 0.1). (a) DSCF 

at the inner side of the tunnel lining; (b) DSCF at the outer side of the tunnel lining; (c) DSCF of the 

surrounding rock mass at the interface. 
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Figure 6 Effect of anisotropy on the DSCF of the tunnel lining and rock mass (α = 45°, Ka
* = 0.1). (a) 

DSCF at the inner side of the tunnel lining; (b) DSCF at the outer side of the tunnel lining; (c) DSCF of the 

surrounding rock mass at the interface. 
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Figure 7 Effect of anisotropy on the DSCF of the tunnel lining and rock mass (α = 90°, Ka
* = 0.1). (a) 

DSCF at the inner side of the tunnel lining; (b) DSCF at the outer side of the tunnel lining; (c) DSCF of the 

surrounding rock mass at the interface. 

Table 3 also lists the maximum of the DSCF near the monitoring area (Fig. 4) in the 

anisotropic and isotropic rock mass. When the wave is excited vertically, maximums of the 

DSCF around the tunnel lining in the anisotropic rock mass are smaller than those in the 

isotropic one. While, when the tunnel is subjected to horizontal or inclined seismic wave, 

maximums of the DSCF around the tunnel lining are larger than those in the isotropic one. An 

explanation is that rock anisotropy contributes to different propagation characteristics in each 

direction of the rock mass. Furthermore, for the cases of horizontal and inclined wave, a much 

larger maximum can be obtained by choosing a much higher degree of anisotropy. 
Table 3 Maximum of DSCF in the anisotropic and isotropic rock mass 

Incident 
angle 

Rock 
anisotropy 

DSCFmax_upper 
(L1 side) 

DSCFmax_lower
(L1 side) 

DSCFmax_upper
(L2 side) 

DSCFmax_lower
(L2 side) θmax_upper/° θmax_lower /° 

α=0° 

β=0.5,κ=0.5 6.63 5.57 7.12 6.20 98 286 

β=0.8,κ=0.2 5.29 4.30 5.70 4.76 94 278 

β=1.0,κ=0.0 5.07 4.06 5.46 4.48 90 270 

α=45° 

β=0.5,κ=0.5 7.10 6.40 7.57 6.64 107 320 

β=0.8,κ=0.2 4.86 4.82 5.17 5.00 116 319 

β=1.0,κ=0.0 4.17 4.36 4.44 4.53 123 320 

α=90° 

β=0.5,κ=0.5 3.68 4.35 3.93 4.86 129 352 

β=0.8,κ=0.2 3.80 4.32 4.18 4.81 183 354 

β=1.0,κ=0.0 4.70 4.70 5.21 5.21 187 355 

 

Figs. 8 and 9 illustrate effect of imperfect interface on dynamic response of horseshoe-shaped 

tunnel under vertical incident wave with a lower frequency (Ka* = 0.1). In a similar fashion to 

the circular tunnel, the maximum dynamic stresses around the tunnel occur at the position 

near the top of the vault and the bottom of the invert. The interface effect at these positions is 

the greatest and increasing interface stiffness contributes to the dynamic stress decreasing. 



Near the positions θ =0° and θ =180°, the interface effect is not obvious on the dynamic stress. 

By comparing Figs. 8 and 9, it can be observed that a much higher degree of rock anisotropy 

brings an increase of the interface effect, especially at the invert.  
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Figure 8 Effect of interface stiffness on DSCF of the outer side of tunnel lining (a) and rock mass at the 

interface (b). (Ka
*=0.1, β=0.8, κ=0.2). 
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Figure 9 Effect of interface stiffness on DSCF of the outer side of tunnel lining (a) and rock mass at the 

interface (b). (Ka
* = 0.1, β = 0.5, κ = 0.5) 

Figs. 10 and 11 illustrate effect of imperfect interface on dynamic response of 

horseshoe-shaped tunnel under vertical incident wave with a higher frequency (Ka* = 1.0). 

Dynamic stresses become a bit more complicated with several peaks due to the high 

frequency loading and the rock anisotropy. In comparison with the results in the region of low 

frequency, the interface effect on the dynamic stress increases significantly. By comparing 

Figs. 8~11, the interface effect is significant if the k* is less than 1.0, as observed by Fang et 

al. (2016a). Furthermore, the interface effect increases with anisotropic characteristic of rock 

mass. 
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Figure 10 Effect of interface stiffness on DSCF of the outer side of tunnel lining (a) and rock mass at the 

interface (b). (Ka
* = 1.0, β = 0.8, κ = 0.2). 
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Figure 11 Effect of interface stiffness on DSCF of the outer side of tunnel lining (a) and rock mass at the 

interface (b). (Ka
* = 1.0, β = 0.5, κ= 0.5). 

The DSCF variations of tunnel lining at θ = 45° (spandrel), θ = 90° (vault) and θ = 270° 

(invert) with the interface stiffness k* are presented in Fig. 12. The DSCFs on the vault, 

spandrel and invert are high when the stiffness is low. Increasing interface stiffness 

contributes to decreasing DSCF. As the stiffness increases, the dynamic stress concentration 

decreases greatly to a steady value. Taking Fig. 12a as an illustration, the decreasing 

percentages at the vault and invert of the lining inner side are 65.1% and 56.6% with the 

interface stiffness increasing from 0.5 to 10, while the decreasing percentages are 6.8% and 

5.4% with interface stiffness increasing from 10 to 50. It can be concluded that the effect of 

interface stiffness decreases gradually along with the interface stiffness increasing. Thus, with 

a much larger interface stiffness, the interface effect can be neglected to make the interface 

perfect. This observation also corroborates the selection of k* in the section of validation of 

the present analytical method. 



  

 (a)                                          (b) 

Figure 12 Variation of DSFC along with the interface stiffness constants k* (β = 0.8, κ = 0.2). (a) Ka
* = 0.1; 

(b) Ka
* = 1.0. 

6. Conclusions 

Combining with the wave function expansion method, the complex function and mapping 

function, the dynamic response of a horseshoe-shaped tunnel with imperfect interface around 

the tunnel lining in an anisotropic rock mass is theoretically presented under an incidence of 

an anti-plane SH wave. The elastic spring interface model is used to present the imperfect 

interface. A series of analytical results are illustrated to study the effect of rock anisotropy and 

imperfect interface on the dynamic stress concentration of the tunnel lining and its 

surrounding rock mass. Some important conclusions are as follows. 

The rock anisotropy is of significant importance on the scattering of a seismic wave. The rock 

anisotropy changes the shape of DSCF distribution, unlike the symmetric distribution in the 

isotropic rock mass. And a case with HDA exhibits much more serious asymmetry than that 

with LDA. Besides, different propagation characteristics in each direction due to the rock 

anisotropy contributes to a different DSCF maximum variation with the rock anisotropy. 

Increasing interface stiffness contributes to a decreasing DSCF. When high frequency wave is 

excited, the shapes of DSCF become a bit more complicated with several peaks, compared 

with the smooth shape under a low frequency incident wave. And the effect of the interface 

between the tunnel lining and its surrounding rock mass weakens gradually along with the 

interface stiffness increasing. While, a much higher degree of rock anisotropy brings an 

increase of the interface effect, especially at the invert. 
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Appendix A 

Coefficients ij
nK and jR in Eq. (23). 
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where, θζ ieR11 = , θζ ieR22 = . 

Appendix B 

The circumferential stress along the interface of the anisotropic rock mass is as follows: 
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The circumferential stresses of outer (g=1) and inner (g=2) sides of the tunnel lining are 

written as follows: 
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