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Implementation of a GPU-Oriented Absorbing Boundary
Condition for 3D-FDTD Electromagnetic Simulation
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and Takafumi FUJIMOTO††, Members

SUMMARY In this paper, we propose and discuss efficient GPU im-
plementation techniques of absorbing boundary conditions (ABCs) for a
3D finite-difference time-domain (FDTD) electromagnetic field simulation
for antenna design. In view of architectural nature of GPUs, the idea
of a periodic boundary condition is introduced to implementation of per-
fect matched layers (PMLs) as well as a transformation technique of PML
equations for partial boundaries. We also present efficient implementation
method of a non-uniform grid. The evaluation results with a typical simula-
tion model reveal that our proposed technique almost double the simulation
performance and eventually achieve the 55.8% of the peak memory band-
width of a target GPU.
key words: absorbing boundary condition, perfectly matched layer, FDTD,
GPU

1. Introduction

In this paper, we discuss optimization techniques to im-
plement 3D Finite-Difference Time-Domain (3D-FDTD)
method with Absorbing Boundary Conditions (ABC) on a
GPU, for accelerating analysis of antenna characteristics.

Characteristics analysis for antenna design consists of
two steps: simulation of electromagnetic propagation in
time domain and analysis of simulation results. Acceler-
ation of simulation is needed since most of the execution
time is occupied by the electromagnetic simulation. The
FDTD method proposed by Yee discretizes the Maxwell’s
equation in spatial and time domain and calculates the elec-
tric and magnetic potential at each point on spatial grids
or lattices [1], [2]. Although its computational costs, which
are the number of floating point operations and memory ac-
cesses in this case, and memory usage increase linearly with
the size of a simulation model, the method is widely used
since performance of computers have been rapidly improved
and the algorithm is simple and easy to understand.

Absorbing boundary conditions (ABCs) are important
when using the FDTD method for unbounded problems.
Since computers can not handle an infinite space or infi-
nite number of elements on the grid, the method can only
be used within a finite space. To resolve this limitation, sev-
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eral types of ABCs were proposed to attenuate reflection
waves from boundaries of the computational space [3]–[5].
Among them, the perfectly matched layer (PML) proposed
by Bérenger is widely used [6]. However, the PML needs
additional floating point operations, memory accesses, and
memory resources.

The FDTD method is known as a kind of stencil com-
putation that has a high degree of parallelism but requires
a large memory bandwidth. While GPU implementation is
attractive as a cost-effective acceleration approach, our ear-
lier work has shown that GPU implementation of Absorb-
ing Boundary Conditions (ABCs) tends to be a bottleneck
of the simulation [7]. We discuss this issue in this paper. In
concrete terms, the main contributions of this paper are as
follows:

• Efficient GPU implementation of a Non-Uniform grid
method is presented to reduce memory requirements
and its performance overhead is revealed.
• Novel implementation of ABCs is proposed and eval-

uated, which is coupled with periodic boundary condi-
tions in view of a SIMD nature of GPUs.
• An implementation technique based on transformation

of update equations of ABCs is introduced to reduce
both of the computation amount and memory usage.

The proposed ideas are empirically evaluated by practical
simulation of a micro strip antenna (MSA) in terms of per-
formance and accuracy.

The rest of this paper is organized as follows. Sec-
tion 2 introduces related works. Section 3 describes the 3D-
FDTD method, the Split PML and basic implementation of
3D-FDTD method on a GPU. Our proposals are described
in Sects. 4, 5 and 6. The memory usage, performance, ac-
curacy and comparison with related works are evaluated in
Sect. 7. Finally, Sect. 8 includes the conclusions and some
directions for future work.

