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ABSTRACT
This paper presents a deep-pipelined FPGA implementation
of real-time ellipse estimation for eye tracking. The sys-
tem is constructed by the Starburst algorithm on a stream-
oriented architecture and the RANSAC algorithm without
any external memories. In particular, the paper presents
comparative results between three different hypothesis gen-
erators for the RANSAC algorithm based on Cramer’s rule,
Gauss-Jordan elimination and LU decomposition. The eval-
uation results showed that the Gauss-Jordan elimination achieved
the highest throughput while the solver with Cramer’s rule
was the most compact and that our proposed architecture
achieved a real-time throughput of 62.5 fps with a single
FPGA chip without using any external memories.

1. INTRODUCTION

In this paper, we present FPGA implementation of image-
based ellipse estimation for an embedded eye tracking sys-
tem based on Starburst algorithm [1]. While the Starburst
is known to be a robust algorithm, it requires high computa-
tional performance, making it difficult to be implemented as
a compact and portable system. Our goal here is to demon-
strate highly efficient implementation of the Starburst algo-
rithm on a compact FPGA platform without using external
memories.

The Starburst algorithm mainly consists of three process
steps; (1) pre-processing for camera images, (2) extraction
of feature points that represent a pupil contour, and (3) es-
timation of the best fit ellipse for the feature points. For
the former two steps, a deep-pipelined stream-oriented im-
age processing architecture is promising, which can achieve
a real-time throughput at a relatively low clock frequency
without requiring any external memories. We have already
shown such an approach is of benefit for a variety of image
applications in terms of performance and power consump-
tion [2],[3],[4]. In this paper, we firstly show how the for-
mer two steps of the Starburst algorithm can be restructured
to be fitted with this framework.

The last process step in which an ellipse is estimated
with the RANdom SAmple Consensus (RANSAC) algorithm[5],
offers different computational properties. The RANSAC al-
gorithm can robustly estimate an ellipse from a set of ex-
tracted feature points including some outliers. This robust-
ness is achieved by a hypothesis-and-verify matching ap-
proach that consists of three steps; (1) randomly selecting a
fixed number of feature points from the set of points includ-
ing outliers, (2) generating hypothesis (ellipse parameters)
from the selected points by solving a system of five simulta-
neous equations, and (3) verifying the generated hypothesis.
The method repeats these three steps and finally returns the
best hypothesis as a result. The RANSAC algorithm needs
to iteratively estimate as many ellipses as possible for dif-
ferent point selection during a single camera frame, and the
matrix solving with floating point arithmetic process easily
becomes a performance bottleneck.

In contrast to large matrix solvers, few attention has been
paid so far to small matrix manipulation on FPGAs. How-
ever, this issue is not obvious. For example, [6] reported the
efficient algorithm to calculate an inverse of a 4x4 matrix
with SIMD instructions was Cramer’s rule, which is gener-
ally never used because of its high order of computational
complexity. As is well known, especially for a small data
set, execution performance does not necessarily reflect com-
putational complexity and becomes more sensitive to archi-
tectures. Hence, in the latter half of this paper, we compare
three kinds of FPGA implementation of equation solvers and
discuss which approach is appropriate for small matrix ma-
nipulation on an FPGA.

One of the highest developed FPGA implementation of
ellipse estimation has been reported by Martelli et al., aim-
ing for detection of circular road signs [7]. In their im-
plementation, feature points are extracted using histogram
stretching, intensity gradients, and the edge extraction and
thinning method. In order to avoid hardware complication,
they imposed a limitation on ellipses that they can detect;
ellipses with major axis 0◦ and 90◦ from the x axis can
only be detected. However, our implementation does not



have any limitations on ellipse to be detected, since we often
need to detect inclined ellipses in eye tracking. In addition,
there have been hardly any literature that focuses on effi-
cient solver implementation for a small simultaneous equa-
tion system on an FPGA.

The rest of the paper is organized as follows. In Section
2, we present the Starburst algorithm which includes pre-
processing and the RANSAC. In Section 3, we present the
implementation details. In Section 4, we show evaluation
results and discussion. And finally, in Section 5, we show
the scope for future work and conclude the paper.

