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Abstract

Combining a popular flood disaster dataset with climate data
and satellite land cover data from China, this paper estimates how
forests mitigate the frequency of flooding, resulting in two major
findings. First, we confirm that an increase in forest area mitigates the
possibility of flood occurrence even after controlling for socioeconomic
and meteorological variables and time-invariant individual effects.
Second, broadleaf trees and mixed-tree forests have a flood mitigation
effect, whereas coniferous trees do not; these results are robust against
alternative model specifications. This paper newly corroborates the
concept of ecosystem-based disaster risk reduction. While there is an
emerging consensus that ecosystems can mitigate natural disasters,
there is limited evidence on how ecosystems mitigate disasters. To the
best of the authors’ knowledge, this study is the first to show that the
type of forest is critical for mitigating floods in a rigorous econometric
way (survival analysis) spanning numerous areas of interest.
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1 Introduction1

Among all the types of natural disasters occurring worldwide, floods have2

occurred most frequently over the past couple of decades, accounting for3

43% of all natural disasters recorded between 1998 and 2017, followed4

by storms and earthquakes (Wallemacq and House, 2018). During the5

same period, floods affected approximately two billion people and inflicted6

economic damage, reaching USD 656 billion. In 2018 alone, 34.2 million7

people were affected by flooding, and economic losses of USD 19.7 billion8

were incurred (CRED, 2019). Within the context of disaster risk reduction,9

the importance of natural ecosystems has gained considerable attention on10

a global scale. For example, the Millennium Ecosystem Assessment (MEA)11

emphasizes the use of the natural environment (e.g., mangroves, wetlands,12

and upland forests) as response options for flood and storm control instead of13

the physical structures and measures historically employed (e.g., dams and14

drainage channels) (MEA, 2005).15

Moreover, the MEA highlights how these ecosystem services are linked to16

human well-being.1 Therefore, by impacting environmental security, health,17

and livelihood, the degradation of ecosystem services negatively affects18

people’s lives. In particular, the loss of forests leads to soil erosion and a19

1Many recent studies found that forest ecosystems could affect rural livelihood (Costanza
et al., 2014; Ickowitz et al., 2014; Yamamoto et al., 2019).
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decrease in the capacity to retain water, thereby increasing the vulnerability20

of affected people and areas to floods and other natural hazards (Zong and21

Chen, 2000).22

Over the years, China has suffered significant flooding. As a23

countermeasure intended to reduce flood risk, the country has dramatically24

increased its forest area by introducing the Grain for Green Program (GGP).225

The GGP aims to transform steep farmlands into forests to reduce soil26

erosion and the risks of floods in the upper and middle reaches of the Yellow27

and Yangtze Rivers, constituting the world’s largest payment for ecosystem28

services. Since the compensation scheme involves local farmers,3 the GGP29

affects both the natural environment and local livelihood in several ways,30

including improving the livelihood of farmers (Rodŕıguez et al., 2016; Wu31

et al., 2019), protecting ecosystem services and forestland (Xu et al., 2018;32

Li et al., 2019; Qian et al., 2019; Fan and Xiao, 2020), decreasing water yield33

(Rodŕıguez et al., 2016; An et al., 2017; Wang et al., 2019), moderating soil34

erosion (Lu et al., 2013; Peng et al., 2019; Ye et al., 2019; Wu et al., 2019),35

and enhancing carbon stock (Song et al., 2015; Peng et al., 2019; Wu et al.,36

2While deforestation remains an important issue throughout the world, China increased
its forest area from 1.57 million hectares to 2.1 million hectares between 1990 and 2016
(FAO, 2018).

3Each farmer received CNY 300 (USD 43 as of November 2019) per hectare per year
and in-kind compensation for 8 years (transformation to ecological forest), 5 years (to
economic forest), or 2 years (to grassland) (Delang and Yuan, 2016). Thus, the total
compensation payment reached CNY 78.44 billion (USD 11.26 billion) between 2002 and
2005 (Delang and Yuan, 2016).
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2019).37

This paper examines the effects of forest cover on flood frequency in38

China to confirm whether the recent promotion of forest area has contributed39

to the mitigation of flooding. Specifically, we focus on forest types to40

examine whether any particular type of forest can help mitigate the risk of41

floods. While there is an emerging consensus that ecosystems can mitigate42

natural disasters, there is limited evidence on how ecosystems mitigate flood43

occurrence. To the best of our knowledge, this study is the first to show44

that the forest type is critical for mitigating floods in a rigorous econometric45

way spanning numerous areas of interest. In this study, we applied survival46

analysis methods to investigate the effects of forest ecosystems on flood47

occurrence because floods can be assumed to be events occurring with a48

certain probability during periods. Our analysis also includes socioeconomic49

and meteorological characteristics as potential confounding factors that most50

likely affect the occurrence of floods51

This study contributes to the literature on a debate among hydrological52

and forestry science on the role of forest ecosystems on flood mitigation.453

One component of the literature has reported evidence of the effects of54

deforestation on the occurrence of floods and the corresponding damage55

4We will discuss the hydrological mechanisms of how forests and floods are related in detail
in Section 2.
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caused by these events. Bradshaw et al. (2007) used cross-country56