2. Related Works

So far, many researchers have reported the results of GPU
acceleration of the stencil computation [8], [9], including
3D-FDTD method with ABCs [10]–[12]. Nagaoka et al. re-
ported a performance comparison a 3D-FDTD method with
the Split PML on a CPU, SX-8R super computer and Tesla
C1060 GPU [11]. They used a human body model as a cal-
culation target and pointed out that the performance var-
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ied with the calculation domain and CUDA thread block
size. Implementation of a 3D-FDTD method was evalu-
ated also on a variety of GPUs including CUDA incom-
patible GPUs [10]. Chu et al. achieved the performance
of approximately 160 M elements updates per second us-
ing UPML [12]. While these works addressed paralleliza-
tion and acceleration of a 3D-FDTD method for a nor-
mal computational space, there have been few reports that
mainly discuss implementation techniques of ABCs and a
Non-Uniform grid on GPUs.

3. Background

3.1 3D-FDTD Method

In this section, we briefly describe our 3D-FDTD simulation
approach. Detailed mathematical background can found in
other literature [1], [2]. We assumed that a simulation tar-
get is isotropy and non-dispersive having the conductivity
of σ = 0. We also assumed permeability is uniform. We
applied a typical substitution of central differences for the
time and space derivatives for Maxwell’s curl equations and
thus our time-stepping expression can be written as for Ex

for instance:
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where Δy and Δz are cell sizes of each dimension, εx is a
permittivity in x dimension, Δt denotes the time increment,
and δu (u ∈ {x, y, z}) is a difference operator. For example,
δy is defined as δy f (i, j, k) = f (i, j, k) − f (i, j − 1, k).

3.2 Equations for the Split PML

Since the 3D-FDTD method handles the a finite compu-
tational space, the computational space is generally sur-
rounded by zero values that correspond the Perfect Electric
Conductor (PEC). The PEC reflects waves as a result of
computation, and thus ABC are required to attenuate the re-
flection waves.

As previously mentioned, we used Bérenger’s Split
PML [13] as an ABC. Each component of E and H is split
to two components called subcomponents, and the time-
stepping equations of each subcomponent are defined as:
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where CE1u(p) and CE2u(p) (u ∈ {x, y, z}) are introduced for

ease of describing the equations. CE1u(p) and CE2u(p) are
defined as

CE1u(p) =
2ε0 − σu(p)Δt
2ε0 + σu(p)Δt

, u ∈ {x, y, z} (3)

CE2u(p) =
2Δt

2ε0 + σu(p)Δt
· 1
Δu
, u ∈ {x, y, z} (4)

where ε0 shows permittivity of free space and σu(p) shows
conductivity at the coordinate p on the dimension u. Note
that σu(p) is 0 regardless of the value of p in non PML re-
gions. Since CE1u(p) and CE2u(p) are constants in the time
domain, these values can be calculated in advance of the
simulation process. The Split PML needs two subcompo-
nents for each component of E and H. Thus, the Split PML
needs up to 12 additional memory elements compared to
normal FDTD calculation.

3.3 Basic Implementation of 3D-FDTD Method on
CUDA-Compatible GPU

A general approach to implementation of the 3D-FDTD
method on CUDA-compatible GPUs divides the whole sim-
ulation space to fixed size blocks and makes CUDA thread
blocks process each block [8], [9]. Our implementation also
divides the whole simulation target of size (S x, S y, S z) into
small blocks of size (Bx, By, Bz) and makes CUDA thread
blocks process each block. Each component of E and H is
stored memory as 3D-array so that dimension x has a unit-
stride, dimension y has a larger stride, and dimension z has
the largest stride. Figure 1 shows the placement of CUDA
threads within a block and direction of processes. Bx × By

CUDA threads within a CUDA thread block are placed on
a 2D plane and each CUDA thread moves the process along
the line with z direction. Therefore, the CUDA thread on the
coordinate (x, y) processes a total of Bz cells from (x, y, 0) to
(x, y, Bz − 1). When CUDA threads that have the same y co-
ordinate in a block access to components of E and H at the
same time, these accesses can be coalesced because these
components are continuous on the GPU memory. Since the
indices expressed in fractional numbers as like in Eq. (1) are
inconvinient for straightforward implementation, we intro-
duced a set of offset values to make the coordinates integer
numbers as shown in Table 1. Among possible candidates of
offset values, we chose the ones in Table 1 so that accesses

Fig. 1 Placement of CUDA threads and direction of process within a
block. The gray boxes show CUDA threads.
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Table 1 Offsets for components of E and H.

