Chapter II

Diversity and function of aerobic culturable bacteria in the intestine of the sea cucumber *Holothuria leucospilota*

2.1 Introduction

Holothurians (~1430 species), or sea cucumbers are found on various sea floors from deep sea to intertidal areas (Foster and Hodgson, 1995; Kerr and Kim, 2001; Uthicke et al., 2009). Holothurians belong to the class Holothuroidea and their main diet is detritus such as organic matter, microalgae, and bacteria (Massin, 1982; Moriarty, 1982; Yingst, 1976), although there has never been a common understanding of how holothurians fulfill their dietary and energetic requirements.

Gut bacteria potentially play an important role in digestion of diets. However, there have been only a few reports on the microbiota in the digestive tract of sea cucumbers (Amaro et al., 2009, 2012, Ward-Rainey et al., 1996). Ward-Rainey et al. reported aerobic bacterial microbiota of *Holothuria atra*. In their report, only 23 isolates were identified by 16S rRNA gene sequences analysis and they were affiliated to the genera *Vibrio* and *Bacillus*. Amaro et al. used non-culturing methods to analyze bacterial community of an abyssal holothurian, *Molpadia musculus*. Their results suggested that the gut bacterial composition was similar to that of the organic matter-rich sediments. Members of the phylum Bacteroidetes dominated in the bacterial community (Amaro et al., 2009). Recently Amaro et al. also reported the occurrence of wide and highly diversified interactions between prokaryotes and deep-sea holothurians (Amaro et al., 2012). Enomoto et al. reported that Gammaproteobacteria members were mainly isolated as culturable bacteria from the intestine of the Japanese spiky sea cucumber *Apostichopus japonicus* (Enomoto et al., 2012). Using the molecular techniques, they

also found that Proteobacteria members were main metabolically active microbial populations in the intestine of *A. japonicus*.

In this report, I investigated the biological diversity and function of bacteria in the intestine of *Holothuria leucospilota*, a common sea cucumber in Japanese warm waters. I isolated 141 bacterial strains under aerobic conditions using media differing in salt concentration, pH, and carbon sources, and tested tolerance to anoxic conditions and heat treatment. Our data provide an insight into the symbiosis between the gut bacteria and the holothurian sea cucumbers.

2.2 Materials and Methods

Sample collection. H. leucospilota is a large, black sea cucumber species which is found throughout the tropical and subtropical Indo-Pacific region and it is a common sea cucumber in shallow waters of western Japan (Drumm and Loneragan, 2005; Matsuno and Ishida, 1961; Sloan, 1979). H. leucospilota (2 specimens) were collected at coastal waters of Ko-e cho, Nagasaki, Japan in April 24, 2009. Both samples were immediately transferred to our laboratory and the entire intestine was removed with sterile instruments. Whole intestine was excised from the animal body aseptically using sterilized instruments. To isolate bacteria from both intestinal wall and contents, the intact gut was crushed and mixed enough and the gut suspension thus obtained was used for isolation of bacteria. *Growth media*. Luria-Bertani medium (LB) and Horikoshi medium were used with slight modifications. LB solid medium (pH 7) contained 1% tryptone (Difco), 0.5% yeast extract (Difco), 3.5% NaCl, and 1.5% agar (Wako pure chemicals, Osaka, Japan). Horikoshi solid medium (pH 7) contained 1% polysaccharide, 0.5% peptone (BD), 0.5% yeast extract, 0.1% KH₂PO₄, 0.02% MgSO₄•7H₂O, 3.5% NaCl, and 2% agar. As polysaccharides, carboxymethyl cellulose sodium salt (CMC) (Wako pure chemicals, Osaka, Japan) and soluble starch (Nacalai tesque, Kyoto, Japan) were added to Horikoshi medium. Horikoshi medium with sodium alginate as a polysaccharide contained 2.5% agar.

