1	Regular Paper JJSE11 12/9/26
2	
3	Diversity and function of aerobic culturable bacteria in the intestine of
4	deep-sea holothurian
5	
6	Xiaochi Zhang ^a , Tomomi Nakahara ^a , Nozomi Ochiai ^b , Ayumi Kawauchi ^c ,
7	Jun Hashimoto ^c , Tetsushi Inoue ^c and Toshiaki Kudo ^c
8	
9	^a Graduate School of Science and Technology, Nagasaki University, 1-14
10	Bunkyo-cho, Nagasaki 852-8521, Japan
11	^b Faculties of Fisheries, Nagasaki University, 1-14 Bunkyo-cho,
12	Nagasaki 852-8521, Japan
13	^c Graduate School of Fisheries Science and Environmental Studies,
14	Nagasaki University, 1-14 Bunkyo-cho, Nagasaki 852-8521, Japan
15	
16	Corresponding author: Toshiaki KUDO, kudot@nagasaki-u.ac.jp
17	Phone & Fax: +81-95-819-2838
18	
19	

20 Abstract

21Ninety-two aerobic culturable bacterial strains were isolated from 22each part of the intestine of the deep-sea holothurian collected at 32°30'N, 129°09'E (southeast of Fukue Island, Nagasaki, Japan) 2324and water depth of 236 m in November 2010. The temperature of seawater at the water depth of the sampling point was estimated 2526to be ca.13-14 °C from data in Japan Meteorological Agency. By partial 2716S rRNA gene sequences of the isolates, the isolates belonged to 45 28nearest type strain species (below, referred to as species). High diversity 29was observed in the genera Bacillus (21 species) and Vibrio (6 species). 30 The bacterial diversity was similar among three parts, i.e. anterior, mid and posterior parts of the intestine and 14 species were detected in 31multiple parts of the intestine. Most isolates showed various 3233 polysaccharide degradation activities but few isolates showed alginate or 34agar degradation activities probably because there were no seaweeds 35containing alginate or agar in this deep-sea. Comparing the functions 36and properties of several species in three parts, the posterior part was 37likely to be different from the anterior or mid parts.

38

Key words: aerobic culturable bacteria; deep-sea holothurian; diversity;
function; 16S rRNA gene

41

42 Introduction

43 Deep-sea is one of unexplored regions even today. Holothurians 44 (~1430 species) are found on various sea floors from deep sea floors to 45 intertidal areas $^{4,9)}$. Holothurians belong to phylum Echinodermata and 46 their diet is detritus such as organic matter, microalgae, and 47 bacteria^{6,7,11)}.

 $\mathbf{2}$

48Gut bacteria play an important role in digestion of diets. Studies on bacteria associated with Holothurians were reported only for Holothuria 49atra¹⁰⁾ and Molpadia musculus^{1,2)}. Ward-Rainey et al. reported partial 50aerobic bacterial flora of *Holothuria atra*.¹⁰⁾ In their report, only 23 51isolates were characterized by 16S rRNA gene sequences analysis (the 52first 300 nucleotides) and they were affiliated to the genera Vibrio and 5354Bacillus. On the other hands, Amaro et al. used non-culturing methods to analyze bacterial community of abyssal holothurian, Molpadia 55musculus.²⁾ Their results suggested that the gut bacterial composition 56was similar to that of the organic matter-rich sediments. Members of 5758Cytophaga- Flavobacteria-Bacteroides (CFB) group dominated in the bacterial community²⁾. Recently, they also found that ca. 82% of total 5960 bacterial OTUs (Operational Taxonomic Unit) were common between the gut contents and the surrounding sediments¹⁾. Enomoto et al. also 61 reported recently that γ -Proteobacteria members were mainly isolated as 62culturable bacteria from the intestine of Apostichopus japonicus³). Using 63 64the molecular techniques, they also found that Proteobacteria members 65were main metabolically active microbial populations in the intestine of 66 Apostichopus japonicus.

Gut microorganisms play an important role in digestion of diets,
but the diversity and function of aerobic culturable bacteria in the
intestine of the deep-sea holothurian are still unclear.

In this report, we isolated ninety-two aerobic culturable bacterial strains from each part of the intestine of the deep-sea holothurian collected at the southeast of Fukue Island, Nagasaki, Japan, water depth of 236 m and in November 2010. We found that the aerobic culturable isolates belonged to 45 nearest type strain species (below, referred to as species). The bacterial diversity was similar among three

76parts, i.e. anterior, mid and posterior parts of the intestine. Most isolates 77showed various polysaccharide degradation activities but few isolates 78showed alginate or agar degradation activities probably because there 79were no seaweeds in deep-sea. On the other hand, when we compared the 80 functions and properties of several species in three parts, the posterior 81 part was likely to be different from the anterior or mid parts. Maybe the 82posterior part was related to the digestion of polysaccharides or high salt 83 environment.

- 84
- 85
- 86

87 Materials and Methods

88

Sample collection and dissection. Deep-sea holothurian specimen 89 90 was collected at southeast of Fukue Island, Nagasaki, Japan 91(32°30'N, 129°09'E), at a water depth of 236 m in November 21, 922010 (Fig.1). The temperature of seawater at the water depth of 93 the sampling point was estimated to be ca.13-14 °C from data in 94Japan Meteorological Agency. The specimen was kept in icebox and 95aseptically dissected in our laboratory in November 24, 2010. Whole 96 intestine was excised from the animal body aseptically using sterilized 97 instruments. Fraction of intestine was carried out according to Shimizu 98et al.⁸⁾ The intact intestine was divided into three parts, the anterior part 99 (0.71g), the mid part (0.88g) and the posterior part (1.80g) (Fig. 2). To 100 isolate bacteria from both intestinal wall and contents, 1 ml of saline was 101 added to each part and each part was crushed and mixed enough. Each suspension thus obtained was used for isolation of bacteria and 50 μ l of 102103the each suspension was spread on plates.

104

Growth media. Luria-Bertani medium (LB) and Horikoshi medium
were used basically. But NaCl concentration was 3.5% instead of 1%.
Polysaccharides such as carboxymethyl cellulose sodium salt (CMC)
(Wako pure chemicals, Osaka, Japan), xylan (Sigma), sodium alginate
(Wako pure chemicals, Osaka, Japan) and soluble starch (nacalai tesque,
Kyoto, Japan) were added to Horikoshi medium as carbon sources (final
concentration 1%).

LB solid medium (pH 7) contained 1% tryptone (Difco), 0.5% yeast extract (Difco), 3.5% NaCl, and 1.5% agar (Wako pure chemicals, Osaka, Japan). Horikoshi solid medium (pH 7) contained 1% polysaccharide, 0.5% peptone (BD), 0.5% yeast extract, 0.1% KH₂PO₄, 0.02% MgSO₄•7H₂O, 3.5% NaCl, and 2% agar. Sodium alginate solid medium contained 2.5% agar. For 10% NaCl media, NaCl concentration of growth media was 10% instead of 3.5%.