Components

Field x y z

E (−1/2, 0, 0) (0,−1/2, 0) (0, 0,−1/2)
H (0,−1/2,−1/2) (−1/2, 0,−1/2) (−1/2,−1/2, 0)

to the E and H components are coalesced as much as pos-
sible. We describe coordinates with the offsets using ‘[ ]’
instead of ‘( )’. Thus, Eq. (1) can be rewritten as
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and the update equation of the Split PML for Ex can also be
rewritten as
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Hereafter, we discuss our implementation in the converted
coordinates as shown in Eqs. (5) and (6).

4. The Non-Uniform Grid

4.1 Introduction of the Non-Uniform Grid

Since the size of the FDTD simulation is limited by avail-
able size of memory on a GPU device in effect, we introduce
the liner interpolated Non-Uniform grid [14], [15] to reduce
memory usage for simulation. By using multiple sizes of
simulation cells, the Non-Uniform grid approach aims at ef-
fective reduction of the memory usage, floating point oper-
ations and data memory accesses while sustaining the sim-
ulation accuracy. The computation error caused by the use
of Non-Uniform grid is discussed in [15]. Applying a linear
interpolation to Eq. (4), we got:

CE2u[p] =
2Δt

2ε0 + σu[p]Δt
· 2
Δu[p − 1] + Δu[p]

,

u ∈ {x, y, z}
(7)

where Δu[p] is a cell size of coordinate p in dimension u.

4.2 Implementation

Important things when introducing the Non-Uniform grid
are that how much memory usage can be reduced and how
many additional costs, such as floating point operations and
data memory accesses, we have to pay. Here, we discuss
the additional costs to use the method. In the case of the

Uniform grid, we can use Δt/(ε0Δu) instead of CE2u[p] in
Eq. (1). Because Δt/(ε0Δu) is a constant, it need not to
be fetched from the global memory. Therefore, the addi-
tional memory access cost for the Non-Uniform grid is made
by fetches of six float values; CE2u[p] and CH2u[p] (u ∈
{x, y, z}), that is 6 × 4 = 24 Bytes, per cell.

Since CE2u[p] and CH2u[p] are constant values through
the simulation, we can place these values on the constant
memory or texture memory instead of the global memory to
mitigate the access penalty. In addition, appropriate thread
placement and blocking can make further reduction of the
accesses. As described in Sect. 3.3, each CUDA thread
has the invariant coordinate (x, y) in our implementation.
Therefore, each CUDA thread needs to fetch the values for
CE2x[i], CH2x[i], CE2y[ j] and CH2y[ j] only once when the
CUDA kernel is launched. Moreover, the values of CE2z[k]
and CH2z[k] can be shared by all of the threads within the
same CUDA thread block, so that a total of Bz fetches are
required per CUDA thread block while processing a block
of (Bx, By, Bz).

To summarize, the Non-Uniform grid method needs
additional 4×(2Bx+2By+2Bz) data fetches from the arrays of
CE2u[p] and CH2u[p] (u ∈ {x, y, z}) per block. Therefore, the
additional memory access amount per grid point becomes

4 × (2Bx + 2By + 2Bz)

Bx × By × Bz
Bytes, (8)

which can be mitigated by an appropriate blocking size.