panel data for 56 developing countries from 1990 to 2000 to study the57

relationship between forest cover and flood frequency. Their statistical58

analyses demonstrated that the number of flood events was associated59

with forest-related factors, such as forest cover, natural forest loss, and60

nonnatural forest cover. By incorporating forest cover attributes into61

models, their study ultimately found that deforestation caused floods with62

an increased frequency. The effect of forest cover on flood mitigation is63

also supported by recent empirical work. Bhattacharjee and Behera (2017,64

2018) examined whether forest cover can mitigate floods in India. Their65

investigations revealed that areas with more forest cover were associated with66

less flood-related damage and highlighted the ability of forests to weaken67

the adverse impact of climate change incurred by extreme weather events68

(Bhattacharjee and Behera, 2018). In the study analyzing the impact of69

public policies on the occurrence of natural disasters in Brazil, Sant’Anna70

(2018) found that while extreme rainfall increased the frequencies of floods71

and landslides, negative impacts were mitigated in areas with relatively high72

forest cover.73

While the above studies showed that forest cover can have a significant74

mitigating effect on flood events, others found that this conclusion does not75

hold (Van Dijk et al., 2009; Ferreira and Ghimire, 2012; Ferreira et al.,76
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2013). In fact, the relationship between forests and floods is a much77

debated topic insomuch that the roles of forest cover in preventing floods78

are questioned (CIFOR, 2005). Van Dijk et al. (2009) reanalyzed the work79

performed by Bradshaw et al. (2007) and argued that the results of the80

latter are inconclusive when socioeconomic factors are not considered in the81

estimation; after considering the impact of population density, they found82

no correlation between forest cover or forest loss and the frequency of floods.83

The study by Bradshaw et al. (2007) was similarly challenged by Ferreira and84

Ghimire (2012), who found an insignificant impact of forest cover when the85

estimation considered other socioeconomic and institutional characteristics.86

They argued that these factors may be more important than deforestation87

as determinants of human-induced floods.88

Indeed, deforestation is not the only way by which humans can impact89

floods. The consensus in the literature on the economic impacts of natural90

disasters is that the extent of disaster-related damage is associated with91

countries’ income levels (Kahn, 2005; Noy, 2009; Kellenberg and Mobarak,92

2008; Ferreira et al., 2013). In addition to income, other socioeconomic93

factors that most likely affect the frequency of floods and flood-induced94

damage include a variety of demographic and institutional factors, e.g.,95

population, urbanization, corruption, and democracy levels (Kahn, 2005;96

Güneralp et al., 2015; Ferreira and Ghimire, 2012). Furthermore,97
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geographical and meteorological characteristics are considered to be98

important factors that affect flood occurrence (Zong and Chen, 2000;99

Sant’Anna, 2018). It is also widely recognized that flood occurrence is100

affected by land degradation and soil erosion resulting from land use change101

(Zong and Chen, 2000; Bradshaw et al., 2007). Hence, in addition to forest102

cover, these factors should be considered when further analyzing the roles103

forests play in mitigating floods.104

Moreover, many investigations have linked natural disasters to land use105

and land cover (Yin and Li, 2001; Van Westen et al., 2008; Van Dijk et al.,106

2009; Tan-Soo et al., 2016; Wells et al., 2016). To explore these relationships,107

researchers often apply spatial data to natural hazards and land use and land108

cover (Bradshaw et al., 2007; Van Dijk et al., 2009; Wells et al., 2016). For109

instance, Wells et al. (2016) incorporated interview surveys and newspaper110

articles to spatially analyze whether flood frequency is related to land use111

in Indonesian Borneo. Their results suggested that the frequency of floods112

tends to decrease in areas with more logged and intact forests and increase113

in areas with more extensive oil palm plantations.114

This study aims to clarify the hypothesis that the existence of forest115

cover mitigates flood frequency and the mitigation effects differ by forest116

type. In this sense, our work is also related to ecosystem-based disaster117

risk reduction (Eco-DRR) or natural-based solutions because forests provide118
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various ecosystem services that reduce hydrological risks, land degradation,119

and climatic risks (Keesstra et al., 2018; Albert et al., 2019; Calliari et al.,120

2019; Dorst et al., 2019).121

2 The role of forests in water yield122

The hydrological impacts of forests have been debated by researchers in the123

fields of forestry science and hydrology for almost a century (Bruijnzeel,124

2004). On the one hand, Gentry and Lopez-Parodi (1980) found that the125

frequency of floods in the Amazon increased due to increased runoff caused126

by deforestation, although precipitation patterns remained unchanged. On127

the other hand, Hewlett (1982) observed that the existence of forests did128

not influence the quantity of water flow. Ultimately, Ferreira et al. (2013)129

concluded that it was difficult to identify whether forest cover was the130

sole factor affecting flood occurrence because forest cover changes and131

socioeconomic conditions both affect the frequency of flooding.132

More recently, however, it has been acknowledged that the existence133

of forests or vegetation can contribute to the mitigation of flood risk.134

Bosch and Hewlett (1982) highlighted that an increase in forest cover can135

decrease streamflow, while enhanced deforestation leads to an increase in136

streamflow. Ogden et al. (2013) found that forests reduced the amount of137

runoff water during the heavy rainy season in Panama, while forests increased138
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the runoff rate during the dry season. Wang et al. (2019) found that forests139