For alkaline agar plates, Na₂CO₃ (autoclaved separately) was
added to neutral agar medium (final pH: pH10.3-10.5). Na₂CO₃
concentration of alkaline plate was 1%.

122

123Isolation of bacteria. Fifty µl of the gut suspensions was directly 124plated on agar plates without enrichment culture. High salt concentration or high pH were used for isolation conditions to isolate various bacteria 125126because marine water is semi-alkaline pH and contains 3.5% NaCl. 127Seventeen different media were prepared by combination of pH, NaCl 128 concentration and carbon source (Table 1). The plates were incubated at 12930 °C aerobically for two weeks to obtain slowly growing bacteria. 130 Bacteria were isolated from each plate, purified and stored in slants for 131further analysis.

 $\mathbf{5}$

132

133 Physiological and biochemical characteristics of isolates.

Polysaccharide degradation activities were detected by plate
methods using CMC, xylan, alginate, starch or agar as substrate. The
following plates were prepared for detection of enzyme activities.

137 1. Neutral agar plates

138 1-1. Amylase detection: Horikoshi agar medium containing 1% potato
139 starch instead of soluble starch was used for amylase detection.
140 Amylase-producing colony showed turbid halo around a colony.

141 1-2. Cellulase detection: Basic neutral agar medium for cellulase
142 detection contained 0.1% CMC, 3.7% marine broth, 0.6% MgCl₂ • 6H₂O,
143 1.5% agar, 1.6% NaCl, 0.0015% congo-red, adjust pH to 7.0 with 1N
144 NaOH. Clear zone around a colony suggested cellulase activity.

145 1-3. Alginate lyase detection: The basic neutral agar medium for alginate 146 lyase detection, contained 1% sodium alginate, 3% NaCl, 0.07% KCl, 147 0.26% MgSO₄, 0.5% MgCl₂, 0.1% CaSO₄, 0.5% peptone, 0.01% ferric 148 phosphate, 0.1% yeast extract, 2% agar; adjust the pH to 7.0 with 1N 149 NaOH. After two weeks' incubation at 30 °C, 70% ethanol was filled into 150 plates. A clear zone around the colony indicated the presence of alginate 151 lyase.

152 1-4. Xylanase detection: Horikoshi agar medium containing 1% xylan
153 was used for xylanase detection. Xylanase-producing colony showed
154 clear zone around a colony.

155 1-5. Agarase detection: Horikoshi agar medium without polysaccharide
156 was used for agarase detection. Agarase-producing colony showed dent
157 around a colony.

158 2. Alkaline agar plates

159 For alkaline agar plates, Na₂CO₃ (autoclaved separately) was added to

neutral agar medium (final pH: pH10.3-10.5). Na₂CO₃ concentration of
alkaline plate was 1%.

162

163 All isolates were tested for salt tolerance: 0%, 3.5%, 10%, 15%,
164 20%, 25% NaCl (w/v), pH tolerance (pH7 and pH10) and effect of
165 oxygen.

166Anaerobic growth was examined using gaspak (COSMO BIO) at 16730 °C for two weeks, and then growth condition was changed to the 168aerobic condition at 30°C for two weeks. The isolates were assigned to 169 three groups, facultative anaerobic bacteria (FA), anaerobic tolerant 170 bacteria (AT) and aerobic bacteria (A). Facultative anaerobic bacteria 171form colony in both aerobic and anaerobic cultivation. Anaerobic 172tolerant bacteria do not form colony in anaerobic condition for two 173weeks but form colony in aerobic cultivation after the anaerobic 174cultivation. Aerobic bacteria do not form colony in anaerobic condition 175for two weeks and also do not form colony in aerobic cultivation after 176the anaerobic cultivation. Growth ability at various conditions of 177salinity or pH was measured at 30 °C for two weeks. The isolates were 178divided into two groups by effect of pH on growth, neutrophilic bacteria (NE) that grew only at pH7, and alkaliphilic/alkali-tolerant bacteria 179180 (ALK) that grew both at pH 7 and pH10.

181

182Molecular identification of the isolates. Partial analysis of 16S ribosomal RNA (rRNA) gene of the isolates was carried out. The 16S 183184 rRNA gene was amplified using bacterial primers 27f 185(5'-AGAGTTTGATCCTGGCTCAG-3') and 1492r (5'-GGTTACCTT GTTACGACTT-3') and the purified PCR product was sequenced with 186 dideoxynucleotide chain-termination method using 3130 or 3730 DNA 187

sequencer (Applied Biosystems). Primers 27F, 520R (5'-ACCGCGGCT 188 189 GCTGGC-3') and 907R (5'-CCGTCAATTCMTTTRAGTTT-3') were used 190 in gene sequencing reactions. Sequences of the partial 16S rRNA genes 191 were assembled and edited using Sequencher (version 4.10.1 demo, Gene 192 Codes Corporation) and MacVector (version 10.0.2). Nucleotide 193 sequences of the partial 16S rRNA genes have been submitted to GenBank/EMBL/DDBJ databases under accession numbers AB741781 194195through AB741873 except AB741857 (Supplementary Table 1; see JJSE 196 Web site).

197 The partial 16S rRNA gene sequences were compared with other 198 sequences in DDBJ database using BLAST program and compared with 199 type strain sequences in Ribosomal database project (RDP). Each isolate was assigned to nearest type strain species (Supplementary Table 1; 200 201see JJSE Web site). When isolate showed more than 97% identities with 202some type strain sequences, the isolate was assigned to nearest type strain species (below, referred to as species). When isolate showed less 203204than 97% identities with any type strain sequences, the isolate was 205assigned to the tentative nearest type strain species (below, referred to as 206tentative species).

207

```
208 Results
```

209

210 Isolation of bacteria

Fig.2 shows photographs of the deep-sea holothurian and its dissection (C), including anterior intestine (1), mid intestine (2), posterior intestine (3), Polian vesicle (4) and respiratory trees (5). But Cuvierian tubules were not detected in the specimen. The each intestine suspension was directly plated on agar plates and seventeen isolation

216media were used. Table 1 summarized number of the isolates obtained by 217different cultural conditions. The intact intestine was divided into three 218parts, the anterior part, the mid part and the posterior part. The each part 219was crushed and mixed enough and the suspensions thus obtained were 220used for isolation of bacteria. Number of colony forming units (cfu) per g of the anterior, mid and posterior parts were 1.4×10^4 cfu/g, 0.6×10^4 221cfu/g and 0.58×10^4 cfu/g in LB medium, respectively. Similar cfu 222223numbers were obtained in Horikoshi media (pH7), but lower cfu numbers 224in the alkaline Horikoshi media (ca. pH10.3).

Twenty-four, 33 and 35 isolates were obtained from the anterior, mid and posterior suspensions, respectively. In total, 92 isolates were purified and analyzed further.

