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Influence of confining pressure-dependent Young’s modulus on the 16 

convergence of underground excavation 17 

ABSTRACT: The actual convergence of an excavation located in fractured rock mass or the 18 

soft rock is largely different with the theoretical result in many cases. Experimental results 19 

showed that the influence of confining pressure on Young's modulus is very significant. This 20 

paper attempted to illustrate the influence of the confining pressure-dependent Young’s 21 

modulus in the ground reaction analyses of mountain tunnel. Firstly, the relationship between 22 

Young's modulus and confining pressure was described as a non-linear function according to 23 

the test results. Based on the plane strain axial symmetry assumption and the incremental 24 

theory of plasticity, equilibrium equations and compatibility equations of rock mass around a 25 

circular tunnel were deduced theoretically. Based on fourth Runge-Kutta method, a 26 

semi-analytical solution was achieved. Considering the effect of confining pressure on 27 

Young's modulus, the stress and deformation of rock mass around tunnel was calculated by 28 

both analytical and numerical methods. The influence of confining pressure-dependent 29 

Young’s modulus in surrounding rock was estimated quantitatively. Finally, Tawara saka 30 

Tunnel in Japan was taken as an example to explain the influence of confining 31 

pressure-dependent Young’s modulus. The results showed that the error with respect to the 32 

monitoring data was largely reduced with the confining pressure-dependent Young’s modulus 33 

model, which indicated the necessity of considering the non-uniform distribution of Young’s 34 

modulus. 35 

Keywords: Young’s modulus; confining pressure; semi-analytical solution; numerical 36 

simulation; underground excavation 37 

38 
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1. Introduction 39 

In engineering practice, the analytical and numerical methods are inevitably required to 40 

estimate the stress and deformation of surrounding rock mass and to help the design of 41 

support system (Li et al., 2008; Huang et al., 2015; Zhang et al., 2015; Feng et al., 2017; Wu 42 

et al., 2018a). However, the actual convergence of an excavation located in fractured rock 43 

mass or soft rock was largely different with the theoretical results in many cases. Accurate 44 

rock parameters and constitutive model are indispensable for the convergence and stability 45 

evaluation by analytical and numerical methods. The confining pressure effect on rock 46 

strength and Young’s modulus should to be considered (Hsieh et al., 2014; Cai et al., 2015).  47 

The influence of confining pressure on rock strength has been studied in depth. Many 48 

constitutive models considering confining pressure effect has been established (Fang and 49 

Harrison, 2001; Alejano et al., 2009). Cui at al. (2015) conducted an elasto-plastic analysis of 50 

a circular opening in rock mass with confining stress-dependent strain-softening behaviour. 51 

Moreover, Zhang at al. (2018) obtained an elastoplastic coupling solution of circular openings 52 

in strain-softening rock mass considering pressure-dependent effect. 53 

The non-uniform distribution of Young’s modulus is considered as another important 54 

factor. However, there are relatively few studies about the confining pressure effect on the 55 

Young’s modulus. Numerous papers were contributed to the determination of Young's 56 

modulus of rocks (Palmstrom et al., 2001; Isik et al., 2008; Kodama et al., 2013; Agan et al., 57 

2014; Tinoco et al., 2014). Some of them were focused on the relationship of the Young's 58 

modulus and the uniaxial compressive strength (UCS), rock mass rating (RMR) and 59 

geological strength index (GSI) for different type of rocks (Leite et al., 2001; Gokceoglua et 60 

al., 2003; Kayabasi et al., 2003; Karakus et al., 2005; Hoek et al., 2006; Feng et al., 2014).  61 

Some other works were concentrated on the laboratory experiment to verify the 62 

confining pressure effect on the Young's modulus, and some empirical equations were 63 

obtained (You et al., 2003; Arslan et al., 2008; Wang et al., 2009; Cai et al., 2015; Yang et al., 64 

2016). However, the attempt to describe the exact influence of the confining 65 

pressure-dependent Young’s modulus of rock mass in the ground reaction analyses is quite 66 

few.  67 
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Brown et al. (1989) presented a stress-dependent elastic moduli and obtained the stresses 68 

around the axisymmetric boreholes. It was the earliest literature proposing exponential 69 

function of pressure-dependent young’s modulus. Nawrocki et al. (1995) studied the damaged 70 

zones around openings using radius-dependent Young’s modulus by numerical simulation. 71 

Zhang et al (2012) obtained a closed-form solution for circular openings modeled by the 72 