decreased the water yield in China and attributed this phenomenon to the140

increased water conservation capacity in afforestation areas. Andréassian141

(2004) reviewed hydrological studies that conducted experiments with paired142

watersheds and discovered that deforestation can increase the flood volume143

and flood peak; in contrast, reforestation is associated with a decreased water144

yield. Filoso et al. (2017) summarized 308 case studies while focusing on145

the hydrological impacts of reforestation and mostly found that increasing146

the extent of forest cover can decrease the water yield. Ellison et al. (2017)147

revealed that some functions of forests play significant roles in mitigating the148

occurrence and intensity of floods; for example, forests can disperse water by149

intercepting and recycling precipitation, promoting upward moisture fluxes,150

and recharging infiltration and groundwater.151

In addition, some researchers have discovered that different types of152

vegetation have varying hydrological effects. Tan-Soo et al. (2016) reported153

that the conversion of forests into plantations (such as oil palm plantations)154

led to an increased likelihood of flooding in Malaysia, and Swank and155

Douglass (1974) observed that the clearing of coniferous forest increased the156

water yield in the study area more than the clearing of broadleaf forest.157

However, Brown et al. (2005) noted that the impacts of forest changes on158

water yield should be quantified based on long-term analyses and found that159
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the effects varied according to the types of vegetation and land use. In this160

context, Komatsu et al. (2007) demonstrated that broadleaf forest had a161

greater potential to decrease the water yield in Japan than coniferous forest.162

Considering the findings of the above literature, the types of vegetation,163

meteorological conditions, and socioeconomic factors must be considered to164

investigate the hydrological impacts of forests.165

3 Research design166

To investigate the relationship between forest cover and flood occurrence in167

China (focusing particularly on forest types), we employ survival (duration)168

analysis.5 Our analyses are conducted at the subdistrict level from 2001169

to 2018 considering the availability of relevant data. The flowchart of our170

estimation procedure is given in Figure 1. In section 3.1, we introduce171

our dataset, and in section 3.2, we show the empirical framework employed172

herein. QGIS 2.14.12 and Stata 14.2 were used to conduct the geographical173

and statistical analyses.174

3.1 Data175

The forest cover data we employ were obtained from satellite observations176

provided by Sulla-Menashe et al. (2019). This dataset has been updated177

5The survival analysis treats time as a continuous variable and can be applied to investigate
the repeated and sequential occurrence of events.
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and is currently available for the period from 2001 to 2018. The dataset178

comprises global land cover grids with dimensions of 0.05×0.05 degrees based179

on the International Geosphere-Biosphere Programme (IGBP) classification.180

In particular, a pixel dominated by woody vegetation (covering over 60% of181

the pixel) with a tree height higher than 2 m is reported as forest. Based on an182

identification strategy of observing trees during an annual cycle of leaf-on and183

leaf-off periods, the dataset provides five forest type classifications: evergreen184

coniferous, evergreen broadleaf, deciduous coniferous, deciduous broadleaf,185

and mixed forest.6186

The forest area in China has increased over the last two decades. The187

broadleaf forest area increased from 4.20 million km2 in 2001 to 5.04 million188

km2 in 2017; the coniferous forest area increased from 0.76 million km2 to189

1.22 million km2; and the mixed forest area increased from 15.31 million km2
190

to 17.77 million km2 in the same period (Sulla-Menashe et al., 2019).7191

To investigate the effect of each forest type on flood occurrence, we192

aggregate and recategorize pixels based on broadleaf, coniferous, and mixed193

forests at the subdistrict level. Figure 2 shows the forest gain by forest194

type between 2001 and 2017. In particular, broadleaf forest accounts for a195

large part of the forest gain in northeastern and southern China. Similarly,196

6Mixed forest consists of a mixture of various forest types.
7We aggregate and recategorize the forest type into broadleaf, coniferous, and mixed forest.
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Figure 3 shows the change in the forest cover rate at the subdistrict level197

in China between 2001 and 2017. In terms of broadleaf forest, 68.4% of198

subdistricts experienced forest gain during the study period. Furthermore, a199

large proportion of subdistricts in northeastern, central, and southern China200

displayed a gain in forest cover during the study period. However, the forest201

cover did not change in most of the subdistricts in western China.8202

The flood data were acquired from the Global Active Archive of Large203

Flood Events, Dartmouth Flood Observatory (Brakenridge, 2012). This204

dataset has recorded the occurrence of global floods since 1985.9 Figure 4205

shows the number of floods recorded in the database in China between 2001206

and 2017. Evidently, the number of floods has decreased in China in recent207

years, whereas the frequency and severity of floods have increased worldwide208

(Najibi and Devineni, 2018; Wallemacq and House, 2018).209

The weather data were obtained from the Climate Prediction Center’s210

Global Unified Precipitation dataset provided by the National Oceanic and211

Atmospheric Administration.10 This dataset reports global precipitation in212

8There are few forest areas in the western regions corresponding to the definition that a
forest that covers more than 60% of each pixel with a tree height higher than 2 m.