- 228
- 229

Phylogenic analysis of bacterial isolates

230The partial 16S rRNA gene sequences were done and compared with other sequences in DDBJ database using BLAST program and 231232compared with the type strain sequences in Ribosomal database project 233 (RDP). Table 2 summarized the species/the tentative species of the 234isolates as determined via BLAST (Supplementary Table 1JJSE Web site). 235By partial 16S rRNA gene sequences of the isolates, the isolates 236belonged to 45 species. Fourteen species were detected in multiple 237locations of three parts, i.e. anterior, mid and posterior parts of the 238intestine. The isolates belonged to the phyla Firmicutes (33 species) 239and Proteobacteria (12 species) (Table 2). Among 33 species of the 240phylum Firmicutes, 21 species belonged to the family Bacillaceae 1, the 241genus Bacillus. Ten species belonged to the family Bacillaceae 2, the genera Gracilibacillus, Halobacillus, Oceanobacillus, Thalassobacillus 242243and Virgibacillus. Twelve species of the phylum Proteobacteria belonged

244to the genera Vibrio, Halomonas, Photobacterium, Pseudomonas and 245Marinobacter. Among them, high diversity was found in the genera 246Bacillus and Vibrio. The closest relatives of these isolates were observed 247in various sea environments. The bacterial diversity was similar among 248three parts, i.e. anterior, mid and posterior parts of the intestine 249(Fig.3) and 14 species (indicated by star in Table 2) were detected in 250multiple parts of the intestine. But, the number of species belonged to 251the family Bacillaceae 2 decreased in the posterior part of the intestine 252compared with those in the anterior or mid parts of the intestine (Fig.3).

Three isolates (isolate no. C214, C254 and C271) showed less than 97% identities with any type strain sequences. The isolates were assigned to the tentative species. (Supplementary Table 1; see JJSE Web site).

257

258

Polysaccharide degradation ability of isolates

259 Many isolates from the specimen showed polysaccharides 260 degradation ability and degraded one or more substrates (S, CMC, AL 261 and XL). Twenty-eight, 12, 3 and 12 species showed amylase activity, 262 cellulase activity, alginate lyase activity and xylanase activity, 263 respectively (Fig.4, Supplementary Table 1; see JJSE Web site). No 264 agarase activity was observed in all isolates.

265Amylase producing isolates were mainly affiliated with the genus 266Bacillus (15 species). Twelve species such as Bacillus horikoshii, B. 267В. B. vietnamensis, hunanensis, licheniformis, В. megaterium, 268Halobacillus kuroshimensis, H. trueperi, Photobacterium rosenbergii, 269Pseudomonas cedrina, P. libanensis, Vibrio pomerovi, and V. rotiferianus were found in multiple locations of three parts, i.e. anterior, mid and 270271posterior parts of the intestine.

272Most cellulase positive isolates belonged to the genera Bacillus (5 273species) and Vibrio (4species). Three species such as Jeotgalibacillus 274campisalis, Vibrio pomeroyi and V. rotiferianus were found in multiple 275locations. Only 3 isolates producing alginate-lyase were affiliated with 276dipsosauri, Gracilibacillus Pseudomonas svnxantha and Vibrio 277agarivorans. All isolates producing xylanase were most closely related 278to the genera Bacillus (9 species) and Pseudomonas (3 species). One 279species, Pseudomonas libanensis was found in multiple locations.

280Several species showed multiple polysaccharides degradation activities. 281On the other hand, 11 species had no polysaccharides degradation ability 282and 7 species of them in the anterior or mid parts of the intestine belonged to the family Bacillaceae 2 but the number of them decreased 283284in the posterior part of the intestine (Fig.4). It was observed that in the 285posterior part, the number of xylan degrading species related to the 286family Bacilliaceae 1 increased and the number of starch degrading 287species related to the order γ -Proteobacteria also increased (Fig.4).

288

289 *Physiological characteristics of the isolates*

290Fig.5 and Supplementary Table 1 (JJSE Web site) showed effect of 291anaerobic condition for growth of the isolates. The isolates were divided 292into three groups, facultative anaerobic bacteria (FA), anaerobic tolerant 293bacteria (AT) and aerobic bacteria (A). Twenty-five FA species were 294mainly affiliated with the phylum Proteobacteria and the family 2951. Bacillus Bacillaceae Six species such as licheniformis, 296Photobacterium rosenbergii, Pseudomonas cedrina, P. libanensis, Vibrio 297pomerovi and V. rotiferianus were found in multiple locations. Thirty AT species were mainly affiliated to the genera Bacillus (16 species), 298299Gracilibacillus, Halobacillus, Oceanobacillus and Virgibacillus. Only one aerobic (A) species, *Halobacillus kuroshimensis* was found in
multiple locations. The species belonging to the family Bacillaceae 2
were mainly affiliated to AT group and species belonging to the family
Bacillaceae 1 were mainly affiliated to FA or AT groups (Fig.5). The
species belonging to the phylum Proteobacteria were mainly affiliated to
FA group (Fig.5).

306 High salt concentration or high pH were used for isolation 307 conditions to isolate various bacteria because marine water is semi-alkaline pH and contains 3.5% NaCl. Salinity tolerance of the 308 309 isolates was examined (Fig.6, and Supplementary Table 1; JJSE Web 310 site). The isolates most closely related to Halobacillus kuroshimensis 311 and Bacillus clausii showed the highest salt tolerance (25 % NaCl) and some strains were able to grow in absent of NaCl. Twelve species were 312313 halophilic (20-25% NaCl conc.) and mainly belonged to the family 314Bacillaceae 2, the generaHalobacillus, Virgibacillus and Oceanobacillus. Thirty-two species were moderate halophilic (10-315and18 species 316 belonged to the family Bacillaceae 1, the genus Bacillus and 9 species 317 belonged to y-proteobacteria such as the genera Pseudomonas, Vibrio 318 and Photobacterium. Seven species were slight halophiles (3.5% NaCl) 319 belonged to the genera Vibrio, Photobacterium, Jeotgalibacillus Bacillus. 320It appears that the species belonging to the family Bacillaceae 2 are most 321salt-tolerant (more than 20% NaCl) and those belonging to the phylum 322Proteobacteria or the family Bacillaceae 1 were moderate halophilic (10-)(Fig.6). It was observed that number of species related to slight 323324halophiles (3.5%) decreased in the posterior part compared with those in 325other parts.

326 All isolates were examined for growth responses to pH shift 327 $(pH7 \rightarrow pH10 \text{ or } pH10 \rightarrow pH7$. All alkaliphilic/alkali-tolerant strains

isolated from alkali medium were able to grow at pH 7, while half of
species isolated from pH 7 were able to grow at pH 10. Nineteen species
were the neutrophilic species (NE) growing only at pH7. Eleven species
were affiliated with the genus *Bacillus*.

332

333 **Discussion**

334In this report, we isolated aerobic culturable bacteria from each 335 part of the gut of deep-sea holothurian using different culture conditions. The deep-sea holothurian was collected at southeast of Fukue Island, 336 337 Nagasaki, Japan (32°30'N, 129°09'E), at a water depth of 236 m in 338 November 21, 2010. Ninety-two aerobic culturable bacterial strains were 339 isolated from each part of the intestine of deep-sea holothurian. By partial 16S rRNA gene sequences of the isolates, the isolates belonged to 340 34145 species. The bacterial diversity was similar among three parts, i.e. 342anterior, mid and posterior parts of the intestine and 14 species were 343 detected in multiple parts of the intestine. But, the number of species 344belonged to the family Bacillaceae 2 decreased in the posterior part of 345the intestine compared with those in the anterior or mid parts of the 346 intestine. (We will discuss this later.)