2. ALGORITHMS

2.1. Reflection removal

The first pre-processing step of the Starburst algorithm is
removal of reflections in a pupil image, which often cause
extraction of undesired feature points. To relieve this unde-
sirable situation, we used a bilinear interpolation which was
derived by simplifying a method proposed in [8]. Let I(x, y)
denote luminance of the pixel at (x, y). Let R(x, y) denote
a binary reflection map, which is easily obtained based on
a threshold luminance. R(x, y) = 1 means that the pixel at
(x, y) is in a reflection region and to be interpolated. Two
points, (xr, y) and (xl, y), are required for the interpolation
and their coordinates are calculated as follows:

xr = min

{
x′ :

L−1∑
i=0

R(x′ − i, y) = 0, x′ > x

}
(1a)

xl = max

{
x′ :

L−1∑
i=0

R(x′ + i, y) = 0, x′ < x

}
(1b)

where L is a parameter on the filter size. Using these two
points, interpolated luminance I′(x, y) is calculated as:

I′(x, y) =
I(xr, y) · (xr − x) + I(xl, y) · (x − xl)

xr − xl .

(2)

Although this method executes interpolation only in a
horizontal direction, the majority of reflections can be effec-
tively removed in a practical environment as shown in Fig. 1
(a) and (b).

2.2. Extraction of feature points of a pupil contour

The Starburst feature point extraction method starts to radi-
ally find feature points from a base point Ps, and returns a
set of the nearest points which have larger intensity deriva-
tive than a threshold on each ray as shown in Fig. 1 (c).
In addition, another extraction process starts from firstly ex-
tracted feature points towards the base point to improve the
robustness. In this paper, we only used the single step Star-
burst feature extraction for ease of compact hardware imple-
mentation.

(a) (b)

(c) (d)

Fig. 1. Overview of the Starburst algorithm. (a) Original
image. (b) Reflection removal and box blur. (c) Starburst
feature extraction. Green point denotes a feature point and
red point denote base point for the extraction. (d) Estimated
ellipse(blue line) and center point(purple). Red points de-
note inliers.

2.3. RANSAC

The RANSAC is an iterative method that finds a model from
a data set of points including outliers. At first RANSAC
randomly samples a subset from the extracted feature points.
The minimum size of subset depends on a target model, and
an ellipse needs at least five points.

After sampling a subset, a hypothesis is generated from
the subset. We used the following ellipse equation,

x2 + Axiy + By2 + Cx + Dy + E = 0 (3)

where A, B, C, D and E are parameters to be estimated.
Using the method of least squares, a system of simultaneous
equations for estimating an ellipse is obtained as Eq. (4).

Hypothesis is generated by solving Eq. (4) and is veri-
fied by successively substituting all the feature points and
the obtained parameters into Eq. (3). The values of left-hand
side are considered as an error and the number of inliers is
counted based on a threshold error value. The above three
steps, random sampling, hypothesis generating and verify-
ing, are repeated until a new dataset of the next frame image
arrives. Finally the best hypothesis, which has the maximum
number of inliers, is returned as estimated parameters.

3. IMPLEMENTATION

3.1. Design overview

Fig. 2 illustrates our proposed system. Pixel data input
from the camera interface are streamed into Starburst mod-
ule through cascaded pre-processing filters. The Starburst
module detects up to 128 feature points and the Trimming
module eliminates invalid feature points every one frame.
The Random sampling module samples five points from the
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Fig. 2. Overview of our eye-tracking system.

valid points set and stores them into FIFO1. The Hypothesis
generation module executes floating-point arithmetic opera-
tions for estimating elliptic parameters. The Model verifica-
tion module counts the number of inliers for the generated
hypothesis and updates the temporal best hypothesis when
better hypothesis is found. Note that all the modules only ac-
cess to on-chip memories, e.g., FFs, BRAM and Distributed
RAM.

3.2. Pre-processing

Fig. 3 shows a basic architecture framework for stream-
oriented image processing, which we call streamed struc-
ture. The architecture consists of a register array for a win-
dow region of interests, FIFOs for line buffers, and pipelined
arithmetic for particular operations. This architecture out-
puts operation results at the same throughput as data in-
put. Although most of the pre-processing can be straight-
forwardly implemented on this architecture framework, the
reflection removal process is relatively complex. We split
the process into two steps; the determination of envelop pix-
els and the interpolation. As a result, dynamic control flows
were mitigated and all the pre-processing modules were im-
plemented on the streamed structure.