5. Novel Absorbing Boundary Condition

5.1 Motivation

As already shown, the Split PML as an ABC increases the
number of memory accesses and arithmetic operations per
cell due to the subcomponents. Generally, the ABC forms
thin regions that is smaller than the size of block. When we
allocate computation for the ABC regions and other regions
into the same block, instruction and data flows make diver-
gences which results in severe performance degradation due
to a SIMD property of GPU architectures. To avoid this sit-
uation, the ABC regions and other regions should be placed
in different blocks. However, in turn, since the ABC regions
are thin, the ABC blocks need a lot of padding cells to align
the blocks especially in the dimensions with a large block
size. In addition, we need at least two ABC blocks per di-
mension. While the padding cells consume resources, they
do not make any contributions to the computation. However,
the threads assigned for the padding cells execute the same
instruction flow as the ones for the ABC regions to keep the
SIMD property and thus to avoid the thread divergence in
the block.

5.2 Introduction of the Periodic Boundary Condition

In order to reduce the excess padding cells, we propose a
novel implementation of an ABC introducing the idea of
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Fig. 2 (a) The model that has the Split PML and PEC. A dashed line
shows reflected wave before attenuation. (b) The model that has the peri-
odic boundary condition instead of the PEC. (c) The model that we use.

the periodic boundary condition. In the periodic boundary
condition, one side of the simulation space continues to the
other side. Thus, using this periodicity, we can gather the
ABC regions in one side of each dimension.

The periodic boundary condition can be introduced
by changing the definition of the difference operator δu in
Eq. (1). For example, δy is defined as

δy f (i, j, k) = f (i, j, k) − f (i, ( j + S y − 1) mod S y, k) (9)

where S y is the size of dimension y.
In the original configuration as shown as Fig. 2 (a),

emitted waves are finally reflected by the PEC, but before
that, they are sufficiently attenuated by Split PMLs so as not
to affect the simulation results. Therefore, we can use the
periodic boundary condition instead of the PEC as show in
Fig. 2 (b), since waves that leap the boundary of the simula-
tion space should be also enough weak not to affect the sim-
ulation. Additionally, as shown in Fig. 2 (c), we can gather
the Split PMLs on one side in each dimension for efficient
blocking.

To summarize, by introducing the periodic boundary
condition, the number of the ABC blocks for each dimension
can be reduced from 2 to 1, and thus the number of padding
elements can also be reduced. Note that the number of cells
used for the Split PMLs is not changed by introducing the
periodicity.

6. Transformation of Update Equations of the Split
PML

6.1 Motivation

It is independent in terms of dimension if a cell is in an ABC
region or not. For example, there can be a cell that is in an
ABC region in dimension z but not in dimension y. For such
cells, we propose transformation of update equation of the
Split PML Eq. (6) to reduce the required memory size and
access amount at the cost of slight increase in the operation
count, considering that the simulation size is limited by the
available memory size on the GPU device.

6.2 Transformation

Given that a cell that is inside the normal space region in
dimension y, we get σy

[
j
]
= 0 and the following equation

Table 2 Comparison of memory access requirements of each update
equation for Ex. NON ABC shows the equation that both dimensions are
in the normal region, ORIGINAL shows the original equation of the Split
PML and TRANSFORMED shows the transformed equation, respectively.

NON ABC ORIGINAL TRANSFORMED

Read 5 6 6
Write 1 3 2
Total 6 9 8
Ratio 1 1.5 1.333
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by substituting σy
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]
= 0 to Eq. (6). From the definition of

subcomponents [13], we get
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By substituting Eq. (11) into Eq. (10), we get
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Comparing Eqs. (6) and (12), it is clear that we can reduce
the number of accesses to the subcomponent Exy as well as
the total memory usage. On the other hand, while origi-
nal Eq. (10) includes the intermediate term which can be
reused for En

xz
[
i, j, k

]
, the transformed Eq. (12) does not,

which means this techniques required one additional opera-
tion for each cell. In this sense, this transformation approach
is oriented for memory constrained devices like GPUs.