347As shown in Table2, the isolates belonged to the phyla Firmicutes (33 348species) and Proteobacteria (12 species). Among 33 species of the 349 phylum Firmicutes, 21 species belonged to the family Bacillaceae 1, the 350genus Bacillus. Recently, Enomoto et al. reported that Proteobacteria members were mainly isolated as culturable bacteria from the intestine 351of Apostichopus japonicus³). These results suggested that the sea 352environments such as deep sea or intertidal areas maybe affected 353 diversity of aerobic culturable bacteria. 354

355

Detritus is organic materials and is used as a source of nutrient for

detritus feeders⁵⁾. Most important components of detritus are recalcitrant 356 357 polysaccharides and bacteria are the main decomposers that degrade 358these materials. Therefore, we analyzed polysaccharide degradation of 359the isolates. We found that many isolates showed various polysaccharide 360 degradation activities. High diversity was observed in starch degradation 361 isolates, suggesting the large amount storage of starch in detritus, for 362example algae. But, there were few isolates showing alginate or agar 363 degradation activities probably because deep-sea was not suitable area for seaweeds which contained a lot of alginate or agar. As mentioned in 364 365 Fig.4, 11 species had no polysaccharides degradation ability and 7 366 species of them in the anterior or mid parts of the intestine belonged to 367 the family Bacillaceae 2 but the number of them decreased in the 368 posterior part of the intestine. It was observed that in the posterior part, 369 the number of xylan degrading species related to the family Bacilliaceae 370 1 increased and the number of starch degrading species related to the 371order γ -Proteobacteria also increased (Fig.4). It was also observed that 372number of species related to slight halophiles (3.5%) decreased in the 373 posterior part compared with those in other parts. These results 374suggested that the posterior part had a different role or environment 375 compared with the anterior or mid parts, maybe the posterior part was 376 involved in the digestion of polysaccharides.

We found that almost all isolates were facultative anaerobic bacteria or anaerobic tolerant bacteria. It appears that oxygen will enter the intestine of the sea cucumber from the mouth with the detritus food and also some amount can penetrate from the body tissues. These results suggested that the aerobic culturable isolates potentially contributed to digest detritus and supply metabolic products (minor components and vitamins) to their host sea cucumber.

Three isolates (isolate no. C214, C254 and C271) showed less than 96% identities with any type strain sequences and two of them were obtained from alkaline plates and 10% NaCl. These results suggested that the intestines of deep-sea holothurians were still new resource for new species.

389 The temperature of seawater at the water depth of the sampling 390 point was estimated to be ca.13-14 °C in November 2010 from data of 391 Japan Meteorological Agency. But, it was surprising that the full year temperature of the sampling point was estimated to be ca.12-15 °C 392393 throughout the year (from data in Japan Meteorological Agency). These 394 results suggested that this deep-sea environment seemed a little low 395temperature but more suitable environment for deep-sea holothurian and 396 their intestinal bacteria.

In this study, only one specimen, deep-sea holothurian was obtained
and investigated. Therefore, future challenges remain regarding
individual variations, morphological descriptions, haplotypes of host
species and surrounding environments including sediments.

401

402 Acknowledgments

403

404 Authors thank the captain and crews of TS Nagasaki maru who 405 made it possible to collect a deep-sea cucumber. Authors are grateful for 406 the support provided by Dr. Asami Yoshida in Graduate School of 407 Fisheries Science and Environmental Studies, Nagasaki University for 408 DNA sequencing analysis. This work was partially supported by a 409 Grant-in-Aid for Scientific Research (C) to T. K.

410

411

- 412 **References**
- 413

414 1) Amaro, T., Luna, G.M., Danovaro, R., Billett, D.S.M., and Cunha,
415 M.R. 2012. High prokaryotic biodiversity associated with gut
416 contents of the holothurian *Molpadia musculus* from the Nazaré
417 Canyon (NE Atlantic). Deep-Sea Research I. 63: 82-90.

418

Amaro, T., Witte, H., Herndl, G.J., Cunha, M.R., and Billett, D.S.M.
2009. Deep-sea bacterial communities in sediments and guts of
deposit-feeding holothurians in Portuguese canyons (NE Atlantic).
Deep-Sea Research I. 56: 1834-1843.

423

424 3) Enomoto, M., Nakagawa, S., and Sawabe, T. 2012. Microbial
425 Communities Associated with Holothurians: Presence of Unique
426 Bacteria in the Coelomic Fluid. Microbes Environ., Advance
427 Publication, Release Date: March 23,2012.

428

429 4) Foster, G.G., and Hodgson, A.N. 1995. Annual reproductive cycles
430 of three sympatric species of intertidal holothurians (Echinodermata)
431 from the coast of the Eastern Cape Province of South Africa.
432 Invertebr. Reprod. Dev. 27: 49-59.

433

4345) Hagen, E.M., McCluney, K.E., Wyant, K.A., Soykan, C.U., Keller, 435A.C., Luttermoser, K.C., Holmes, E.J., Moore, J.C., Sabo, J.L. 2012. A meta-analysis of the effects of detritus on primary producers and 436 consumers in marine, freshwater, and terrestrial ecosystems. Oikos, 437first 31 438 Article published online: JAN 2012 DOI: 43910.1111/j.1600-0706.2011.19666. x.

441	6)	Massin, C. 1982. Food and feeding mechanisms, Holothuroidea. In
442		Echinoderm Nutrition, ed. by Jangoux, M. and Lawrence, J.M.,
443		Balkema, Rotterdam, pp. 43-55.
444		
445	7)	Moriarty, D.J.W. 1982. Feeding of Holothuria atra and Stichopus
446		chloronotus on Bacteria, Organic Carbon and Organic Nitrogen in
447		Sediments of the Great Barrier Reef. Aust. J. Mar. Freshwater Res.
448		33: 255-263.
449		
450	8)	Shimizu, M., Mikami, I., and Takahashi, K. 1992. Histochemical
451		detection on the ontogenic development of digestive enzymes in the
452		intestine of a juvenile sea cucumber Stichopus japonicas. Bulletin of
453		the faculty of Fisheries Hokkaido University 45: 1-8.
454		
455	9)	Uthicje, S., Schaffelke, B., and Byrne, M. 2009. A boom and bust
456		phylum? Ecological and evolutionary consequences of density
457		variations in echinode Enco logical Monographs . 79: 3-24.
458		
459		
460	10)) Ward-Rainey, N., Rainey, F.A., and Stackebrandt, E. 1996. A study
461		of the bacterial flora associated with Holothuria atra. J. Exp. Mar.
462		Biol. Ecol. 203: 11-26.
463		
464	11)	Yingst, J.Y. 1976. The utilisation of organic matter in shallow
465		marine sediments by an epibenthic deposit-feeding Holothurian. J.
466		Exp. Mar. Biol. Ecol. 23: 55-69.
467		

468 **Figure legends**

469 Fig.1 Map of sampling site (arrow) and environmental conditions.

470 Sampling point : $32^{\circ}30'N$, $129^{\circ}09'E$ (Southeast of Fukue Island,

471 Nagasaki, Japan) Water depth: 236 m, Sampling data: November 21,

472 2010, Temperature of water depth 200 m : ca.13-14 °C, Sea surface

473 temperature: ca. 21-22°C (Data from Japan Meteorological Agency)

474

475 Fig. 2 Photographs of the deep-sea holothurian (dorsal side A, ventral
476 side B) and its dissection (C), including anterior intestine (1), mid
477 intestine (2), posterior intestine (3), Polian vesicle (4) and respiratory
478 trees (5). Cuvierian tubules were not detected in the sample.