Unified Strength Theory and radius-dependent Young’s modulus. This contribution was the 73 

first step in obtaining an analytical solution that considers the effect of confining pressure on 74 

the Young’s modulus. While, the modulus was defined as a direct function of radius rather 75 

than the confining pressure, which was not exactly conform to the actual behaviour of 76 

surrounding rock mass. Therefore, more work need to be done to get an analytical solution for 77 

circular openings considering confining pressure-dependent Young’s modulus. 78 

In engineering practice, the distribution of confining pressure is very complex (Jiang et 79 

al., 2001). For a general excavation, the confining pressure (minor principal stress) acting on 80 

the excavation surface is zero. It increases gradually with the increasing distance between the 81 

element and the excavation surface, and will reach a constant value at locations far away from 82 

the excavation (Carranza et al., 1999; Hasanpour et al., 2015). Hence, it is necessary to 83 

consider the stress field change in the rock mass surrounding the excavation to accurately 84 

predict the ground response, especially in deep buried excavations.  85 

Considering the effect of the confining pressure on Young's modulus, the stress and 86 

deformation of rock mass around a circular tunnel were calculated by both analytical and 87 

numerical methods. The influence of the confining pressure-dependent Young’s modulus in 88 

surrounding rock was estimated quantitatively in the ground reaction analyses.  89 

2. Relation of confining pressure and Young’s modulus 90 

Generally, the Young’s modulus of rock mass was often assumed to be uniform in the ground 91 

reaction analyses (Graziani et al., 2005; Hasanpour et al., 2015). However, it was observed 92 

that the Young’s modulus around an excavation was not constant, but rather non-uniform 93 

(Zhang et al., 2012; Cai et al., 2015). The Young’s modulus of rock mass depends on many 94 

factors such as rock quality and confinement. In particular, confinement has a large influence 95 

on the Young’s modulus. Hence, the stress redistribution due to excavation has a profound 96 
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influence on the Young’s modulus in underground engineering.  97 

Based on a large amount of laboratory test results, You et al., (2003) pointed out that 98 

high confining pressure influence the Young's modulus of specimen from weathered rock or 99 

weak rock significantly. The relationship between confining stress and Young’s modulus for 100 

rock masses was approximate to be exponent dependence. The increasing of fiction in the 101 

fissures with confining pressure reduces the shear slide, which makes Young's modulus 102 

higher.  103 

To obtain a general function to describe the non-linear Young’s modulus model, Cai et al. 104 

selected four sets experimental data of different rocks (Meglis et al.,1996; He et al., 2006; 105 

Mohammad et al., 2013; Cai et al., 2015), and get the best-fit curves. Fig. 1 presented the 106 

relationship between the confining pressure and the Young’s modulus for the selected test data 107 

and the best-fit curves using the non-linear weighted fitting method. The best-fit equations 108 

that correspond to different rocks were also shown in Fig. 1.  109 

Based on the fitting results, the non-linear model of Young’s modulus and minor 110 

principal stress was shown in Fig. 2. A non-linear function was proposed to describe the 111 

relationship between the Young’s modulus E and confining pressure σ3 (Cai et al., 2015): 112 

E = Emax - (Emax – E0 ) e(-a*σ3) .                        (1) 113 

where Emax is the maximum Young’s modulus at the critical confining pressure, E0 is the 114 

Young’s modulus at no confining condition, and a is a model constant. This function can 115 

describe the curves very well for rock masses at non-uniform confinement condition. The 116 

physical meaning of the properties in Eq. (1) is clear. Emax can be considered as the Young’s 117 

modulus of rock mass at in-situ stress state; E0 can be viewed as the minimum Young’s 118 

modulus at the excavation surface, and a controls the non-linearity of the curve and it varies 119 

for different rock masses. The influence of model constant a will be discussed later. 120 

As the confining pressure could influence the Young’s modulus dramatically, it was 121 

necessary to estimate the influence of the non-linear Young’s modulus model on the 122 

deformation and failure characteristics of rock mass near excavation boundaries. Because of 123 

the lacking of well controlled in-situ experiments, field data was rarely available to determine 124 

the influence of the non-linear Young’s modulus. Fortunately, the development of 125 

semi-analytical and numerical methods based on the computer makes it possible to estimate 126 
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the influence of the confining pressure-dependent Young’s modulus in surrounding rock 127 

quantitatively in the ground reaction analyses. 128 

3. Ground reaction analyses of a circular tunnel with confining pressure-dependent 129 

Young’s modulus model 130 

The confining pressure-dependent Young’s modulus model was applied in the ground reaction 131 

analyses of a circular tunnel to reveal its influence on the tunnel convergence.  132 

3.1. Problem description 133 

The excavation of long deep tunnels with circular cross section under hydrostatic in-situ stress 134 

condition could be considered as an axial symmetry plane strain problem, while neglecting 135 

the influence of gravity, and restricting the out-of-plane principal stress as intermediate stress 136 