Table 2 shows the comparison of memory access of
update equations for Ex. Since the transformed equation
saves one write access compared to the original equation,
this technique can improve the performance for the region
that only one dimension is in the Split PML. We obtained a
total of 23 = 8 time-stepping equations for E by applying the
same transformation to Ey and Ez. In addition, we also got
similar 8 equations for H. Note that these transfomed equa-
tions are mathematically equivalent to the original ones, so
that simulation accuracy is not affected.

7. Performance Evaluation and Analysis

7.1 Running Example

We chose a stacked rectangular microstrip antenna (MSA)
with a shorting plate, which has been proposed for dual
band operation in [16], as a target of numerical calcula-
tion. MSAs are widely used in mobile communications due
to their lower profile, weight, and manufacturing costs, as
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Fig. 3 The geometry of a stacked rectangular MSA.

Fig. 4 Numbers that provided in parentheses show the number of blocks.
The color of each region shows the group of update equations and darker
colors show higher computational costs, that is floating point operations
and memory accesses. 10-cell thick PMLs are used for the boundaries of
each dimension. Since the block size is 32 in both x and z dimension, 22
padding cells are required for both Px and Pz. On the other hand, since the
block size is four in y dimension, three blocks are used for Py to cover the
10-cell thick PMLs, introducing two padding cells.

well as their compatibility with integrated circuit technolo-
gies. The MSA proposed in [16] radiates a linearly polarized
wave at the lower frequency band and a circularly polarized
wave at the higher frequency band.

Figure 3 shows the geometry of a stacked rectangular
MSA with a shorting plate. The antenna consists of a di-
electric substrate and a layer of air with a rectangular patch.
The upper and lower patches are the same size. The upper
patch is shorted to the lower patch at the apex by a con-
ducting plate. The relative dielectric constant the upper and
lower layer are εr1 = 1.0 and εr2 = 2.6. The antenna is ex-
cited at the lower patch by a coaxial feed through the lower
dielectric substrate at point which lays around the diagonal.

7.2 Modeling

Many work including ours have reported the block size has
a strong effect on the performance [7]. Although the best
size may depend on the presence or absence of each opti-
mization technique, we used the block size of (Bx, By, Bz) =
(32, 4, 32) based our primary evaluation results.

Figure 4 shows the initial simulation model that is
based on the MSA shown in Fig. 3 with 10 layers of the Split
PML. A total of (256×216×128) cells were used to make the
Non-Uniform grid, where 5 kinds of cell sizes were used;
1 mm to 0.1 mm. The size of the block is (32, 4, 32) as afore-
mentioned. S x, S y and S z in Fig. 4 show the number of cells
in each dimension and Px, Py and Pz are the number of cells
in each dimension of the ABC with padding.

Table 3 shows the number of blocks, the number of

Table 3 The number of block, cells and memory usage.

region # of blocks # of cells rate memory ratio

NON ABC 576 2,359,296 .333 54.0 MB .143
PML1 840 3,440,640 .486 236.3 MB .625
PML2 288 1,179,658 .167 81.0 MB .214
PML3 24 98,304 .014 6.8 MB .018

Total 1,728 7,077,888 1 378.1 MB 1

Table 4 Comparison of memory usage between the Non-Uniform grid
and Uniform grid in the running example.

# of cells memory usage

Uniform grid (1,120 × 1,100 × 224) + PML 13,584.6 MB
Non-Uniform grid (192 × 192 × 64) + PML 378.1 MB

Table 5 Execution time for the Non-Uniform grid and the Uniform grid.
Both methods processed the same number of cells. (256 × 212 × 128)

Execution time (sec)

Uniform 155.81
Non-Uniform 155.86

cells and memory usage for each region of the model. We
classified cells into the four categories according to presence
or absence of the ABC; all dimensions are not in the ABC
(NON ABC), any one of three dimensions is in the ABC
(PML1), any two of the three are in the ABC (PML2), and
all the dimensions are in the ABC (PML3). Approximately
67% of the cells including padding is in the ABC.