High salt concentration or high pH were used for isolation conditions to isolate various bacteria because marine water is semi-alkaline pH and contains 3.5% NaCl. In total 13 different media were prepared by combination of pH (7 or ca. 10), NaCl concentration (3.5 or 10%) and polysaccharides (CMC, xylan, sodium alginate or starch) (Table 1). To adjust pH for alkaline condition, Na₂CO₃ (autoclaved separately) was added to neutral agar medium (final pH: pH10.3-10.5). Na₂CO₃ concentration of alkaline plate was 1%.

Isolation of bacteria. The gut suspension (50 µl) was directly plated on agar plates. The plates were incubated at 30 °C aerobically for two weeks to obtain slowly growing bacteria. Bacteria with different morphological colony (e.g. colony size, shape and color) were isolated from each plate, purified and stored in slants for further analysis.

Physiological and biochemical characteristics of isolates.

Polysaccharide degradation activities were detected by plate methods using CMC, xylan, alginate, starch or agar as substrate. The following plates were prepared for detection of enzyme activities. NaCl concentration (3.5 or 10%) and pH (7 or 10.3-10.5) were adjusted to the same condition in which each isolate originated.

1. Amylase detection: Horikoshi agar medium containing 1% potato starch instead of soluble starch was used for amylase detection. Amylase-producing colony showed turbid halo around a colony.

2. Agarase detection: Horikoshi agar medium without polysaccharide was used for agarase detection. Agarase-producing colony showed dent around a colony.

Cellulase detection: The agar medium for cellulase detection contained 0.1% CMC,
7% marine broth, 0.6% MgCl₂ • 6H₂O, 1.5% agar and 0.0015% congo-red. Clear zone around a colony suggested cellulase activity.

4. Alginate lyase detection: The agar medium for alginate lyase detection contained 1% sodium alginate, 0.07% KCl, 0.26% MgSO₄, 0.5% MgCl₂, 0.1% CaSO₄, 0.5% peptone, 0.01% ferric phosphate, 0.1% yeast extract and 2% agar. After two weeks' incubation at 30°C, 70% ethanol was filled into plates. A clear zone around the colony indicated the presence of alginate lyase.

All isolates were tested for salt tolerance: 0%, 3.5%, 10%, 15%, 20%, 25% NaCl (w/v), pH tolerance (pH7 and pH10) and effect of oxygen. Growth ability at various

conditions of salinity or pH was measured at 30° C for two weeks. The isolates were divided into two groups by effect of pH on growth, neutrophilic bacteria (NE) that grew only at pH7, and alkaliphilic bacteria (ALK) that grew both at pH 7 and pH10.

Anaerobic growth was examined using gaspak (COSMO BIO) at 30°C for two weeks, and then growth condition was changed to the aerobic condition at 30°C for two weeks. The isolates were assigned to three groups, facultative anaerobic bacteria (FA), anaerobic tolerant bacteria (AT) and aerobic bacteria (A). Facultative anaerobic bacteria form colony in both aerobic and anaerobic cultivation. Anaerobic tolerant bacteria do not form colony in anaerobic condition for two weeks but form colony in aerobic cultivation after the anaerobic cultivation. Aerobic bacteria do not form colony in anaerobic condition for two weeks and also do not form colony in aerobic cultivation after the anaerobic cultivation.

For thermal tolerance, all isolates were incubated on agar plates at 50°C for 72h aerobically, and then incubation condition was shifted down to 30°C for two weeks. Isolates that were able to form colony on agar plates at 50°C for 72h aerobically, were assigned as thermophiles (TO). Isolates that were not able to form colony on agar plates at 50°C for 72h aerobically but were able to form colony at 30°C incubation after the 50°C incubation, were assigned as thermo-tolerant bacteria (TT). Isolates that were not able to form colony on agar plates at 50°C for 72h aerobically and also were not able to form colony at 30°C incubation after the 50°C incubation agar plates at 50°C for 72h aerobically and also were not able to form colony at 30°C incubation after the 50°C for 72h aerobically and also were not able to form colony at 30°C incubation after the 50°C incubation, were assigned as thermo-tolerant bacteria (TT).