(Li et al., 2013; Mohamad et al., 2013). The geomechanics sign convention was employed, 137 

and the radial displacement towards tunnel axis was taken as positive consequently. The stress 138 

and displacement redistributions (or namely ground responses) after excavation were 139 

evaluated with different Young’s modulus models.  140 

3.2. Equilibrium equations for rock mass 141 

Consider an infinitesimal volume in the radial direction as shown in Fig. 3. The rock mass is 142 

subjected to a radial stress σr, a tangential stress σt. The static equilibrium condition of the 143 

infinitesimal rock mass volume can be formulated as: 144 

zrrztzr LddrrdddrLLrd ωσσωσωσ ))((
2

sin2 ++=+ .                   (2) 145 

where, r is the radius of the infinitesimal volume, dω is the loop angle, dr is the size in the 146 

radial direction, Lz is the size in the axial direction of the tunnel. It is clear that the confining 147 

pressure is the radial stress for a circular symmetric tunnel. Noticing that )
2

sin( ωd  148 

approximately equals 
2
ωd  since dω is an infinitesimal, the equilibrium equation can be 149 

deduced as: 150 

rdr
d rtr σσσ −= .                                   (3) 151 

When applying Eq. (3) to the elastic region, where the stress state of rock mass should 152 
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verify the hydrostatic in-situ stress condition that the sum of σr and σt equals 2P0, where P0 is 153 

the in-situ stress. The equilibrium equation for elastic region can be formulated as:  154 

r
P

dr
d rr σσ 22 0 −= .                                  (4) 155 

When applying it to the plastic region, where the stress state of rock mass should verify 156 

the Mohr–Coulomb failure criterion, the equilibrium equation for the plastic region can be 157 

formulated as:  158 

r
K

dr
d crpr σσσ +−

=
)1(

.                               (5) 159 

Where, Kp is the passive coefficient and remains unchanged within the complete plastic 160 

region. Kp equals to (1+sin ϕ)/(1-sin ϕ), where ϕ is friction angle of rock. σc is the 161 

compression strength, which changes gradually from σc1 to σc2, according to the evolution of 162 

the major principal plastic strain ε1p. 163 









≥

≤≤−−=
)(

)0()(

11
2

11
1

1
21

1

ep
c

ep
e

p
cc

c
c

αεεσ

αεε
αε

εσσσσ .                   (6) 164 

where α is a softening parameter controlling the gradual transition of rock from a peak failure 165 

criterion to a residual one (Jiang et al., 2001; Alonsol et al., 2003; Guan et al., 2007). 166 

3.3. Displacement compatibility equations for rock mass 167 

Due to the plane strain axial symmetry assumption, the strain-displacement relationships for 168 

the rock mass can be simplified significantly as:  169 

tr r
u

dr
du εε == .                     (7) 170 

In the elastic region, according to Hook’s law, the tangential strain of the rock mass can 171 

be evaluated from its stress state, as formulated in Eq. (8), where E and ν are the Young’s 172 

modulus and the Poisson ratio of the rock mass. Here, Ε is a variable which is always 173 

changing with the confining pressure as shown in Eq. (1).  174 
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Notice that only the strain caused by tunnel excavation is concerned, which means the 176 
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initial strain due to in-situ stresses should be removed. Then, associating these two equations 177 

and considering the hydrostatic in-situ stress condition, the displacement compatibility 178 

equation for the elastic region can be formulated as Eq. (9).   179 

r
E

Pru r
t )1(0 νσε +−== .                             (9) 180 

For the plastic region, the incremental theory of plasticity (Graziani et al., 2005) is 181 

adopted, and the loading path refers to a monotonic decrease of the fictitious inner pressure, 182 

corresponding to the advancing of the tunnel face. Consequently, the rates of all mechanical 183 

variables can be evaluated by their first-order derivatives with respect to Pi. The total strain 184 

rate consists of both elastic part and plastic part, as shown in Eq. (10). The elastic part is 185 

controlled by Hooke’s law and the plastic part by the potential flow rule, as formulated by Eqs. 186 

(11) and (12), respectively. The relationship between the strain rate and the displacement 187 

velocity is simplified by virtue of axial symmetry and formulated by Eq. (13).  188 
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Here, g is the plastic potential. The rates of all mechanical variables (denoted by a dot mark) 193 

are referred as their first-order derivatives with respect to Pi. Then associating these four 194 

equations, eliminating the multiplier λ, the displacement compatibility equation for the plastic 195 

region can be expressed as: 196 
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3.4. Semi-analytical solution 198 