479

480 Fig.3 Number of the species of isolates in each part of the intestine

481 The species were divided into five groups: the family Bacillaceae 1 482 (gray box), the family Bacillaceae 2 (vertical stripes), the family 483 Planococcaceae (dotted box), the family Staphylococcaceae 484 (black box) and the order γ -Proteobacteria (diagonal stripes box). 485 Fig.3 was summarized from Supplementary Tables 1 (JJSE web site).

486

487 Fig.4 Number of the species of isolates degrading various488 polysaccharides

The species were divided into five groups as shown in Fig.3. S, CMC, AL, XL and None indicated starch degradation activity (S), CMC degradation activity (CMC), alginate degradation activity (AL), xylan degradation activity (XL) and no degradation activity (None), respectively. No isolates showed agarase activity. Fig.4 was summarized from Supplementary Tables 1 (JJSE web site).

495

496 Fig.5 Number of the species of isolates classified by effect of oxygen on497 the growth

498 The species were divided into five groups as shown in Fig.3. Facultative 499anaerobic bacteria (FA) form colony in both aerobic and anaerobic 500cultivation. Anaerobic tolerant bacteria (AT) do not form colony in 501anaerobic condition for two weeks but form colony in aerobic cultivation 502after the anaerobic cultivation. Aerobic bacteria (A) do not form colony 503in anaerobic condition for two weeks and also do not form colony in 504aerobic cultivation after the anaerobic cultivation. Fig.5 was 505summarized from Supplementary Tables 1 (JJSE web site).

506

507 Fig.6 Number of the species of isolates classified by effect of NaCl508 concentration on the growth

509 The species were divided into five groups as shown in Fig.3. Fig.6 was

510 summarized from Supplementary Tables 1 (JJSE web site).

Fig.1 T. Kudo

Fig.1 Map of sampling site (arrow) and environmental conditions. Sampling point : 32°30'N, 129°09'E

(Southeast of Fukue Island, Nagasaki, Japan) Water depth: 236 m Sampling data: November 21, 2010

Temperature of water depth 200 m : ca.13-14 °C Sea surface temperature: ca. 21-22 °C (Data from Japan Meteorological Agency)

Fig.2 T.Kudo

Fig. 2 . Photograph of the deep-sea holothurian (dorsal side A, ventral sideB) and its dissection (C), including anterior intestine (1), mid intestine (2), posterior intestine (3), Polian vesicle (4) and respiratory trees (5). Cuvierian tubules were not detected in the sample.

Fig.3 Kudo

Fig.3 Number of the species of isolates in each part of the intestine The species were divided into five groups: the family Bacillaceae 1 (gray box), the family Bacillaceae 2 (vertical stripes), the family Planococcaceae (dotted box), the family Staphylococcaceae (black box) and the order g-Proteobacteria (diagonal stripes box). Fig.3 was summarized from Supplementary Tables 1 (JJSE web site).

Fig.4 kudo

Fig.4 Number of the species of isolates degrading various polysaccharides The species were divided into five groups as shown in Fig.3. S, CMC, AL, XL and None indicated starch degradation activity (S), CMC degradation activity (CMC), alginate degradation activity (AL), xylan degradation activity (XL) and no degradation activity (None), respectively. No isolates showed agarase activity.

Fig.5 Kudo

Fig.5 Number of the species of isolates classified by effect of oxygen on the growth The species were divided into five groups as shown in Fig.3. Facultative anaerobic bacteria (FA) form colony in both aerobic and anaerobic cultivation. Anaerobic tolerant bacteria (AT) do not form colony in anaerobic condition for two weeks but form colony in aerobic cultivation after the anaerobic cultivation. Aerobic bacteria (A) do not form colony in anaerobic condition for two weeks and also do not form colony in aerobic cultivation after the anaerobic cultivation.

Fig.6 kudo

Fig. 6 Number of the species of isolates classified by effect of NaCl concentration on the growth

The species were divided into five groups as shown in Fig.3.

~U	Madium	Solipity	part	subtotal		
pri	Medium	Samity	anterior	mid	posterior	
	LB	3.5%	-	6	-	
	CMC	3.5%	1	3	-	
	CINC	10%	2	2	4	
	ç	3.5%	2	3	1	
pH 7	3	10%	-	1	3	
	A 1	3.5%	1	1	1	
	AL	10%	4	2	7	
	VI	3.5%	2	3	1	
		10%	3	3	2	
	subtota	I	15	24	19	58
	0140	3.5%	1	5	2	
	CMC	10%	-	-	2	
	0	3.5%	3	2	5	
	5	10%	-	-	-	
pH IU	A 1	3.5%	2	-	1	
	AL	10%	1	-	-	
	VI	3.5%	3.5% 1 2		4	
	XL	10%	1	-	2	
	subtota		9	9	16	34
	Total		24	33	35	92