9The flood events presented in the Dartmouth Flood Observatory are derived from a
variety of news, governmental sources, and remote sensing sources. The dataset provides
the flood event data including the location, beginning and ending days, affected areas
of flood occurrence as well as the severity of the flood as the indicator of the intensity
of the floods. For a more detailed description of the floods in this dataset, see http:

//floodobservatory.colorado.edu/index.html.
10The data are available at https://www.esrl.noaa.gov/psd/.
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grids of 0.05×0.05 degrees. Our precipitation data refer to the values that are213

geographically nearest to the center of the corresponding subdistrict. The214

demographic data were obtained from the National Bureau of Statistics of215

China.11216

Table 1 presents the descriptive statistics of our sample.12 Our dependent217

variable, flood, is a dummy variable that takes a value of one when the flood218

occurred in the considered subdistrict and zero otherwise, indicating that219

the probability of flood occurrence is 2.8% for all subdistricts between 2001220

and 2017. Table 1 also reports the areas of forest cover at the subdistrict221

level based on the classification of broadleaf, coniferous, and mixed forest.222

Broadleaf and mixed forest account for a large portion of the observed223

forest cover, while coniferous forest covers a relatively small area in China.224

Regarding precipitation, the maximum daily precipitation in a year and the225

annual average precipitation are also reported in Table 1.226

3.2 Model227

We adopt survival analysis with both parametric and semiparametric models228

to investigate the effects of forest resources on flood occurrence. For the229

11See http://data.stats.gov.cn/english/index.htm.
12We aggregated the dataset to merge the information at the subdistrict level. Detailed
information on the data source is summarized in Table S1 of supplemental material.
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parametric analysis, we use the Weibull hazard function, denoted as230

h(t|m) = γmtm−1, (1)

where γ > 0 and m > 0 are parameters. It is common to allow γ = exp(x′β)231

to include regressors because this allowance guarantees that γ > 0. Thus,232

our hazard function is expressed as233

h(t|x,m, β) = mtm−1 exp(x′β), (2)

where x represents the independent variables and β represents the234

parameters. The hazard ratio increases over time if m > 1, while it decreases235

monotonically if m < 1. The hazard rate is independent of time if m = 1.236

To avoid the case in which the Weibull distribution does not provide a237

proper fit, we introduce a semiparametric model, called the Cox proportional238

hazard model. Instead of assuming the distribution of the data, the Cox239

model assumes that the hazard ratio is constant over time:240

h(t|x, β) = h0(t) exp(x
′β), (3)

where h0(t) is the baseline hazard. Note that as long as the proportional241

hazard assumption is held, there is no need to know the actual distribution242
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shape of h0(t).
13

243

In the actual estimation, we extend the normal survival analysis approach244

in the following two aspects. First, we include time-varying covariates,245

while most survival analyses are based upon time-invariant covariates, such246

as gender. It is problematic to include time-varying variables because247

this approach usually destroys the exogeneity of covariates (Cameron and248

Trivedi, 2005). For instance, the unemployment period depends upon the249

job search strategy, but the job search strategy can be affected by the length250

of unemployment, while a variation such as seasonal cycle would have no251

feedback effect similar to this. Nevertheless, we believe our time-varying252

covariates are closer to the latter example and are sufficiently exogenous to253

use in the estimation. Second, as floods can be observed repeatedly, we apply254

a survival analysis of repeated events. Several methods can be utilized to255

incorporate recurrent events, but we adopt an Anderson-Gill-type recurrent256

event survival analysis.14257

4 Results258

In this section, we first show the overall results of how different types of259

forest contribute to mitigating flood occurrence using the Cox and Weibull260

models. We then conduct additional analyses by dividing the samples in261

13The details of the model selection can be found in Cameron and Trivedi (2005).
14For more details, see Amorim and Cai (2015).
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consideration of possible biases.262

4.1 Effects of forest cover on flood occurrence263

The results of the survival analysis are presented in Table 2.15 We first264

show estimates for the Cox model. In Column 1, we explore the relationship265

between flood occurrence and each type of forest without controlling for266

regional demographic characteristics or precipitation levels. We then include267

these regional characteristics in the model in Column 2.16 Finally, we include268

precipitation variables in the estimation model, as shown in Columns 3 and 4.269

Column 3 includes the annual average precipitation, while Column 4 includes270

the maximum daily precipitation. Columns 5 and 6 report the estimation271

results using models with the Weibull distribution corresponding to Columns272

3 and 4, respectively.273

The above results are further confirmed by estimating the parametric274

model with the assumption of a Weibull distribution. Columns 5 and 6 show275

the corresponding results, suggesting that broadleaf forest and mixed forest276

play roles in mitigating the frequency of floods. Comparing the coefficients of277

15We also conducted similar analyses with the total forest area as an independent variable.
Results similar to those of our main analyses (Table 2) were obtained. All specifications
included subdistrict-fixed effects, which captured unobserved regional characteristics
such as distance to the nearest river. To focus on our main objective (i.e., the effects
of different forest types on flood occurrence), these results are shown in Table S2 of
supplementary material.