As the Young’s modulus Ε is a variable which is always changing with the confining pressure, 199 

it is impossible to get the rigid analytical solution. The displacement compatibility equation 200 

and the equilibrium equation could only be solved by semi-analytical methods. The 201 
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fourth-order Runge-Kutta method (Basheer et al., 2000; Wu et al., 2018b.) was employed, and 202 

a two dimensional finite difference algorithm (i.e. along the unloading path and along the 203 

radial direction) was programed. All the variables describing the state of the surrounding rock 204 

mass have two indices: the first indicates a certain stage in the unloading path and the second 205 

indicates a certain position in the radial direction. Supposing that at former stage (say the 206 

(k-1)th stage where Pi=Pi(k-1)), all the mechanical states of the rock mass were known, the 207 

objective was to evaluate all the mechanical states at current stage (i.e. the kth stage where 208 

Pi=Pi(k)) according to their known counterparts at the former stage, which included the 209 

following three steps: stress evaluation, displacement evaluation and parameters update. The 210 

parameters that need to be updated include the transitional strength and the Young’s modulus 211 

of rock mass. After one iteration finished, these known mechanical states at the current stage 212 

could be used to evaluate the mechanical states at next stage, following the same three steps, 213 

and the iteration was repeated until the final stage.  214 

3.4.1. Stress evaluation of rock mass 215 

The equilibrium equations (4) and (5) were solved by the fourth-order Runge-Kutta method. 216 

The radial stress at the tunnel wall σr(k, Ra) was known and equals to Pi(k), which served as 217 

the boundary condition of the equilibrium equations. When the radial stress increased up to 218 

the critical inner pressure Picri, record the position as the radius of the elasto-plastic interface 219 

Re, then go on evaluating the stress state of elastic region. The softening radius was obtained 220 

according to the major principal plastic strain ε1p. The detailed method can be found in 221 

existing literature (Guan et al. 2007). According to the research of Carranza-Torres et al., 222 

(1999), Picri was a constant that only depends on the properties of rock mass itself and 223 

independent of the position of the elasto-plastic interface. The critical inner pressure can be 224 

calculated by the following formula.  225 

1
2 0

+
−

==
p

c
re

cri
i K

PP σσ .                             (15) 226 

The radial and tangential stresses at the current stage could be determined after the stress 227 

evaluation process. 228 
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3.4.2. Displacement evaluation of rock mass 229 

For the elastic region, the radial displacement of the rock mass could be evaluated directly by 230 

the radial stress of rock mass at the current stage, according to Eqs. (1) and (9). For the plastic 231 

region, the radial and tangential stress rates ),( rkrσ&  and ),( rktσ&  should be first evaluated by 232 

their first-order difference with respect to Pi, as shown in Eq. (16).  233 

 )(),1(),(),( e
i

Rr
dP

rkrkrk ≤−−= σσσ& .                  (16) 234 

Similarly, the deformation rate at the elasto-plastic interface ),( eRku& , which served as 235 

the boundary condition of the compatibility equation, could also be obtained by its first-order 236 

difference with respect to Pi. Then the fourth-order Runge-Kutta method was utilized again to 237 

evaluate the deformation rate at each sequential calculation point (inward radial direction) 238 

according to the compatibility equations (14). Finally, the displacement at the current stage 239 

could be obtained by accumulating the displacement increment at the current stage to its 240 

counterpart at the former stage. 241 

 )(),(),1(),( ei RrdPrkurkurku ≤+−= & .                (17) 242 

The displacement and the stresses at the former stage, as well as the stresses at the 243 

current stage, were required during this step. Then the displacement at the current stage could 244 

be determined after the displacement evaluation process. 245 

3.4.3. Rock mass parameters update 246 

After the stress evaluation, the confining pressure (minimum principal stress) at the current 247 

stage was obtained. Then, the Young’s modulus of rock mass at different locations at the 248 

current stage could be computed via Eq. (1). 249 

After the displacement evaluation, the major principle plastic strain εtp at the current 250 

stage, which served as the softening parameter herein, could be evaluated by Eq. (18). Then 251 

the transitional strength at the current stage could be computed via Eq. (6). 252 

)(),(),(),(),(),( e
e

e
tet

p
t Rr

R
Rku

r
rkurkrkrk ≤−=−= εεε .            (18) 253 

The radial stress, tangential stresses and the displacement at the current stage were 254 

required in this step, and the Young’s modulus and transitional strength of rock mass at the 255 

current stage can be determined. After these three steps, all the mechanical states at the 256 
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current stage were known, which could be used to evaluate their counterparts at next stage.  257 