Table1 Number of the isolates obtained by differrent culture conditions

Table2 Phylogenetic affiliation for isolates (92 strains) from various parts of the intestine											
				part of the intest	ine						
phylum/class/family	genus	species /tentative species	anterior	mid	posterior						
phylum Firmicutes											
family Bacillaceae 1	Bacillus (21)	Bacillus aerophilus			+						
		Bacillus aerophilus/Bacillus altitudinis	+								
		Bacillus altitudinis/Bacillus stratosphericus	+								
		Bacillus aquimaris			+						
		Bacillus aryabhattai		+							
		Bacillus aurantiacus			+						
		Bacillus clarkii/Bacillus polygoni		+							
		Bacillus clausii		+							
		Bacillus flexus	+								
		Bacillus hemicellulosilvticus			+						
		Bacillus horikoshii*	+		+						
		Bacillus horti		+							
		Bacillus hunanensis*	+		+						
		Bacillus hunanensis/Bacillus oshimensis			+						
		Bacillus huainnoensis			+						
		Bacillus Inwajii poerisis		+							
		Dacillus liebenifermiet		, +	4						
		Bacillus merioflevi		+	т						
		Bacillus maristiavi		+							
		Bacilius megaterium*	+	Ŧ							
		Bacillus neizhouensis	+								
		Bacillus oshimensis*	+		+						
		Bacillus pseudalcaliphilus			+						
		Bacillus pumilus		+							
		Bacillus vietnamensis*	+		+						
		Bacillus wakoensis			+						
family Bacillaceae 2	Gracilibacillus (1)	Gracilibacillus dipsosauri	+								
	Halobacillus (2)	Halobacillus kuroshimensis*	+	+	+						
		Halobacillus trueperi*		+	+						
	Oceanobacillus (3)	Oceanobacillus kimchii		+							
		Oceanobacillus oncorhynchi	+								
		Oceanobacillus sojae	+								
	Thalassobacillus (1)	Thalassobacillus devorans	+								
	Virgibacillus (3)	Virgibacillus dokdonensis	+								
		Virgibacillus halodenitrificans*		+	+						
		Virgibacillus marismortui		+							
family Planococcaceae	Jeotgalibacillus (1)	Jeotgalibacillus campisalis*	+		+						
family Staphylococcaceae	Staphylococcus (1)	Staphylococcus warneri		+							
phylum Proteobacteria											
class gamma	Halomonas (1)	Halomonas meridiana			+						
	Marinobacter (1)	Marinobacter alkaliphilus			+						
	Photobacterium (2)	Photobacterium lutimaris	+								
		Photobacterium rosenbergii*		+	+						
	Pseudomonas (3)	Pseudomonas cedrina*		+	+						
		Pseudomonas libanensis*	+	+	+						
		Pseudomonas svnxantha		+							
	Vibrio (5)	Vibrio agarivorans			+						
		Vibrio barvevi		+							
		Vibria maditarrazzi	ــــــــــــــــــــــــــــــــــــــ								
		Vibrio neglerranei	, T	+							
		Vibrio pomeroyi*		Ŧ							
		vibrio rotiterianus*	+		+						

45 species

 $\boldsymbol{\ast}$ indicated the species/tentative species found in multiple parts of the intestine