As an implementation platform, we used the GeForce
GTX 295, which has 30 Streaming Processors and 896 MB
GDDR3 memory per GPU core. While the GPU has two
GT200b GPU cores, we used only one GPU core in this
implementation. Single precision floating point operations
were utilized through the simulation.

7.3 Effect of Non-Uniform Grid

First, we evaluated the Non-Uniform Grid method in terms
of memory usage and execution time. Table 4 shows com-
parison results of the Global memory usage on the GPU.
We used the finest cells in the case of the Uniform Grid. Al-
though it depends on a simulation model how much memory
usage can be reduced, the reduction of 1/36 was achieved in
this running example.

Next, we evaluated the penalty of the Non-Uniform
grid. As already shown in Sect. 4.2, additional costs of us-
ing the Non-Uniform grid arisen from additional fetches
of CE2u[p] and CH2u[p] in non ABC regions. To evalu-
ate this penalty, we modified our implementation not to
fetch CE2u[p] and CH2u[p], and to use the constant values
of (Δt/ε0) and (Δt/μ0) instead of them. Table 5 shows the
result using the simulation model shown in Fig. 4. Note that
we focus only on revealing the performance difference here
and thus this modification does not preserve the simulation
results.
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The results show that the Non-Uniform grid degrades
the simulation performance per cell by about 0.03% due to
additional fetches of CE2u[p] and CH2u[p]. In view of the
1/36 reduction of required number of cells, our implemen-
tation approach of the Non-Uniform method is efficient for
for both reduction of memory usage and performance im-
provement.

7.4 The Periodic Boundary Condition with ABC

Figure 5 shows the simulation model with the periodic
boundary condition. Compared to the model shown in
Fig. 4, the number of blocks of ABC is smaller in all dimen-
sion. Table 6 shows the number of blocks, cells and mem-
ory usage. Clearly, the periodic boundary condition reduces
memory usage. Figs. 6 (a) and (b) illustrate the execution

Fig. 5 The simulation model with the periodic boundary condition to the
model shown in Fig. 5. Using the periodic boundary condition with ABC,
20 PML cells in total are assigned to Px and Pz, reducing the nubmer of
padding cells 22 to 12. In y dimension, five blocks are required for Py to
cover the 20 PML cells.

Table 6 The number of block, cells and memory usage with the Non-
Uniform grid and the periodic boundary condition.

region # of blocks # of cells ratio memory ratio

NON ABC 576 2,359,296 .518 54.0 MB .263
PML1 444 1,818,624 .399 124.9 MB .609
PML2 88 360,448 .079 24.8 MB .121
PML3 5 20,480 .004 1.4 MB .007

Total 1,033 4,558,848 1 205.1 MB 1

Fig. 6 Execution time of each implementation.

time of these models. By reducing cells for the ABCs, the
periodic ABC achieved 1.8 times faster performance than
the Non-Periodic ABC.

The periodic boundary condition significantly reduces
the computational region, thus both memory usage and com-
putational performance are improved. We concerned that
costly memory access with a long stride would decrease
the performance. However, as experiment results show, the
method enabled efficient implementation on a GPU.

7.5 Effect of Transformation

Table 7 shows the number of blocks, the number of cells
and memory usage after the transformation of the update
expressions. The transformation reduces memory usage of
PML1 and PML2 so that we only needs 70% of memory
usage in the case of the model shown in Table 6.

Figures 6 (b) and (c) summarize the performance com-
parison results for the transformation of the expression. In
the running example, the transformation of the Split PML
improved the execution performance by 8.9%.

7.6 Simulation Accuracy

In order to evaluate the simulation accuracy of our proposed
implementation techniques, we compared the characteristics
measured by the real antenna and our simulation results.