16The regressions of models other than that in Column 1 of Table 2 include other land
cover areas classified by the IGBP, such as grasslands, croplands, and barren land, in
the subdistrict.
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broadleaf forest and mixed forest, those of broadleaf forest were larger than278

those of mixed forest; this finding reiterates that broadleaf forest is more279

effective than other types of forest at mitigating the frequency of floods.280

4.2 Selection bias281

Our survival analyses suggest that an increase in forest area has an effect on282

flood mitigation (Table S2 of supplementary material), particularly increases283

in the areas of broadleaf forest and mixed forest (Table 2). However, since a284

gain in forest cover might not occur randomly, there is a possibility that our285

results suffer from a sample selection bias. For example, there is a possibility286

that gains in forest cover occurred only in subdistricts where the potential287

flood risk is low. Therefore, we test for biases by restricting the sample to288

areas that have a potential flood occurrence risk. Here, we apply only the289

Cox model, as the Weibull model shows similar results.290

Table 3 shows the results. The test sample is composed of 107 subdistricts291

that experienced at least one flood during the study period. The coefficients292

for broadleaf and mixed forest were negative and statistically significant,293

while those for coniferous forest were not significant. These results support294

our findings in Table 2 that broadleaf forest and mixed forest have the295

potential to mitigate the occurrence of floods, and the broadleaf forest296

coefficients are similarly larger than the mixed forest coefficients.297
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4.3 Heterogeneous effects298

Since the probability of flood occurrence increases in response to299

precipitation, there is a possibility that afforestation policies target300

high-precipitation areas for the planting of trees. In the case that the301

estimates suffer from unobserved bias, we test for such bias by dividing the302

subdistricts based on precipitation. We define high- and low-precipitation303

areas based on maximum daily rainfall above or below a precipitation304

threshold of 77 mm in a year. In other words, subdistricts that experienced305

daily rainfall above 77 mm (sample mean) are defined as high-precipitation306

areas. The explanatory variables are the same as those in our main analyses.307

Here, we apply only the Cox model, as the Weibull model shows similar308

results.309

Table 4 shows the results for high-precipitation areas in Columns 1 and 2310

and low-precipitation areas in Columns 3 and 4. The coefficients of broadleaf311

and mixed forests remained negative and statistically significant in every312

specification, suggesting that the hydrological effects of forests elucidated313

above are robust.314

Similarly, there is a possibility that the flood mitigation effects are315

different depending on the climate. To test the heterogeneity effects among316

climates, we estimated the models by dividing the samples into two climate317
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zones based on Li et al. (2013)’s definitions: tropical and monsoon areas318

and temperate and plateau areas (Figure S1 of supplementary material).17319

Columns 5–8 of Table 4 show the results.18 The coefficients of mixed forest320

remain negative and statistically significant in every area. However, in321

temperate and plateau areas, the coefficients of broadleaf forest are negative322

but statistically insignificant. This finding suggests that the flood mitigation323

effects depend on the tree species and ecological characteristics.324

4.4 Different levels of severity325

In addition, there is a possibility that the tree cover effects on flood mitigation326

are heterogeneous depending on the intensity of floods because floods occur327

with multivariate processes. In fact, European Union (2007) emphasizes328

that a flood management plan should be based on information such as the329

potential size of the area affected and the depth and velocity of water because330

they are not independent. Using copula theory, Salvadori et al. (2016) showed331

the importance of the multivariate flood process in general, while Yin et al.332

(2018) assessed the implications of climate change in the Ganjiang River333

basin in China.334

17Several areas are categorized as both monsoon and temperate. Our estimations include
these mixed areas in both monsoon and temperate models. This approach has the
advantage that our estimations would be more efficient in terms of sample size and
degree of freedom.

18As the Cox model failed to achieve a convergence of the likelihood function, we apply
the Weibull models.
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We test for heterogeneity by applying the estimations to higher and lower335

intensities of flood events, which correspond to the severity classes reported336

in the flood dataset (Brakenridge, 2012). The severity of flood events was337

classified based on the flood recurrence interval: Class 1 includes large338

floods with reported intervals for one or two decades, and Class 2 includes339

extreme flood events with reported intervals greater than 100 years. The340

dependent variable takes the value of one if the flood is categorized as Class341

2 for high-intensity estimation and Class 1 for low-intensity estimation. The342

explanatory variables are the same as those in our main analyses presented343

in Subsection 4.1. Similar to the estimations in Columns 5–8 of Table 4, the344

Cox model failed to achieve a convergence of the likelihood function; thus,345

we apply the Weibull model.346

Table 5 shows the results for high-intensity flood events in Columns 1347

and 2 and low-intensity flood events in Columns 3 and 4. The coefficients348

of the broadleaf and mixed forest had a significant negative impact on flood349

frequency. This finding suggests that the tree cover has mitigation effects on350

flood frequency, regardless of the flood intensity level.351

5 Discussion352

Our results are consistent with findings from previous literature on the flood353

mitigation effects of forest cover (Bradshaw et al., 2007; Bhattacharjee and354
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Behera, 2017, 2018). In addition, our results indicate that the effects on flood355