3.3. Feature point extraction for pupil contour detection

The Starburst feature extraction process was also implemented
on the streamed structure. We split the process into three
parts; (1) calculation of intensity derivatives for all the pix-

Input

FIFO

Registers

Output

Pipeline

Fig. 3. Overview of our streamed structure.

els, (2) calculation of distances and angles of coordinate
points from the center point, and (3) update of the feature
points table.

The intensity derivatives are calculated by a segmenta-
tion test that is inspired by FAST corner detection[9]. By
comparing the intensity of a candidate pixel with each point
on a 16-point ring that surrounds it, we can know possible
directions in which the candidate pixel is able to be recog-
nized as a feature point.

The distance and angle between the candidate point and
center point are calculated using add, multiply and arctan
operations. We used a table whose i-th entry holds the coor-
dinate of the feature point that was most recently found on
the i-th direction and its distance from the center point. The
table is updated when a new feature point that is nearer to
the center for each direction. After scanning all the pixels,
the table holds a set of the Starburst feature points for the



corresponding frame. In our implementation, the number of
entries of the feature points table is 128.

3.4. RANSAC

As shown in Fig. 2 , the RANSAC part includes three clock
domains and asynchronous FIFOs and tables are provided
for passing data between different clock domains. Using
a double buffering technique with the dual-port RAMs, the
Hypothesis generation module and the Model verification
module work in parallel. The Random sampling module
randomly generates addresses for the feature point table us-
ing a 32-stage liner feedback shift register.

The Hypothesis generation module consists of a genera-
tor of a system of simultaneous equations (Eq. (4)) with the
received five feature points and its solver. We implemented
three kinds of solvers for simultaneous equations based on
Cramer’s rule, Gauss-Jordan elimination and Doolittle LU
decomposition.

3.5. Hypothesis generation

3.5.1. Cramer’s rule

Consider a system of n linear equations for n unknowns as
follows:

Ax = b (5)

where A denotes an n × n matrix, x and b denote column
vectors. According to Cramer’s rule, the values for the un-
knowns are given by:

xi =
|Ai|
|A|

(6)

where Ai denotes a matrix formed by replacing the i-th col-
umn of A by the column vector b. The determinant |A| can
be defined as:

|A| =
∑

σ∈Sn

sgn(σ)
n∏

i=1

Ai,σi
(7)

where σ denotes a permutation of the set {1, 2, ..., n}, σi de-
notes i-th number of σ and sgn(σ) denotes the signature of
σ which is 1 or −1. Due to its high order of computational
complexity, the Cramer’s rule is generally never considered
as a practical solution. However, its dataflow has quite sim-
ple and regular structure including rich parallelism.

We used a memory table called order table, whose j-
th entry contains j-th permutation σj for column vectors of
the matrix (3 × 5 bit) and the value of sgn(σj) (1 bit). five
memories called column tables whose i-th memory contains
i-th column vector of the matrix. These tables simplify the
calculation of the determinant. At first, addresses for the
column tables and a sign are fetched from the order table.

Then, the corresponding elements of the matrix are fetched
from the five column tables. After multiplying these five
values and the sign, the result is accumulated. Repeating
this for 120 times (the number of permutations for n = 5),
determinant of the matrix is obtained. |Ai| is calculated by
using bσji instead of ai,σji from the i-th column table at the
j-iteration, where σji means i-th number of the permutation
σj .

Since these multiplication steps are independent each
other, pipelining can be fully applied. However, the final ac-
cumulation step imposes a pipeline stall due to the latency
of the adder. We focused on the fact that ellipse estimation
needs six determinant of matrices: |A|, |A1|, . . . , |A5|, and
we interleaved the calculation of the six determinants using
an adder with 6-cycle latency, so that any pipeline stalls did
not occur. Hence, after executing 720 sets of multiplication,
six determinants are obtained every clock cycle. Finally, the
ellipse parameters are calculated by dividing the last five de-
terminants with the first determinant.