4. Application and verification of the confining pressure-dependent Young’s 258 

modulus model 259 

The proposed method was programmed in Visual Basic development environment, and will 260 

be verified by numerical simulations in this section. In addition to Visual Basic, the available 261 

programming methods include C language, C++, Matlab, and many others. An illustrative 262 

case study was conducted to demonstrate the influence of confining pressure-dependent 263 

Young’s modulus in conventional tunnelling.  264 

4.1. An illustrative case study 265 

Suppose that a circular tunnel with a design radius of 5.0 m was excavated under a hydrostatic 266 

in-situ stress of 40 MPa. The Young’s modulus was assumed to transform from 20GPa (E0) to 267 

80GPa (Emax) with the increasing of confining pressure. The model constant a equaled to 0.05. 268 

The other properties of the rock mass employed were listed in Table 1.  269 

The ground responses after excavation in the semi-analytical solution (including the 270 

distribution of stress, displacement, and Young’s modulus) were shown in Fig. 4, Fig. 5, and 271 

Fig. 6 (represented by solid lines, Analytical_EX). To highlight the influence of confining 272 

pressure-dependent Young’s modulus, the ground responses with the constant Young’s 273 

modulus model (Analytical_E20 and Analytical_E80) were also calculated and depicted in 274 

these figures.  275 

The semi-analytical results show that the stress distributions in the surrounding rock 276 

mass were almost the same for different models. The only difference lied in the softening 277 

region ( ep
110 αεε ≤≤ ). It is reasonable as the rock strength σc in this region is influenced by 278 

the major principal plastic strain ε1p as shown in Eq. 6. The displacement of rock mass is 279 

significantly affected by the confining pressure-dependent Young’s modulus as shown in Fig. 280 

5. The displacement with the new model falls between the two constant Young’s modulus 281 

models, and more close to the 80GPa condition. Taking the maximum tunnel convergence as 282 

the estimation index, the error between the results of EX and E80 is 49.26%, and the error 283 
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between the results of EX and E20 is 102.96%.  284 

The Young’s modulus distributions along the radial direction in the surrounding rock 285 

mass was shown in Fig. 6. The result shows that the Young’s modulus increases nonlinearly 286 

with the increasing of radial distance. It is reasonable as the confining pressure (σr) increases 287 

with the increasing of radial distance and the Young’s modulus is influenced by the confining 288 

pressure. The result also indicated that the new model is well expressed in the calculations. 289 

The influence rules of various parameters on the deformation and failure of rock mass will be 290 

revealed in the following parameters analysis. 291 

4.2. Verification by numerical simulations 292 

The validity of analytical method was verified by numerical simulations (codes: FLAC3D). The 293 

strain-softening constitutive laws in FLAC3D are characterized by six parameters: bulk 294 

modulus K, shear modulus G, friction angle φ, cohesion c, dilation angle ψ, and softening 295 

parameter η. It is obvious that the former five parameters can be evaluated directly from the 296 

parameters employed in the analytical method, via following relations: 297 

( )ν213 −
= EK ,                                 (19-1) 298 

( )ν+
=

12
EG ,                                  (19-2) 299 

φ
φ

sin1
sin1

−
+=pK ,                                 (19-3) 300 

pc Kc2=σ ,                                 (19-4) 301 

ψ
ψ

ψ sin1
sin1

−
+=K .                                 (19-5) 302 

Where, Kψ is the dilation factor, and equals to Kψ1 and Kψ2 for softening region and 303 

residual region, respectively. 304 

However, the softening parameter in FLAC3D is defined as shown in Eq. 20-1: 305 

2
3

22
1 )()()(

2
1 p

m
pp

m
p

m
p

Flac δεδεδεδεδεδη −++−=  with 
3

31
pp

p
m

δεδεδε += . (20-1) 306 

Therefore, the shift point of the softening parameter in FLAC3D can be obtained from the 307 
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parameters used in the analytical method by: 308 

1
3

2 ++= ψψ
αη KKs

Flac .                            (20-2) 309 

The confining pressure-dependent Young’s modulus model used in the semi-analytical 310 

method cannot be directly simulate by the default model in FLAC3D. Fortunately, it provides a 311 

user-defined programming language FISH, which can adjust the Young’s modulus according 312 

to the stress state of every element after every step. Then the modified Young’s modulus is 313 

used in the next cycling of FLAC3D. 314 

Because of the symmetry conditions, only one-fourth of the tunnel was modeled. The 315 

thickness of the numerical model is 1 m. The lower boundary was fixed in the y-direction. 316 