occurrences are different depending on the type of tree cover. Broadleaf and356

mixed forests have mitigation effects, while coniferous forest does not. This357

finding indicates that increases in the areas of broadleaf and mixed forest358

have the potential to mitigate the frequency of floods. Furthermore, the359

absolute values of the coefficients for broadleaf forest were slightly larger than360

those for mixed forest, suggesting that broadleaf forest is more effective than361

mixed forest at mitigating flood occurrence. However, increases in the area of362

coniferous forest are not associated with the mitigation of flood occurrence.363

Coniferous trees tend to have high market value due to their demand as home364

building materials. There may be an incentive to plant coniferous trees rather365

than broadleaf trees at the time of afforestation, as they have higher value366

when logging after a long time. This study shows that if policy makers make367

such decisions, they rely too much on trees.368

Figures 5 helps clarify the effect of each forest type on flood occurrence.369

These figures illustrate the difference in forest effects between the areas with370

increasing and decreasing forest cover by forest type based on Nelson-Aalen371

cumulative hazard estimates. The results indicate that the probability of372

flood occurrence decreased in areas with increasing broadleaf and mixed373

forest cover, while this tendency was not observed for coniferous forest.374

These results are consistent with the findings in the field of forestry science,375
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indicating that broadleaf forest contributes to the mitigation of underground376

water flow (Komatsu et al., 2007).377

Other things being equal, the net precipitation (sum of throughfall and378

stemflow) through a forest is defined by gross precipitation minus total379

interception loss, which is the sum of canopy interception loss and litter380

interception loss. When the net precipitation per time reaching the ground381

exceeds a threshold, a flood occurs (Poorter, 2004). Broadleaf trees usually382

have more complex shapes and more leaves than coniferous trees. This383

characteristic enables broadleaf trees to capture more rain and reduce the384

peak level of net precipitation per time. Precipitation spending more385

time on leaves and stems increases evapotranspiration as well (Sato, 2007).386

Combining these two effects, broadleaf forests can reduce the possibility387

of exceeding the threshold. Broadleaf trees gather precipitation through388

stemflow, while coniferous trees tend to spread rainfall into relatively broader389

areas (Kume, 2007). Since soil near a tree is drier due to the consumption of390

water by the root of the tree, it helps to prevent too much runoff. In addition,391

changes in forest cover alter not only storm runoff but also base flow (mainly392

groundwater flow). Yin et al. (2018) discussed that deforestation can increase393

storm runoff but reduce base flow because the water-holding capacity of the394

soil decreases when the quality of the forest is degraded. Usually, broadleaf395

trees generate richer soil with more litter. This characteristic might be396
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another advantage of broadleaf forest.397

Columns 3 and 4 in Table 2 show the estimated results with the logarithms398

of the annual average and maximum daily precipitation, respectively, as399

the explanatory variables. The coefficients of precipitation indicate positive400

effects on the flood frequency. These results are intuitively reasonable and401

similar to the conclusions of previous analyses (see Section 2). Furthermore,402

the coefficients of GRP were significantly negative for all the models, meaning403

that increasing the economic level of a subdistrict has a flood mitigation404

effect.405

Overall, our findings remain significant across various model406

specifications. Specifically, we confirmed that broadleaf trees and mixed-tree407

forests have effects on flood mitigation, regardless of the precipitation level,408

climate zones, and flood intensity. This finding suggests that the flood409

mitigation effects of forests are not particular to certain regions.410

6 Conclusion411

In this study, we examined the hydrological effects of forests on the mitigation412

of floods in China, focusing particularly on the effects of different forest types,413

by applying satellite data to forest and flood data. This study contributes to414

the literature by estimating how flood prevention effects differ by forest type415

by applying rigorous survival analysis using samples from the whole country416
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of China. We found that, in accordance with recent hydrological and forestry417

research, forests moderated the occurrence of floods. We then evaluated the418

effects by dividing the forest areas by type and found that broadleaf forest419

and mixed forest contributed to flood prevention, while coniferous forest did420

not.421

These results pose important policy implications for policymakers422

considering flood mitigation by promoting afforestation, which has recently423

received attention as Eco-DRR. While coniferous forests might not help424

prevent flooding, coniferous trees tend to be preferred in afforestation policy,425

as coniferous trees have economic value as wood resources for construction.426

For example, in the GGP, coniferous trees such as Chinese fir and Masson pine427

have been preferred (Zhou et al., 2007; Delang and Yuan, 2016). However,428

in terms of flood prevention, coniferous forests are not effective.429

In addition, it is worth noting that forests have the potential to mitigate430

floods over broad areas by leveraging the functions of trees. For example,431

trees could moderate the yield of water in areas by capturing and recycling432

precipitation. Hence, considering the effects of forests as Eco-DRR solutions433

during conventional flood mitigation efforts, such as the construction of434

levees and dams, might be effective for flood management. These policy435

implications are applicable not only to China but also to other countries,436

as the mechanism of flood prevention by forest type can be applied to any437
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country.438