This hypothesis generator consists of two 42-bit inte-
ger multipliers and two double precision floating point (FP)
multipliers, one double precision FP adder, and one double
precision FP divider with some format converters. The es-
timated ellipse parameters are output as single precision FP
values.

3.5.2. Gauss-Jordan elimination

Gauss-Jordan elimination, also known as the sweep-out method
is one of the commonly used algorithms for solving a system
of simultaneous equations. While its computational com-
plexity is higher than that of the Gaussian elimination which
is another popular method, Gauss-Jordan elimination does
not need backward substitution which is an essentially se-
quential process.

Given an N -by-(N + 1) matrix M (0) = [A b] and inte-
ger K (≤ N ), eliminated matrix M (K) in the K-th step is
defined as follows:

m
(K)
i,j =


m

(K−1)
i,j if j < K,

m
(K−1)
i,j

m
(K−1)
K,K

else if i = K,

m
(K−1)
i,j − m

(K−1)
i,K

m
(K−1)
K,K

m
(K−1)
K,j otherwise. .

(8)

In the RANSAC algorithm, the accuracy of the best solu-
tion in the repetitive trials is more important than that of
each individual solution. Thus, we did not implement pivot
exchanging, which makes the control flow sequential and
complicated.

Our hypothesis generator based on the Gauss-Jordan elim-
ination consists of cascaded five sub-modules, each of which
corresponds to calculation of M (K) and consists of three
single precision FP operators; adder, multiplier and divider.



Table 1. Resource usage of each implementation.
CRAMER GAUSS LU Available

FF 20,667 22,267 24,062 28,800
LUT 18,709 19,130 19,725 28,800

BRAM 39 39 34 48
DSP48 47 44 39 48

These sub-modules can work in a macro pipelined manner,
that is, a new hypothesis can be started to be generated after
the first sub-module finish its calculation.

3.5.3. Doolittle LU decomposition

Our third solver is based on Doolittle LU decomposition,
which is also a popular approach. This consists of the fol-
lowing three steps. Firstly, a given matrix A is decomposed
into a lower triangular matrix L and a upper triangular ma-
trix U . Then, the equation Ly = b is solved for y. Finally,
x is obtained by solving solving Ux = y. Compared to the
Gauss-Jordan elimination, the computational complexity of
LU decomposition is reduced.

Given an N -by-N matrix U (0) = A and integer K(≤N),
the K-th step of calculation for decomposed matrices U (K)

and L(K) are calculated as follows:

u
(K)
i,j =

u
(K−1)
i,j if i ≤ K,

u
(K−1)
i,j − u

(K−1)
i,K

u
(K−1)
K,K

u
(K−1)
K,j otherwise.

(9)

l
(K)
i,j =


l
(K−1)
i,j if j < K,
u

(K−1)
i,j

u
(K−1)
K,j

else if i ≥ K,

0 otherwise.
.

(10)

The LU decomposition can be executed with a similar
architecture to the Gauss-Jordan elimination. We used three
sub-modules each of which consists of adder, multiplier and
divider for single precision FP operations. After the decom-
position, y and x are calculated by the forward substitution
and backward substitution, respectively. Each substitution
module also requires the same three operators for single pre-
cision FP values.

4. EVALUATION AND DISCUSSION

4.1. Evaluation environment

The evaluation system was implemented on an ML501 pro-
totype board equipped with a Xilinx Virtex-5 XC5VLX50
FPGA and an OmniVision OV9620 CMOS camera device
using ISE 13.4 tool sets. In the experiment, the clock fre-
quencies for CLK CAM, CLK SOLVER, and CLK VERIFY

Table 2. Slice usage of solvers and dividers.
CRAMER GAUSS LU

solver 4,250 4,622 5,303
div 1,652 1,905 1,835

ratio 39% 41% 35%

were constrained to 25 MHz, 100 MHz and 100 MHz, re-
spectively, and these constraints were met for every evalu-
ated implementation. Since our FPGA implementation em-
ployed the streamed structure, pre-processing and the Star-
burst feature extraction achieved the performance of 62.5 fps,
which is the maximum throughput of VGA image genera-
tion for the camera device used. Note that any on-board
memory devices were not used except for debug purpose.