In analysis of antennas, radiation and feed point char-
acteristics are discussed generally. We calculated axial ra-
tio of a circularly polarized wave as radiation characteristic
and return loss as feed point characteristic at the higher fre-
quency band in the dual band MSA. Figures 7 and 8 show
the calculated axial ratio and return loss, respectively. The
measured results are also shown for comparison. The rel-
ative error of the frequency at the minimum axial ratio be-
tween the calculated and measured results is 0.5%. The cal-
culated and measured minimum axial ratio are 0.82 dB and
0.43 dB, respectively. In the return loss, the double peak-
ing behaviors are observed in both of the calculated and
measured results. The relative errors of the frequencies at
the two peaks between the calculated and measured results
are 0.3% and 0.7%. The calculated return losses at the two
peaks are −20.6 dB and −27.6 dB and the measured ones are
−19.6 dB and −26.9 dB. In both of the axial ratio and the re-
turn loss, the calculated results agree well with the measured
ones.

Table 7 The number of block, cells and percentage of total with the Non-
Uniform grid, the periodic boundary condition and transformation of up-
date equations.

region # of blocks # of cells ratio memory ratio

NON ABC 576 2,359,296 .518 54.0 MB .375
PML1 444 1,818,624 .399 69.4 MB .482
PML2 88 360,448 .079 19.3 MB .134
PML3 5 20,480 .004 1.4 MB .010

Total 1,033 4,558,848 1 144.1 MB 1
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Fig. 7 Comparison of minimum axial ratio between the calculated and
measured results. ‘measured’: Measured data from actual antenna. ‘pro-
posed’: Simulation results with our proposed method. ‘non periodic’: Sim-
ulation results with non-periodic ABC. ‘coarse grid #1’: Simulation results
with double sized cells. ‘coarse grid #2’: Simulation results with quadru-
ple sized cells. ‘double’: Simulation results with double precision floating
operations. Note that the two lines, ‘proposed’ and ‘double’, are almost
overlapped.

Fig. 8 Comparison of the return loss between the calculated and mea-
sured results. Note that the three lines, ‘proposed’, ‘non periodic’ and
‘double’, are almost overlapped.

First, in order to assess how periodic boundary condi-
tion affected the simulation accuracy, we also implemented
simulation code with the original non-periodic boundary
condition and compared the simulation results. As Figs. 7
and 8 show, slight differences were observed in the trends
of axial ratios, but the peak frequency found was identical.

Fig. 9 Required memory bandwidth for each part of the antenna model.
Bandwidth of MODEL, PML and PADDING are 33.4 GB/s, 29.0 GB/s and
16.5 GB/s, respectively.

On the other hand, the difference in the boundary condition
hardly affected the results in terms of the return loss.

Next, aiming at examining numerical error in the sim-
ulation, we compared our simulation results with two dif-
ferent grid models with coarse cells: cells with double size
(coarse grid #1) and cells with quadruple size (coarse grid
#2) in each dimension. That is, these coarse grid models
consist of 1/8 and 1/64 cells in total compared to the origi-
nal model, respectively. As Figs. 7 and 8 show, the finer the
cell size, the more accurate results were obtained for both
the axial ratios and the return losses, suggesting the reason-
ability of our simulation scheme.

Finally, we explored how arithmetic precision affected
the simulation accuracy, by executing the simulation with
double precision arithmetic. As shown in Figs. 7 and 8, al-
most no difference were observed between the simulation
results for the single precision and double precession; the
maximum relative error was less than 0.007%. This sug-
gests single precision arithmetic offers enough simulation
accuracy as far as our application field is concerned.

7.7 Memory Bandwidth

Next, we evaluated achieved memory bandwidth of our im-
plementation, since this often tends to become a perfor-
mance bottleneck for GPU implementation of stencil com-
putation. Our simulation model consists of three parts as
follows:

• MODEL: A main part including the MSA
• PML: The Split PML part
• PADDING: Padding part.

Figure 9 shows achieved memory bandwidth of whole ap-
plication and ratios of each part.

MODEL, PML and PADDING accounted 42.3%,
36.8% and 20.9% of the total achieved memory bandwidth,
respectively. These ratios differ a little from the ratios of the
number of cells shown in Table 7. This should come from
the fact that the process for PADDING cells is the same as
that of the PML cells, and that the PML needs 1.4∼1.9 times
greater memory access than the normal cells.