Molecular identification of the isolates. Partial analysis of 16S ribosomal RNA (rRNA) gene of the isolates was carried out. The 16S rRNA gene was amplified using bacterial primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-GGTTACCTTGTTACGACTT-3') and the purified PCR product was sequenced with dideoxynucleotide chain-termination method using 3130 or 3730 DNA sequencer (Applied Biosystems). Primers 27F, 520R (5'-ACCGCGGCTGCTGGC-3') and 907R (5'-CCGTCAATTCMTTTRAGTTT-3') were used in gene sequencing reactions. Sequences of the partial 16S rRNA genes were assembled and edited using Sequencher (version 4.10.1 demo, Gene Codes Corporation) and MacVector (version 10.0.2). Nucleotide sequences of the partial 16S rRNA genes have been submitted to GenBank/EMBL/DDBJ databases under accession numbers AB719059 through AB719199 (Supplementary Table 1; see JGAM Web site).

The partial 16S rRNA gene sequences were compared with other sequences in DDBJ database using BLAST program and compared with type strain sequences in Ribosomal database project (RDP). When an isolate showed \geq 97% identity with a certain type strain, the isolate was assigned to the species. When an isolate showed <97% identity with any type strain sequences, the isolate was assigned to the tentative species.

2.3 Results

Isolation of bacteria

The gut suspensions from two specimens were directly plated on agar plates and 13 isolation media were used. Table 1 summarized number of the isolates obtained under different cultural conditions. The total weights of intestine and intestinal contents were 24.3 g and 26.8 g for specimen ① and ②, respectively. Number of colony forming units (cfu) per g of gut suspension in specimen ① and ② were 3.1×10^4 cfu/g and 2.2×10^4 cfu/g in LB medium, respectively. Total cfu of gut suspension in specimen ① and ② were 7.5×10^5 cfu and 5.9×10^5 cfu in LB medium, respectively. Numbers of cfu varied in the range of 1.4×10^4 to 3.2×10^4 cfu/g in Horikoshi media (pH7, 3.5%NaCl) and 1.6×10^2 to 1.2×10^3 cfu/g in the alkaline Horikoshi media (ca. pH10.3, 3.5%NaCl). I obtained 77 isolates from the specimen ① and 32 for the specimen ③. In total, 141 isolates were purified and analyzed further.

Phylogenic analysis of bacterial isolates

The partial 16S rRNA gene sequences of 141 isolates were determined and compared with the type strain sequences. Table 2 and Table 3 summarized the species/the tentative species of the isolates as determined via BLAST (Supplementary Table 1 ; JGAM Web site). The isolates were tentatively affiliated with 55 described species in the phyla Firmicutes, Proteobacteria, and Actinobacteria (Table 2 and 3). The isolates from the specimen ① and ② were affiliated to 44 and 34 species, respectively. High diversity was observed in the genera *Bacillus* and *Vibrio* among all isolates of specimen ① and ②. In total, the 23 species of isolates were found in both specimens and 9 species belonged with the genus *Bacillus* and other 9 species belonged

with the genus Vibrio.

The isolates affiliated to *Bacillus lehensis* were frequently observed in specimen (1) (11 isolates) and (2) (9 isolates). These isolates originated from alkaline plates varied with polysaccharides and/or NaCl concentration. Among 20 isolates, 19 isolates showed more than 99% sequence identity with the type strain of *B. lehensis* and 14 isolates shared 100% sequence identity with each other. The isolates affiliated to *Vibrio harveyi* were another major group. I obtained 11 isolates affiliated to *V. harveyi* from specimen (1) and (2). All these isolates showed more than 99% sequence identity with each other.

I also found that 7 isolates (isolate no. C079, C088, C093, C116, C117, C125 and C140) showed less than 97% identities with any type strain sequences. These isolates were assigned to the tentative species. (strains marked with asterisk in Supplementary Table 1; see JGAM Web site). Among the 7 isolates, I found 4 tentative species defined with \geq 97% sequence identity. The isolates classified into the same tentative species shared nearly 100% sequence identity with each other. The 4 tentative species shared 89-96% sequence identity with described species. It is worth noting that almost all (6 out of 7) isolates were obtained from alkaline agar plates (pH 10.3-10.5).