Supplementary Table 1																
Accession				part of the	A : 1 G			De	grading a	rading activities on		Paguimant	Maximum	ъЦ		
Isolate No.	number of isolates	isolation medium	letters	intestine	strain	species/tentative species	Identities	S	CMC	AL	XL	of oxygen	concentration for growth	tolerance	phylum	family
C210	A D741791	L P(pH7 2 50%)	528	mid	EE114212	Pasillus amabhattai	522/522 (100%)					EA	10	NE	firmicutes	family Bacillaceae 1
C210	AB741782	LB(pH7,3.5%)	S18	mid	AE483624	Bacillus marisflavi	818/818 (100%)	+	+	-	-	AT	20	NE	firmicutes	family Bacillaceae 1
C212	AB741783	LB(pH7,3.5%)	623	mid	AI 483024 A 1000703	Virgibacillus marismortui	555/577 (96%)	-	-	-	+	AT	20	ALK	firmicutes	family Bacillaceae 2
C214	AB741784	LB(pH7.3.5%)	825	mid	A 1310149	Halobacillus trueperi	816/825 (98%)	-	-	-	-		20	ALK	firmicutes	family Bacillaceae 2
C220	AB741785	LB(pH7 3 5%)	819	mid	L 37603	Stanhylococcus warneri	819/819 (100%)		_	_	_	AT	15	NE	firmicutes	family Staphylococcaceae
C221	AB741786	LB(pH7 3 5%)	509	mid	A 1491290	Vibrio pomerovi	503/509 (98%)	+	+	-	_	FA	3.5	ALK	proteobacteria	gamma
C234	AB741787	CMC(pH10.10%)	817	posterior	HM054473	Bacillus hunanensis	816/817 (99%)	+	-	-	_	AT	20	ALK	firmicutes	family Bacillaceae 1
C235	AB741788	CMC(pH10,10%)	813	posterior	AB125942	Marinobacter alkaliphilus	807/813 (99%)	+	-	-	-	AT	15	ALK	proteobacteria	gamma
C236	AB741789	CMC(pH10,3.5%)	594	anterior	AY190535	Jeotgalibacillus campisalis	590/594 (99%)	-	+	-	-	AT	3.5	ALK	firmicutes	family Planococcaceae
C240	AB741790	CMC(pH10,3.5%)	499	mid	X76440	Bacillus clausii	497/499 (99%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C241	AB741791	CMC(pH10,3.5%)	589	mid	D87035	Bacillus horti	585/589 (99%), Gaps = 1/589 (0%)	+	-	-	-	AT	3.5	ALK	firmicutes	family Bacillaceae 1
C242	AB741792	CMC(pH10,3.5%)	540	mid	AJ842344	Photobacterium rosenbergii	537/540 (99%)	+	-	-	-	FA	3.5	ALK	proteobacteria	gamma
C243	AB741793	CMC(pH10,3.5%)	797	mid	D87035	Bacillus horti	791/797 (99%), Gaps = 2/797 (0%)	+	-	-	-	AT	3.5	ALK	firmicutes	family Bacillaceae 1
C245	AB741794	CMC(pH10,3.5%)	812	mid	GU784860	Oceanobacillus kimchii	807/812 (99%)	-	-	-	-	FA	20	ALK	firmicutes	family Bacillaceae 2
C246	AB741795	CMC(pH10,3.5%)	574	posterior	AB188090	Bacillus oshimensis	571/574 (99%)	-	-	-	-	FA	15	ALK	firmicutes	family Bacillaceae 1
C247	AB741796	CMC(pH10,3.5%)	427	posterior	AJ492830	Pseudomonas cedrina	425/427 (99%)	+	-	-	-	FA	15	ALK	proteobacteria	gamma
C254	AB741797	AL(pH10,10%)	453	anterior	AJ717299	Thalassobacillus devorans	437/453 (96%)	-	-	-	-	AT	20	ALK	firmicutes	family Bacillaceae 2
C258	AB741798	AL(pH10,3.5%)	621	anterior	EU925618	Bacillus neizhouensis	609/616 (98%)	-	-	-	+	FA	15	ALK	firmicutes	family Bacillaceae 1
C259	AB741799	AL(pH10,3.5%)	715	anterior	AJ316187	Vibrio rotiferianus	691/699 (98%)	-	+	-	-	FA	3.5	ALK	proteobacteria	gamma
C263	AB741800	AL(pH10,3.5%)	524	posterior	AF057645	Pseudomonas libanensis	523/524 (99%)	+	+	-	-	AT	10	ALK	proteobacteria	gamma
C265	AB741801	XL(pH10,10%)	535	anterior	AB188090	Bacillus oshimensis	530/535 (99%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C270	AB741802	XL(pH10,10%)	565	posterior	HM054473	Bacillus hunanensis	565/565 (100%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C271	AB741803	XL(pH10,10%)	764	posterior	AJ605773	Bacillus aurantiacus	732/759 (96%), Gaps = 6/759 (0%)	+	-	-	+	AT	20	ALK	firmicutes	family Bacillaceae 1
C277	AB741804	XL(pH10,3.5%)	677	anterior	AB043865	Bacillus horikoshii	675/677 (99%), Gaps = 1/677 (0%)	+	-	-	-	AT	10	ALK	firmicutes	family Bacillaceae 1
C280	AB741805	XL(pH10,3.5%)	544	mid	D84025	Pseudomonas synxantha	540/544 (99%)	+	-	+	+	FA	10	ALK	proteobacteria	gamma
C281	AB741806	XL(pH10,3.5%)	475	mid	X76444/AB292819	Bacillus clarkii/Bacillus polygoni	474/475 (99%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C285	AB741807	XL(pH10,3.5%)	581	posterior	AY190535	Jeotgalibacillus campisalis	581/583 (99%), Gaps = 1/583 (0%)	-	+	-	-	FA	10	ALK	firmicutes	family Planococcaceae
C287	AB741808	XL(pH10,3.5%)	637	posterior	HM054473/AB188090	Bacillus hunanensis/Bacillus oshimensis	634/637 (99%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C288	AB741809	XL(pH10,3.5%)	772	posterior	X76449	Bacillus pseudalcaliphilus	743/760 (97%)	+	-	-	+	FA	10	ALK	firmicutes	family Bacillaceae 1
C291	AB/41810	XL(pH10,3.5%)	521	posterior	AB043851	Bacillus wakoensis	521/521 (100%)	-	-	-	+	FA	15	ALK	Tirmicutes	Tamity Bacillaceae 1
C295	AB/41811	S(pH10,3.5%)	515	anterior	DQ534014	Photobacterium lutimaris	512/515 (99%)	+	-	-	-	FA	3.5	ALK	firmioutos	gamma family Raaillaasaa 1
C298	AD741012	S(pH10,3.5%)	411	anterior	N74710	Bactitus nunanensis	815/810 (99%) 407/411 (00%)	+	-	-	-	FA EA	15	ALK	proteobacteria	anniy Daemaceae 1
C302	AD741013	S(pH10,5.5%)	411 540	anterior	A 1942244	Vibrio meaterranei	407/411 (99%)	-	+	-	-	ГА EA	5.5	ALK	proteobacteria	gamma
C304	AB741815	S(pH10,3.5%)	683	mid	X76440	Bacillus clausii	673/677 (99%)	+	-	-	-	FA	10	ALK	firmicutes	family Bacillaceae 1
C307	AB7/1816	S(pH10.3.5%)	550	nosterior	AB0/38/6	Bacillus hamicallulosibyticus	547/550 (99%)	- T	-	-	-	AT	10	ALK	firmicutes	family Bacillaceae 1
C309	AB741810	S(pH10.3.5%)	565	posterior	A 1842344	Photobacterium rosenberaii	560/565 (99%)	- T	+ +	-	- -	FA	10	ALK	proteobacteria	gamma
C310	AB741818	S(pH10.3.5%)	623	posterior	AF057645	Pseudomonas libanensis	619/623 (99%)	+	-	-	-	AT	15	ALK	proteobacteria	gamma
C312	AB741819	S(pH10.3.5%)	516	posterior	AJ310647	Vibrio agarivorans	505/516 (97%)	+	-	+	_	FA	10	ALK	proteobacteria	gamma
C313	AB741820	S(pH10.3.5%)	388	posterior	AB043865	Bacillus horikoshii	388/388 (100%)	+	-	-	_	FA	10	ALK	firmicutes	family Bacillaceae 1
C317	AB741821	CMC(pH7.10%)	580	anterior	AB099708	Bacillus vietnamensis	579/580 (99%)	+	-	-	-	FA	10	NE	firmicutes	family Bacillaceae 1
C318	AB741822	CMC(pH7,10%)	780	anterior	AJ831844/AJ831842	Bacillus aerophilus/Bacillus altitudinis	780/780 (100%)	-	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C324	AB741823	CMC(pH7,10%)	569	mid	AY543169	Virgibacillus halodenitrificans	568/569 (99%)	-	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C327	AB741824	CMC(pH7,10%)	811	mid	AB195680	Halobacillus kuroshimensis	808/811 (99%), Gaps = 2/811 (0%)	+	-	-	-	AT	25	NE	firmicutes	family Bacillaceae 2
C333	AB741825	CMC(pH7,10%)	679	posterior	AY543169	Virgibacillus halodenitrificans	675/676 (99%)	-	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C334	AB741826	CMC(pH7,10%)	586	posterior	CP000002	Bacillus licheniformis	580/580 (100%)	+	-	-	-	FA	15	NE	firmicutes	family Bacillaceae 1
C335	AB741827	CMC(pH7,10%)	808	posterior	AJ310149	Halobacillus trueperi	806/808 (99%)	+	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C336	AB741828	CMC(pH7,10%)	740	posterior	AF483625	Bacillus aquimaris	735/740 (99%)	+	-	-	-	AT	15	NE	firmicutes	family Bacillaceae 1
C339	AB741829	AL(pH7,10%)	589	anterior	AJ640134	Oceanobacillus oncorhynchi	577/589 (97%)	-	-	-	-	AT	20	ALK	firmicutes	family Bacillaceae 2
C341	AB741830	AL(pH7,10%)	558	anterior	AJ831842/AJ831841	Bacillus altitudinis/Bacillus stratosphericus	558/558 (100%)	-	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C344	AB741831	AL(pH7,10%)	768	anterior	AJ831844/AJ831842	Bacillus aerophilus/Bacillus altitudinis	768/768 (100%)	-	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C347	AB741832	AL(pH7,10%)	704	anterior	AY822043	Virgibacillus dokdonensis	691/704 (98%)	-	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 2