Finally, several limitations of this study should be mentioned. First,439

several landscape variations and subdistrict-level variables to control for440

flood occurrences were excluded from our estimates due to data limitations.441

Although our time-invariant fixed effects approach captured unobserved442

regional characteristics such as the distance to the nearest river, there was443

a possibility of bias due to other omitted variables. For example, we could444

not include regional investments in flood mitigation, such as the construction445

of levees and dams, because of the limited availability of data. Therefore,446

we cannot fully rule out the possibility of bias from unobserved explanatory447

characteristics on the mitigation of flood occurrence.448

Second, while this study ascertained the hydrological effects of some449

forest types, we cannot clearly determine the mechanism underlying the450

mitigation of flood occurrence. As we discussed in Section 2, how forests451

mitigate flooding is complex and broadly debated in the fields of forestry452

science and hydrology. Further studies should attempt to address these453

issues to promote flood prevention by considering the functions of forests.454

Nevertheless, although these topics constitute areas of improvement, our455

study confirms that flood mitigation effects differ by forest type and that456

broadleaf and mixed forest types are particularly effective; moreover, these457

findings are robust to our various specifications.458
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Third, we cannot examine the detailed effects of different tree species459

and vegetation characteristics. The forest cover data we employed include460

broadleaf, coniferous, and mixed forest. Although there are a variety of461

tree species and ecological characteristics depending on climate properties,462

information on detailed tree species is not available. Future studies should463

attempt to address these issues.464
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Table 1: Summary statistics
Variable Mean Std. Dev. Min. Max.
Flood 0.028 0.165 0 1
Broadleaf forest (thousand km2) 1.337 3.495 0 28.778
Coniferous forest (thousand km2) 0.315 1.327 0 23.243
Mixed forest (thousand km2) 5.033 13.302 0 155.273
Maximum daily precipitation (mm) 77.355 39.933 0.194 355.831
Annual average precipitation (mm) 825.920 466.907 0.357 2731.924
GRP in the subdistrict (CNY 100 million) 16.069 16.511 0.139 89.705
Population 5328.138 2754.722 264 11169
Note: The number of observations is 5763.

39



T
ab

le
2:

S
u
rv
iv
al

an
al
y
si
s
on

fl
o
o
d
o
cc
u
rr
en
ce

(a
ll
sa
m
p
le
s)
.

C
ox

m
o
d
el

C
ox

m
o
d
el

C
ox

m
o
d
el

C
ox

m
o
d
el

W
ei
b
u
ll
m
o
d
el

W
ei
b
u
ll
m
o
d
el

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

B
ro
ad

le
af

fo
re
st

−
0.
01
0∗

−
0.
04
4∗

∗∗
−
0.
04
7∗

∗∗
−
0.
04
5∗

∗∗
−
0.
07
4∗

∗∗
−
0.
07
2∗

∗∗

(0
.0
05
)

(0
.0
11
)

(0
.0
12
)

(0
.0
11
)

(0
.0
18
)

(0
.0
17
)

C
on

if
er
ou

s
fo
re
st

−
0.
00
4

0.
00
0

−
0.
00
3

−
0.
00
3

0.
01
1

0.
00
8

(0
.0
19
)

(0
.0
17
)

(0
.0
18
)

(0
.0
18
)

(0
.0
22
)

(0
.0
20
)

M
ix
ed

fo
re
st

−
0.
00
8∗

−
0.
04
2∗

∗∗
−
0.
04
3∗

∗∗
−
0.
04
2∗

∗∗
−
0.
06
4∗

∗∗
−
0.
06
3∗

∗∗

(0
.0
05
)

(0
.0
09
)

(0
.0
09
)

(0
.0
10
)

(0
.0
15
)

(0
.0
14
)

G
R
P
(/
10
00
)

−
0.
09
4∗

∗∗
−
0.
09
1∗

∗∗
−
0.
09
3∗

∗∗
−
0.
18
4∗

∗∗
−
0.
18
2∗

∗∗

(0
.0
23
)

(0
.0
22
)

(0
.0
22
)

(0
.0
29
)

(0
.0
29
)

P
op

u
la
ti
on

0.
00
2∗

∗∗
0.
00
2∗

∗∗
0.
00
2∗

∗∗
0.
00
3∗

∗∗
0.
00
3∗

∗∗

(0
.0
01
)

(0
.0
01
)

(0
.0
01
)

(0
.0
01
)

(0
.0
01
)

ln
(A

n
n
u
al

av
er
ag
e
pr
ec
ip
it
at
io
n
)

2.
19
8∗

∗∗
1.
59
0∗

∗∗

(0
.6
00
)

(0
.6
07
)

ln
(M

ax
im

u
m

da
il
y
pr
ec
ip
it
at
io
n
)

0.
56
2∗

∗
0.
67
0∗

∗

(0
.2
77
)

(0
.2
75
)

O
b
se
rv
at
io
n
s

57
63

57
63

57
63

57
61

57
61

57
61

L
og
-l
ik
el
ih
o
o
d

−
83
3.
67
3

−
80
8.
94
3

−
80
0.
31
8

−
80
6.
84
7

63
2.
23
3

62
7.
93
7

W
al
d
ch
i-
sq
u
ar
e

12
56
8.
09
9

72
55
9.
80
6

23
14
.7
32

11
42
8.
74
1

N
ot
e:

T
h
e
d
ep

en
d
en
t
va
ri
ab

le
is

fl
o
o
d
o
cc
u
rr
en
ce
.