The left boundary was fixed in the x-direction. A vertical stress of 40 MPa was applied at the 317 

top boundary. A horizontal stress of 40 MPa was applied at the right boundary. The 318 

gravitational stress-gradient was not considered in this analysis. 319 

The results from the numerical simulations were also depicted in Figs. 4-6, as denoted by 320 

triangle, cross and circle marks for three different cases respectively. As shown in these 321 

figures, the ground responses computed by the analytical method and by the numerical 322 

simulation fit each other exactly for the most part, indicating that the semi-analytical solutions 323 

for the new model in the circular tunnel was valid. In addition, the Young’s modulus contour 324 

around the tunnel in numerical result is shown in Fig. 6b. 325 

5. Parameters analysis 326 

Parameters analysis was conducted to study the influence of different parameters in the 327 

confining pressure-dependent Young’s modulus model. The studied parameters included the 328 

maximum Young’s modulus (Emax), the minimum Young’s modulus (E0), and the model 329 

constant a. The semi-analytical method was adopted in this part as the calculation can be 330 

finished in a few seconds. While, a lot of time is needed in numerical method to get the 331 

similar results. The maximum tunnel convergence was selected as the estimation index in this 332 

study. Taking the illustrative case above as a standard one and varying a single parameter, the 333 

relative significance of different parameters on the deformation characteristics of rock mass 334 

will be illustrated.  335 
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5.1. Influence of the maximum Young’s Modulus 336 

The maximum Young’s modulus (Emax) was selected to study its influence on the tunnel 337 

convergence. As the minimum Young’s modulus (E0) is 20GPa in the standard case, the Emax 338 

is set from 20GPa to 100GPa in the following studies. Meanwhile, the other parameters are all 339 

the same with the standard case.  340 

The evolution of the maximum displacement with the increasing of maximum Young’s 341 

modulus was shown in Fig. 7. To highlight the difference, the results of constant Young’s 342 

modulus model (E0 and Emax) were also calculated and depicted in this figure.  The results 343 

show that the maximum displacement in the new model decreases gradually with the 344 

increasing of Emax. Similar behaviour was found in the case of constant Young’s modulus 345 

model when the Young’s modulus equals to Emax. In the case of constant Young’s modulus 346 

model when the Young’s modulus equals to E0, the maximum displacement doesn’t change. 347 

When the Emax is very small, the difference between Emax and E0 is very small, which certainly 348 

resulting in small difference for different models.  349 

5.2. Influence of the minimum Young’s Modulus 350 

The influence of the minimum Young’s modulus E0 was studied in this part. As the maximum 351 

Young’s modulus Emax is 80GPa in the standard case, E0 was set from 10GPa to 80GPa in the 352 

following examples. The other parameters were also the same with the standard case. The 353 

evolution of the maximum displacement with the increasing of E0 were shown in Fig. 8.  354 

The results show that the maximum displacement decreases sharply with the increasing 355 

of E0 in the case of constant Young’s modulus E0. The displacement with the new model 356 

always falls between the two constant Young’s modulus models. When the value of E0 is close 357 

to Emax, the difference between the three cases is also small. The result illustrates that the 358 

difference between Emax and E0 is a key parameter that influence the error between the 359 

confining pressure-dependent Young’s modulus model and uniform Young’s modulus model. 360 

5.3. Influence of the model constant 361 

The influence of model constant (a) was studied in this part. It was set from 0.001 to 1 in the 362 

following examples. The other parameters were also same with the standard case. The 363 
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evolution of the maximum displacement with the increasing of model constant are shown in 364 

Fig. 9. The results of two constant Young’s modulus models were also depicted in this figure.   365 

The results show that the maximum displacement from the new model decreases 366 

gradually with the increasing of model constant. There is a clearly trend that the maximum 367 

displacement from the confining pressure-dependent Young’s modulus model gradually 368 

approaching the Emax case from the E0 case with the increasing of model constant. This 369 

behaviour can be explained by the distribution of Young’s modulus with different value of 370 

model constant as shown in Fig. 10. The results above show that the confining 371 

pressure-dependent Young’s modulus of rock mass influences the tunnel convergence 372 

dramatically, which shouldn’t be ignored.  373 

6. Predicting the deformation of surrounding rock mass in tunnel construction 374 

6.1. Geological and excavation conditions of Tawara saka tunnel 375 

The excavation of Tawara saka Tunnel on Kyushu Shinkansen in Nagasaki was taken as an 376 

example to explain the influence of confining pressure-dependent Young’s modulus. The 377 

tunnel convergence at the position of 16.074km from Takeo Onsen was discussed in detail. Its 378 

buried depth is 234.9 m. There are two types of rocks around the tunnel as shown in Fig. 11. 379 