C350	AB741833	AL(pH7,10%)	823	mid	AB195680	Halobacillus kuroshimensis	816/820 (99%), Gaps = 3/820 (0%)	+	-	-	-	А	20	NE	firmicutes	family Bacillaceae 2
C355	AB741834	AL(pH7,10%)	684	mid	AB195680	Halobacillus kuroshimensis	682/685 (99%), Gaps = 2/685 (0%)	+	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C358	AB741835	AL(pH7,10%)	753	posterior	AF541966	Bacillus hwajinpoensis	746/749 (99%), Gaps = 1/749 (0%)	-	-	-	-	AT	15	NE	firmicutes	family Bacillaceae 1
C359	AB741836	AL(pH7,10%)	528	posterior	CP000002	Bacillus licheniformis	528/528 (100%)	+	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C360	AB741837	AL(pH7,10%)	557	posterior	AB099708	Bacillus vietnamensis	557/557 (100%)	+	-	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C361	AB741838	AL(pH7,10%)	665	posterior	AY543169	Virgibacillus halodenitrificans	663/665 (99%)	-	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C362	AB741839	AL(pH7,10%)	813	posterior	AB195680	Halobacillus kuroshimensis	810/814 (99%), Gaps = 2/814 (0%)	+	-	-	-	А	25	NE	firmicutes	family Bacillaceae 2
C365	AB741840	AL(pH7,10%)	772	posterior	AF483625	Bacillus aquimaris	760/772 (98%)	+	-	-	-	AT	15	NE	firmicutes	family Bacillaceae 1
C367	AB741841	AL(pH7,10%)	520	posterior	AF541966	Bacillus hwajinpoensis	515/520 (99%)	-	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 1
C370	AB741842	XL(pH7,10%)	420	anterior	AB101591	Gracilibacillus dipsosauri	420/420 (100%)	+	-	+	-	AT	15	ALK	firmicutes	family Bacillaceae 2
C375	AB741843	XL(pH7,10%)	598	anterior	AB473561	Oceanobacillus sojae	596/598 (99%)	-	-	-	-	AT	20	ALK	firmicutes	family Bacillaceae 2
C377	AB741844	XL(pH7,10%)	760	anterior	AB195680	Halobacillus kuroshimensis	758/761 (99%), Gaps = 2/761 (0%)	+	-	-	-	FA	25	ALK	firmicutes	family Bacillaceae 2
C379	AB741845	XL(pH7,10%)	533	mid	CP000002	Bacillus licheniformis	531/532 (99%)	+	-	-	-	FA	15	ALK	firmicutes	family Bacillaceae 1
C380	AB741846	XL(pH7,10%)	535	mid	X76440	Bacillus clausii	534/535 (99%)	-	-	-	-	AT	25	NE	firmicutes	family Bacillaceae 1
C381	AB741847	XL(pH7,10%)	836	mid	AB195680	Halobacillus kuroshimensis	831/837 (99%), Gaps = 2/837 (0%)	+	-	-	-	А	20	ALK	firmicutes	family Bacillaceae 2
C392	AB741848	XL(pH7,10%)	655	posterior	CP000002	Bacillus licheniformis	653/655 (99%)	+	-	-	+	FA	15	NE	firmicutes	family Bacillaceae 1
C397	AB741849	XL(pH7,10%)	568	posterior	AJ842344	Photobacterium rosenbergii	565/569 (99%), Gaps = 1/569 (0%)	+	-	-	-	FA	15	NE	proteobacteria	gamma
C416	AB741850	S(pH7,10%)	711	mid	CP000002	Bacillus licheniformis	710/711 (99%)	+	-	-	-	FA	15	NE	firmicutes	family Bacillaceae 1
C417	AB741851	S(pH7,10%)	672	posterior	CP000002	Bacillus licheniformis	671/672 (99%)	+	+	-	-	FA	15	NE	firmicutes	family Bacillaceae 1
C431	AB741852	S(pH7,10%)	777	posterior	AY543169	Virgibacillus halodenitrificans	777/777 (100%)	-	-	-	-	AT	20	NE	firmicutes	family Bacillaceae 2
C435	AB741853	CMC(pH7,3.5%)	706	anterior	AJ491290	Vibrio pomeroyi	699/706 (99%), Gaps = 1/706 (0%)	+	+	-	-	FA	3.5	ALK	proteobacteria	gamma
C442	AB741854	CMC(pH7,3.5%)	531	mid	AJ491290	Vibrio pomeroyi	525/531 (98%)	+	+	-	-	FA	3.5	ALK	proteobacteria	gamma
C444	AB741855	CMC(pH7,3.5%)	421	mid	D16273	Bacillus megaterium	417/421 (99%)	+	+	-	-	AT	10	NE	firmicutes	family Bacillaceae 1
C446	AB741856	CMC(pH7,3.5%)	568	mid	AY876289	Bacillus pumilus	568/569 (99%)	-	-	-	+	FA	10	NE	firmicutes	family Bacillaceae 1
C460	AB741858	AL(pH7,3.5%)	477	anterior	AJ491290	Vibrio pomeroyi	471/477 (98%)	+	+	-	-	FA	3.5	ALK	proteobacteria	gamma
C463	AB741859	AL(pH7,3.5%)	462	mid	AF057645	Pseudomonas libanensis	461/462 (99%)	+	-	-	-	AT	10	ALK	proteobacteria	gamma
C466	AB741860	AL(pH7,3.5%)	664	posterior	AJ316187	Vibrio rotiferianus	662/664 (99%)	+	+	-	-	FA	3.5	ALK	proteobacteria	gamma
C471	AB741861	XL(pH7,3.5%)	544	anterior	AF057645	Pseudomonas libanensis	542/544 (99%)	-	-	-	+	FA	15	NE	proteobacteria	gamma
C475	AB741862	XL(pH7,3.5%)	655	anterior	AJ316187	Vibrio rotiferianus	654/655 (99%)	+	+	-	-	FA	15	ALK	proteobacteria	gamma
C483	AB741863	XL(pH7,3.5%)	673	mid	AF057645	Pseudomonas libanensis	671/673 (99%)	+	-	-	+	AT	15	ALK	proteobacteria	gamma
C484	AB741864	XL(pH7,3.5%)	542	mid	AJ492830	Pseudomonas cedrina	540/542 (99%)	+	-	-	-	FA	15	ALK	proteobacteria	gamma
C487	AB741865	XL(pH7,3.5%)	535	mid	AY750575	Vibrio harveyi	529/535 (98%)	-	+	-	-	FA	15	ALK	proteobacteria	gamma
C494	AB741866	XL(pH7,3.5%)	761	posterior	AJ831844	Bacillus aerophilus	761/761 (100%)	-	-	-	+	AT	15	NE	firmicutes	family Bacillaceae 1
C503	AB741867	S(pH7,3.5%)	749	anterior	D16273	Bacillus megaterium	747/749 (99%)	+	-	-	-	FA	10	NE	firmicutes	family Bacillaceae 1
C506	AB741868	S(pH7,3.5%)	540	anterior	AB021185	Bacillus flexus	538/540 (99%)	+	+	-	-	AT	15	NE	firmicutes	family Bacillaceae 1
C512	AB741869	S(pH7,3.5%)	556	mid	AF057645	Pseudomonas libanensis	554/556 (99%)	+	-	-	+	FA	10	NE	proteobacteria	gamma
C520	AB741870	S(pH7,3.5%)	563	mid	AJ492830	Pseudomonas cedrina	561/564 (99%), Gaps = 1/564 (0%)	-	-	-	+	FA	15	NE	proteobacteria	gamma
C521	AB741871	S(pH7,3.5%)	669	mid	AY793550	Bacillus lehensis	668/669 (99%)	+	-	-	-	AT	15	ALK	firmicutes	family Bacillaceae 1
C528	AB741872	S(pH7,3.5%)	578	posterior	AF057645	Pseudomonas libanensis	576/578 (99%)	-	+	-	+	FA	10	NE	proteobacteria	gamma
C538	AB741873	S(pH7,10%)	746	posterior	AJ306891	Halomonas meridiana	746/746 (100%)	+	-	-	-	AT	15	ALK	proteobacteria	gamma

Abbreviations: S, starch; CMC, carboxymethyl cellulose sodium salt; AL, alginate; XL, xylan; FA, facultative anaerobic bacteria; AT, anaerobic tolerant bacteria; A, aerobic bacteria; NE, neutrophilic bacteria; ALK, alkaliphilic/alkali-tolerant bacteria . Display of more than one species in the column of nearest type strain species indicated the same idennity in the comparison range.