S
ta
n
d
ar
d
er
ro
rs

in
p
ar
en
th
es
es

ar
e
cl
u
st
er
ed

at
th
e
su
b
d
is
tr
ic
t
le
v
el
.

∗∗
∗ ,

∗∗
,
an

d
∗
d
en
ot
e
st
at
is
ti
ca
l
si
gn

ifi
ca
n
ce

at
th
e
1
%
,
5
%
,
a
n
d
1
0
%

le
v
el
s.

A
ll
es
ti
m
at
es

in
cl
u
d
e
su
b
d
is
tr
ic
t-
fi
x
ed

eff
ec
ts
.

A
ll
re
gr
es
si
on

s
in

C
ol
u
m
n
s
2–
6
in
cl
u
d
e
ot
h
er

la
n
d
co
ve
r
a
re
a
s
cl
a
ss
ifi
ed

b
y
th
e
IG

B
P
,
su
ch

a
s
g
ra
ss
la
n
d
s,

cr
o
p
la
n
d
s,

a
n
d
b
a
rr
en

la
n
d
in

ea
ch

su
b
d
is
tr
ic
t.

40



Table 3: Effects restricted to areas that experienced floods during the study
period.

(1) (2)
Broadleaf forest -2.111∗∗∗ -2.012∗∗∗

(0.524) (0.509)
Coniferous forest -0.125 -0.112

(0.783) (0.804)
Mixed forest -1.901∗∗∗ -1.874∗∗∗

(0.418) (0.427)
GRP (/1000) -0.091∗∗∗ -0.093∗∗∗

(0.022) (0.022)
Population 0.002∗∗∗ 0.002∗∗∗

(0.001) (0.001)
ln(Annual average precipitation) 2.198∗∗∗

(0.602)
ln(Maximum daily precipitation) 0.562∗∗

(0.278)
Observations 1819 1819
Log-likelihood -800.318 -806.847
Wald chi-square 2299.880 11355.400

Note: The dependent variable is flood occurrence.

Standard errors in parentheses are clustered at the subdistrict level.
∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels.

All estimates include subdistrict-fixed effects.

All regressions include other land cover areas classified by the IGBP, such as grasslands,

croplands, and barren land in each subdistrict.
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Table 5: Effects on different levels of severity of floods.
Higher intensity Lower intensity
1 2 3 4

Broadleaf forest −11.349∗∗ −11.513∗∗ −4.841∗∗∗ −4.396∗∗∗

(4.957) (5.265) (1.540) (1.566)
Coniferous forest −10.739 −11.479 1.896 1.571

(8.811) (8.684) (1.609) (1.624)
Mixed forest −11.764∗∗ −12.004∗∗ −3.251∗∗∗ −3.173∗∗∗

(5.328) (5.727) (1.030) (1.038)
GRP (/1000) −0.287∗∗ −0.296∗∗ −0.343∗∗∗ −0.342∗∗∗

(0.141) (0.136) (0.099) (0.102)
Population 0.004 0.004∗ 0.004∗∗∗ 0.004∗∗∗

(0.002) (0.002) (0.001) (0.001)
ln(Annual average precipitation) 2.812∗ 2.060∗∗∗

(1.567) (0.644)
ln(Maximum daily precipitation) 0.508 1.121∗∗∗

(0.679) (0.395)
Observations 5762 5760 5762 5760
Log-likelihood 93.457 91.552 390.643 390.412

Note: The dependent variables are flood occurrence, with higher severity corresponding

to severity Class 2 in columns 1 and 2 and lower severity corresponding to severity Class

1 in columns 3 and 4.

Standard errors in parentheses are clustered at the subdistrict level.
∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels.

All estimates include subdistrict-fixed effects.

All regressions include other land cover areas classified by the IGBP, such as grasslands,

croplands, and barren land in each subdistrict.

All estimates use models with the Weibull distribution.
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Figure 1: Flowchart of the estimation procedure.

44



Figure 2: Forest cover and forest gain in China (grid base). Source:
Sulla-Menashe et al. (2019).
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Figure 3: Percentage change in forest cover rate by subdistrict. Source:
Sulla-Menashe et al. (2019).
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Figure 4: Number of floods that have occurred in China. Source: Brakenridge
(2012).
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Figure 5: Nelson-Aalen cumulative hazard estimates for broadleaf forest (a),
coniferous forest (b), and Mixed forest (c).
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Supplementary material660

Figure S1: Climate regions in China. Source: Li et al. (2013)



Table S1: Variable description and data sources.
Variable Description Original resolution Data source
Flood Recorded flood events Point data Brakenridge (2012)
Broadleaf forest

Forest area based on
IGBP classification

0.05 × 0.05 degrees Sulla-Menashe et al. (2019)
Coniferous forest
Mixed forest
Total forest areas

GRP
Gross regional
product per thousand
CNY District level

National Bureau of
Statistics of China

Population Total population

Annual average precipitation

Mean value on
geographical
approximate grid of
subdistrict 0.05 × 0.05 degrees

Global Unified
Precipitation dataset from
the Climate Prediction
Center

Maximum daily precipitation
Maximum value at
each subdistrict and
year
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