The geological investigations and the laboratory experimental results show that the strength of 380 

the rock around the tunnel is very low, and both of them are classified as DII, which belongs 381 

to the classification of the soft rock.  382 

The dimensions of cross section and the monitoring positions for tunnel convergence, 383 

mainly including the convergence at the crown (uc) and at 1m above the springline (usr and 384 

usl), were schematically illustrated in Fig. 12. The standard supporting pattern in Japan was 385 

adopted. The upper stage was excavated first, and then the first lining and the rock bolts were 386 

installed immediately. After that, the displacement meters were installed and started to 387 

monitor the tunnel convergence. Then, the lower stage was excavated and supported similarly. 388 

The second lining was cast in place a few days later. The internal pressure of the support 389 

structure on the rock mass is determined to be 0.817MPa according to the monitoring data of 390 

pressure cell.  391 
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6.2. Numerical simulation to predict the tunnel convergence 392 

A numerical model (codes: FLAC3D) including five groups was established as shown in Fig. 393 

11b, including three groups in the tunnel to be excavated and two groups to stand for the 394 

different rocks. Both of the rocks are assumed as Mohr-Coulomb materials. The properties of 395 

both rocks are listed in Table 2. The parameters were identified by laboratory tests.  The 396 

confining pressure-dependent Young’s modulus model here is also characterized by adjust the 397 

Young’s modulus according to the stress state of every element.  398 

In the numerical simulation, the groups 1 and 2 were set to be null after the initial state, 399 

and then an internal pressure of 70% in situ stress was applied on the tunnel surface to 400 

simulate the support effect of the rock mass ahead of the tunnel face and the support structure. 401 

After the balance of the calculation model, the displacement were initialed to correspond to 402 

the in situ monitoring data. Then, the group 3 was set to be null, and an internal pressure was 403 

applied on the tunnel surface. Finally, the internal pressure was reduced gradually to simulate 404 

the advance of tunnel face. According to the monitoring data of pressure cell, the internal 405 

pressure was identified to be 0.817MPa to replace the effect of support.  406 

The results from the numerical simulations by two methods were shown in Fig. 13 and 407 

Fig. 14 respectively. The maximum displacement from different numerical methods were 408 

compared with the monitoring data in Fig. 15. All the displacements shown in Fig. 15 was ten 409 

times magnified with respect to the original data to demonstrate the difference more clearly. 410 

The quantitative data was shown in Table 3. The maximum displacements of the tunnel for 411 

three monitoring points were also shown in Table 3. The errors of maximum tunnel 412 

displacement with different methods compared with the monitoring data was analyzed in 413 

Table 4.  414 

Both the numerical results show that the tunnel convergence is unsymmetrical, which is 415 

consistent with the monitoring data. The displacement at the left side is much larger than the 416 

right side. This is reasonable as the rock strength and Young’s modulus of the left part is much 417 

smaller than the right side.  418 

The tunnel convergence computed from the confining pressure-dependent Young’s 419 

modulus model is smaller than that from the uniform Young’s modulus model, and more close 420 
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to the field test data. The error analysis shows that the error with respect to the monitoring 421 

data is largely reduced with the confining pressure-dependent Young’s modulus model in 422 

most part. The data at 1m above the springline fits much better than the monitoring position of 423 

tunnel crown. May be the relative sliding between the two types of rock mass happened in 424 

situ, which result in a large displacement in the X direction. While, this behaviour is not 425 

occurred as the bond between the two types of rock mass is too strong in the laboratory test.  426 

As the other properties of rock mass, such as the residual strength and dilation angle, are 427 

also influenced by the confining pressure, which are not considered in these simulations may 428 

be the reason of the slight errors. Nevertheless, the simulation results indicate that it is 429 

necessary to consider the confining pressure-dependent of Young’s modulus in rock mass 430 

around the tunnel.  431 

7. Conclusions 432 

According to test data and research achievement available in literature, the relationship 433 

between Young's modulus and confining pressure was described as a non-linear function. In 434 

an underground excavation, the confining pressure acting on an element is a function of 435 

distance between the element and the excavation boundary. Since the Young’s modulus is 436 

depended on the confining pressure, it is necessary to consider the stress field change in the 437 

rock mass surrounding the excavation to accurately predict the ground response, especially in 438 

deep buried excavations.  439 

Based on the plane strain axial symmetry assumption and the incremental theory of 440 

plasticity, equilibrium equations and compatibility equations of rock mass around a circular 441 

tunnel were deduced theoretically. Based on fourth Runge-Kutta method, a semi-analytical 442 

solution was achieved through programming. In the calculation, the Young's modulus of rock 443 

mass was real-time updated according to the local confining pressure. 444 

Considering the effect of the confining pressure on the Young's modulus, the stress and 445 

deformation of rock mass was calculated in the ground reaction analyses by both analytical 446 

and numerical methods. The influence of the confining pressure-dependent Young’s modulus 447 

in surrounding rock was estimated quantitatively. Taking the maximum tunnel convergence as 448 

the estimation index, the error between the results of confining pressure-dependent Young’s 449 
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modulus model and two uniform Young’s modulus models were 49.26% and 102.96%. 450 