Polysaccharide degradation ability of isolates

Many isolates from both samples showed polysaccharides degradation ability and degraded one or more substrates (S, CMC, AL, XL or Agar). Among the 55 isolated species, 29, 12, 24, 5, and 4 species showed activities of amylase, cellulase, alginate

lyase, xylanase and agarase, respectively (Fig.1, Supplementary Table 1; see JGAM Web site).

Amylase-producing isolates were mainly affiliated with the genera *Vibrio* (12 species) and *Bacillus* (9 species). Most cellulase positive isolates were affiliated to the genus *Bacillus* (8 species). Half of the isolates producing alginate-lyase were affiliated with the genus *Vibrio* (12 species), especially the harveyi and splendidus clades. Several isolates producing alginate-lyase were affiliated with the genus *Bacillus* (7 species). All isolates producing xylanase were most closely related to the genera *Bacillus* (4 species) and *Gracilibacillus*. A few agarase-producing isolates were closely related to the genera *Vibrio*, *Photobacterium* and *Shewanella*.

There were 5 species showing both amylase and cellulase activities, among them 4 species were affiliated with the genus *Bacillus*. I found 13 species showed both amylase and alginate lyase activities and most were affiliated with the genus *Vibrio*. On the other hand, 21 species had no polysaccharide degradation abilities.

Physiological characteristics of the isolates

Fig. 2 and Supplementary Table 1 (JGAM Web site) show the effect of anaerobic condition on growth of the isolates. The isolates were divided into three groups, facultative anaerobic bacteria (FA), anaerobic tolerant bacteria (AT) and aerobic bacteria (A). The members of FA (23 species) were mainly affiliated with the phylum Proteobacteria and most of them belonged to the harveyi clade of the genus *Vibrio*. The members of AT (24 species) were affiliated to the genus *Bacillus* in the order Bacillales, the phylum Firmicutes.

The anaerobic cultivation for 2 weeks revealed that 17 species were aerobic bacteria. It appears that the average time for detritus to stay in the intestine of holothurian is several days. Therefore, all aerobic isolates (A species) were subject to anaerobic cultivation for 2 days. The aerobic strains did not form colony in anaerobic condition for 2 days, but they were able to form colony in aerobic cultivation after the 2 days anaerobic cultivation.

Salinity tolerance of the isolates was examined (Fig. 3, and Supplementary Table 1; JGAM Web site). The isolates affiliated to Halobacillus trueperi, Geomicrobium halophilum and Bacillus hwajinpoensis showed the highest tolerance (25 % NaCl) and some strains were able to grow in absent of NaCl. I found 12 species were halophilic (20-25% NaCl conc.) and among them, 11 species were affiliated to the genera Bacillus, Halobacillus, Virgibacillus and Geomicrobium in the phylum Firmicutes. I found 35 species were moderate halophilic (10-15% NaCl) group, mainly consisting of Bacillus (16 specise) and Vibrio (7 species). Slight halophiles (3.5% NaCl) were 23 species, which were affiliated to the genera Vibrio, Photobacterium, Ruegeria, Pseudoalteromonas, Shewanella and Bacillus. It appears that the species belonging to the phylum Firmicutes are more salt-tolerant than those belonging to the phylum Proteobacteria (Fig. 3).

All isolates were examined for growth responses to pH shift (pH7 \rightarrow pH10 or pH10 \rightarrow pH7). All alkaliphilic strains isolated from alkali medium were able to grow at pH 7, while only half of strains isolated from pH 7 were able to grow at pH 10. Neutrophilic species (NE) defined as isolates growing only at pH7 were 26 species,

including 10 species affiliated with the genus *Vibrio*. Members of alkaliphiles were 38 species affiliated with the phyla Firmicutes, Proteobacteria and Actinobacteria. The main genera of alkaliphiles were *Bacillus* and *Vibrio*.