4.2. Resource usage

Table 1 shows resource usages for each implementation
with the available resource amount on the FPGA, and Ta-
ble 2 shows how much portion of each solver is occupied by
dividers. The solver with Cramer’s rule (CRAMER) showed
the lowest resource usage in FFs and LUTs despite of only
this solver requires double precision FP operators due to ac-
curacy requirements. This compact implementation is due
to CRAMER needs the smallest number of operators among
the three solvers and mainly consists of multipliers which
can be efficiently built with DSP48E hard macro modules.

As Table 2 shows, FP dividers were dominant in terms
of resource usage for each solvers. Although the Gauss-
Jordan elimination (GAUSS) and the LU decomposition (LU)
use single precision FP operators unlike CRAMER, the largest
part is still occupied by dividers since they use multiple di-
viders. Since dividers are frequently used in these solvers, it
seems difficult to reduce the resources without performance
degradation. However, for the CRAMER, a fully pipelined
FP divider is used only for five division. Thus, there should
be room to reduce the required resources without a major
performance drop by changing the structure of the divider.

4.3. Power consumption

Table 3 shows performance and power consumptions of
each implementation. The power consumptions were mea-
sured by inserting a 1- ohm shunt register between the board
and DC power supply. Note that the ’total’ power value in-
clude the power consumed by not only the FPGA but also
the camera device, HDMI display interface, debug circuits
(including memories), and so forth. We also implemented
and measured a system without any solvers and calculated
the solver power values as a difference.

The CRAMER consumed the highest power despite the



Table 3. Performance of each implementation.
CRAMER GAUSS LU

Power [W] 0.33/3.34 0.28/3.29 0.15/3.16(Solver/Total)
Latency [us] 8.69 3.05 4.99
Throughput 1.1 × 106 107 3.8 × 106

Fig. 4. Ellipse estimation result using the CRAMER solver.
Crossing point shows the estimated center of the eye.

solver showed the lowest resource usage. The comparison
results suggest that power consumptions are more sensitive
for utilization of DSP48Es and BRAMs rather than FFs and
LUTs. The total power consumption was 3.34 watts even for
the CRAMER, which demonstrates the power effectiveness
of FPGAs. Capability of a tight and efficient integration of
dedicated arithmetic and I/O interface makes a huge contri-
bution to the advantage of the FPGA implementation.

4.4. Throughput

We defined a throughput of a solver as the number of hy-
pothesis generated per second. As in Table 3 , the GAUSS
solver showed the lowest latency and the highest throughput
and this value corresponds to approximately 9 times of that
for the CRAMER solver. This is mainly due to the high or-
der of computational complexity of the Cramer’s rule. How-
ever, the performance difference was smaller than the differ-
ence in the computational complexity because of the higher
usage rate of arithmetic pipelines in the CRAMER solver.

For the RANSAC algorithm, a higher throughput of the
hypothesis generation improves the accuracy of ellipse fit-
ting. As Fig. 4 shows, even the CRAMER solver success-
fully estimates reasonable ellipse parameters for practical
images. In this sense, it can be considered that the through-
puts obtained by the three solvers are enough for ellipse esti-
mation for eye tracking, while detailed accuracy evaluation
will be needed for future work.

5. CONCLUSION

In this paper, we presented that deep-pipelined FPGA imple-
mentation of the Starburst algorithm for eye tracking. The
system consists of cascaded streamed architectures for im-
age processing and an arithmetic architecture for generat-

ing and solving simultaneous equations for the RANSAC-
based ellipse estimation. The implementation experiments
showed that our architecture achieved a real-time through-
put (62.5 fps) with low power consumption (3.34 W) without
using any external memories. We also empirically inves-
tigated FPGA-oriented algorithms for solving a small sys-
tem of simultaneous equations for ellipse estimation. While
the Gauss-Jordan elimination achieved the highest through-
put for solving the equations, the solver with Cramer’s rule
was the most compact and likely to get more smaller. This
suggest that different approaches to the analysis of algo-
rithms are important for FPGAs rather than traditional ap-
proaches based on computational complexity. Our future
work includes detailed accuracy evaluation of estimated el-
lipses, optimization of architectures in terms of FPGA re-
source mapping, and use of a refined RANSAC algorithm
with a more sophisticated sampling scheme for feature points.
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