Parameters analysis were conducted to study the influence of the maximum Young’s 451 

modulus (Emax), the minimum Young’s modulus (E0), and the model constant a in the 452 

confining pressure-dependent Young’s modulus model. The result illustrated that the 453 

difference between Emax and E0 is a key parameter that influence the error between the 454 

confining pressure-dependent Young’s modulus model and uniform Young’s modulus model. 455 

There is a clearly trend that the maximum displacement from the confining 456 

pressure-dependent Young’s modulus model gradually approaching the Emax case from the E0 457 

case with the increasing of model constant. 458 

Finally, the Tawara saka Tunnel on Kyushu Shinkansen was taken as an example to 459 

explain the influence of the confining pressure-dependent Young’s modulus. A numerical 460 

model with two different types of rock mass was established to simulate the tunnel behaviour 461 

after excavation. Both of the numerical results showed that the tunnel convergence was 462 

unsymmetrical, which was consistent with the monitoring data. The error analysis showed 463 

that the error with respect to the monitoring data was largely reduced with the confining 464 

pressure-dependent Young’s modulus model. The simulation results indicated that it is 465 

necessary to consider the non-uniform distribution of Young’s modulus in rock mass around 466 

the tunnel.  467 

468 
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FIGURE CAPTION 584 

Figure 1. The Young’s modulus versus confining pressure of the experimental data and best-fit 585 

curves (a) Waterford amphibolites, (b) Waterford gneiss, (c) Cadotte Sandstone, and 586 

(d) Sarvak limestone 587 

Figure 2. The relationship of Young’s modulus and confining pressure (minimum principal 588 

stress). 589 

Figure 3. Static equilibrium condition for the surrounding rock mass. 590 

Figure 4. The stress distributions in the surrounding rock mass. 591 

Figure 5. The displacement distributions in the surrounding rock mass. 592 

Figure 6. The Young’s modulus distributions in the surrounding rock mass (a) analytical 593 

results, (b) numerical results. 594 

Figure 7. The evolution of the maximum displacement with the increasing of Emax. 595 

Figure 8. The evolution of the maximum displacement with the increasing of E0. 596 

Figure 9. The evolution of the maximum displacement and the error with the increasing of 597 

model constant. 598 

Figure 10. The distribution of Young’s modulus with different value of model constant. 599 

Figure 11. Tawara saka Tunnel at 16.074km (a) The exposed tunnel face, (b) Numerical 600 

model. 601 

Figure 12. The cross section dimensions and the convergence monitoring positions. 602 

Figure 13. Displacement of the rock mass around the tunnel by uniform Young’s modulus 603 

model. 604 

Figure 14. Displacement of the rock mass around the tunnel by non-uniform Young’s modulus 605 

model. 606 

Figure 15. Comparing of different numerical results with the monitoring data. 607 

608 
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Fig. 1 The Young’s modulus versus confining pressure of the experimental data and best-fit 613 

curves (a) Waterford amphibolites, (b) Waterford gneiss, (c) Cadotte Sandstone, and (d) 614 
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Fig. 4 The stress distributions in the surrounding rock mass 625 
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Fig. 5 The displacement distributions in the surrounding rock mass 628 
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Fig. 6 The Young’s modulus distributions in the surrounding rock mass (a) analytical results, 634 

(b) numerical results.635 
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Fig. 7 The evolution of the maximum displacement with the increasing of Emax  637 
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Fig. 8 The evolution of the maximum displacement with the increasing of E0 640 
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Fig. 9 The evolution of the maximum displacement and the error with the increasing of model 643 

constant 644 
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Fig. 10 The distribution of Young’s modulus with different value of model constant 647 
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Fig. 11 Tawara saka Tunnel at 16.074km (a) The exposed tunnel face, (b) Numerical model 653 
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Fig. 12 The cross section dimensions and the convergence monitoring positions 657 
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Fig. 13 Displacement of the rock mass around the tunnel by uniform Young’s modulus model 673 

674 



38 
 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

Fig. 14 Displacement of the rock mass around the tunnel by non-uniform Young’s modulus 690 

model 691 
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Fig. 15 Comparing of different numerical results with the monitoring data 694 
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