2.4 Discussion

In this report, I isolated various aerobic bacteria from the gut of *H. leucospilota* using different culture conditions. By molecular identification using 16S rRNA gene sequences, the majority of isolates were affiliated to the phyla Firmicutes and Proteobacteria. High diversity of the species was observed in the genera *Bacillus* and *Vibrio* that were often found in marine sediments, marine animals and other various environments. In total, 23 species of isolates were common in 2 individuals of *H. leucospilota* and 9 species belonged to the genus *Bacillus* while another 9 species belonged to the genus *Vibrio* (Table 2 and Table 3). These results suggested that the intestine of holothurians was one of the suitable habitats for these bacteria.

Detritus is composed of organic materials, which are the nutrient source for detritus feeders (Hagen et al., 2012). The majorities comprise recalcitrant polysaccharides, which in many cases can be degraded only by microorganisms. Therefore, I analyzed polysaccharide degradation of the isolates. I found that many isolates showed various polysaccharide degradation activities. High diversity was observed in starch degradation isolates, suggesting the stock of starch in detritus, for example algae. The facultative anaerobic isolates were mainly affiliated to the genus *Vibrio* and they degraded starch, alginate and agar. The anaerobic-tolerant isolates were mainly affiliated to the genus *Bacillus* and they degraded starch, CMC and xylan.

I found that the isolates were divided into facultative anaerobic, anaerobic tolerant and aerobic bacteria by means of 2-week anaerobic cultivation. I also examined the effect of 2-day anaerobic condition simulating the digestive process of holothurian and I found that the isolates classified into aerobic bacteria were able to form colonies in aerobic cultivation after 2-day anaerobic condition. These results suggested that the aerobic isolates were potentially tolerant for anaerobic condition in the intestine of holothurians. On the other hand, all 62 anaerobic tolerant (AT) isolates were examined for heat tolerance because most of AT isolates belonged to the phylum Firmicutes and had ability to form spores. More than 60 % of AT isolates showed non-heat tolerance, suggesting that spore formation was not always the reason for anaerobic tolerance.

Oxygen will enter from the mouth with the detritus food and also some amount can penetrate from the body tissues. Some regions in the intestine can contain more or less oxygen, and these aerobic bacteria can play a role in the gut symbiotic system. My results suggested that in the intestine, the majority of isolates could provide degrading enzymes and/or metabolites (fermentation products) useful for their host.

Recently, Amaro et al. also found that ca. 82 % of total bacterial OTUs (Operational Taxonomic Unit) were common between the gut contents and the surrounding sediments (Amaro et al., 2012). Fig. 4 shows one model for the facultative symbiotic association among host holothurian, the aerobic bacteria and the bacteria unique to the intestine of holothurian. In marine ecosystem, aerobic bacterial

19

degradation of detritus occurs in the seabed and the holothurian ingested the detritus with the aerobic bacteria. As mentioned above, the aerobic bacteria and the bacteria unique to the intestine produce metabolites useful for their host. Several days later, the detritus with the aerobic bacteria is excreted to the seabed again. The present study suggests the facultative symbiotic association among host holothurian, the aerobic bacteria and the bacteria unique to the intestine.

I found 7 isolates showing less than 96% identities with any type strain sequences and 6 of these isolates were obtained from alkaline plates and 10% NaCl. These results suggested that the intestines of holothurians were new resources for new species.

2.5 Summary

Sea cucumbers play an important role in nutrient cycling of marine ecosystems by consuming sediments and moving sand, thus occupying a similar niche of earthworms in terrestrial ecosystems. However, our understanding of microbial diversity and functions associated with sea cucumbers is meager. Here, I isolated 141 bacterial strains in aerobic condition using various media from the intestine of *Holothuria leucospilota*, a common sea cucumber in Japanese warm waters. By partial 16S rRNA gene sequences of the isolates, the isolates were tentatively affiliated with 55 described species. Among them, 23 species were common between 2 individuals of *H. leucospilota*. High diversity was observed in the genera *Bacillus* and *Vibrio* that were often found in marine sediments, marine animals and other various environments. Most

isolates showed various polysaccharide degradation activities and were able to grow or were tolerant under anaerobic condition. I suggest that these aerobically isolated bacteria can play a role in digestion of detritus in aerobic and/or anaerobic regions of the intestine.