Compared with the peak memory bandwidth of the tar-
get GPU, our implementation achieved about 55.8% of the
peak bandwidth when the accesses for PADDING region are
not taken account. If we include PADDING accesses, the
achieved bandwidth becomes 70.5% of the peak. As far as
our knowledge goes, there is no other report of 3D-FDTD
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Table 8 Performance comparison with previous works. The peformance parameters are from an-
nounced values [17]–[20] unless otherwise noted. ∗Performance per GPU core. ∗∗Calculated by the
values shown in [12]. †Exact GPU model number is not mentioned in [10]. ‡Not reported in the litera-
ture.

Our Proposal Our Proposal (double) CPU [11] [12] [10]

GPU GeForce GTX295 GeForce GTX295 Core i7 920 Tesla C1060 ATI HD4850 ATI X800†
Peak Bandwidth (GB/s) 111.9∗ 111.9∗ 25.6 102 63.6∗∗ 28.8∼32

Size 192 × 192 × 64 192 × 192 × 64 182 × 186 × 69 204 × 145 × 499 180 × 180 × 180 160,000 points
ABC Split PML Split PML Split PML Split PML UPML CPML

10 layers 10 layers 10 layers 8 layers -‡ -‡
Grid Non-Uniform Non-Uniform Non-Uniform Uniform Uniform Uniform

Model MSA MSA MSA Human Body Vacuum Vacuum
Precision Single Double Single -‡ Single -‡

Throughput (Mpoints/s) 453 140 2.66 45 160 30
Throughput/Bandwidth

4.05 1.25 0.1 0.43 2.51 0.96∼1.04
(Mpoints/GB)

implementation with ABCs that achieves the same degree
of high memory bandwidth or efficiency for the practical
model. This suggests the effectiveness of our proposed tech-
niques.

7.8 Performance Comparison

Table 8 shows performance comparison with related works.
Note that Table 8 shows peak bandwidth for one of two GPU
cores on the GeForce GTX295 because we only used only
one GPU core. Perfect equalization of comparison condi-
tions is difficult of course, but we tried to be fair in choosing
comparison metrics. We compared the simulation through-
puts in million-point updates per second (Mpoints/s) and
the simulation throughputs per peak bandwidth in million-
point updates per giga bytes (Mpoints/GB) in order to allevi-
ate differences in the size of simulation models and utilized
GPU architectures. While ABC regions are excluded from
the model size, the execution time used for the throughput
calculation includes those of the ABC regions and Padding
regions. We also presented the performance for the dou-
ble precision version of our simulation code, since arith-
metic precision is not explicitly mentioned in the literature
for some comparison targets. Our implementation shows
good results for both metrics among the compared imple-
mentation, suggesting effectiveness of our implementation
approach for GPU architectures.

We also compared the performance with that of our
CPU-based implementation. While parallel processing with
multi-core, multi-thread and SIMD instructions were not
utilized in this implementation, the code was optimized
considering the cache structure. Table 8 shows the per-
formance of the GPU implementation achieved about 170
times throughput than the CPU implementation.

8. Conclusion

In this paper, we addressed the efficient implementation
of absorbing boundary conditions of 3D-FDTD method
for antenna designing on CUDA-compatible GPU. To re-
duce memory usage and to improve the simulation perfor-

mance, a Non-Uniform grid method and the periodic bound-
ary conditions were applied for Split PML implementation.
The transformation technique of update-equations for par-
tial ABC cells was also proposed. The empirical experiment
showed that the proposed methods almost doubled the sim-
ulation performance and eventually achieved the memory
bandwidth of 62.5 GB/s which corresponds to 55.8% of the
peak of the target GPU. Our interest future work includes
expansion of our method to treat dispersive materials which
requires more complex update-equations.
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