			Spec	cimen	Subtotal	Degrading activities on polysaccharides					Require		num Na for	pH tolerance						
pН	Medium	Salinity	1	2		S	CMC	AL	XL	Agar	FA	AT	Α	3.5%	10%	15%	20%	25%	NE	ALK
	LB	3.5%	11	10		18	-	9	1	2	18	2	1	11	9	-	1	-	12	9
	CMC	3.5%	10	7		10	-	4	-	-	12	2	3	4	11	2	-	-	3	14
	S	10%	2	3		1	-	-	-	-	2	2	1	-	1	2	1	1	_	5
pH 7	AL	10%	7	1		4	-	-	-	-	2	3	3	_	3	2	3	-	5	3
	VI	3.5%	16	14		15	-	8	5	1	18	8	4	13	13	3	1	-	11	19
	XL	10%	5	5		5	-	2	1	-	-	8	2	-	3	5	-	2	7	3
	subtotal	- -	51	40	91	53	0	23	7	3	52	25	14	28	40	14	6	3	38	53
	CMC	3.5%	8	5		5	10	1	-	1	2	9	2	5	5	1	1	1	-	13
	<u> </u>	3.5%	4	5		3	5	4	-	_	4	5	-	3	6	_	-	-	_	9
	S	10%	1	3		2	2	-	-	-	-	4	-	-	-	-	4	-	_	4
H 10	A 1	3.5%	6	6		8	10	6	1	1	-	10	2	5	6	1	-	-	_	12
	AL	10%	4	0		2	2	3	-	-	-	2	2	-	-	4	-	-	_	4
	VI	3.5%	2	2		3	2	-	-	-	-	4	-	-	4	-	-	-	_	4
	XL	10%	1	3		2	4	-	-	-	_	3	1	-	4	-	-	-	_	4
subtotal		26	24	50	25	35	14	1	2	6	37	7	13	25	6	5	1	0	50	
	Total		77	64	141	78	35	37	8	5	58	62	21	41	65	20	11	4	38	103

Abbreviations: S, starch; CMC, carboxymethyl cellulose sodium salt; AL, alginate; XL, xylan; FA, facultative anaerobic bacteria; AT, anaerobic tolerant bacteria; A, aerobic bacteria; NE, neutrophilic bacteria; ALK, alkaliphilic bacteria.

	0	Number of succession	Consider (Association and size	Number o
Phylum/Class	Genus/Clade	Number of species	Species/tentative species	isolates
irmicutes	Bacillus	14	aerophilus/stratosphericus	1
			aquimaris	1
			clarkii	1
			clausii*	1
			horneckiae*	2
			hunanensis*	1
			lehensis*	11
			marisflavi*	3
			megaterium	1
			murimartini	1
			oshimensis*	1
			patagoniensis*	2
			plakortidis*	1
			pumilus	1
			stratosphericus*	1
	Geomicrobium	1	halophilum	3 (2)
	Gracilibacillus	2	dipsosauri	2
			ureilyticus	2(1)
	Halobacillus	2	salinus	1
			trueperi*	1
	Oceanobacillus	2	iheyensis	1
			profundus*	1
	Staphylococcus	1	haemolyticus*	1
	Virgibacillus	1	dokdonensis*	4
	subtotal	23		45
Proteobacteria				
Alphaproteobacteria	Ruegeria	1	lacuscaerulensis	2
Gammaproteobacteria	Halomonas	1	denitrificans	1
aaninaproceobaocena	Photobacterium	1	rosenbergii*	1
	Pseudoalteromonas	3	tetraodonis	1
		0	mariniglutinosa	1
			prydzensis	1
			pryuzensis	
	Vibrio	13 7)	- I rin - h rtin - + +	3
	harveyi clade	1)	alginolyticus*	
	harveyi clade		alginolyticus/harvey/communis	2
	harveyi clade		azureus*	
	harveyi clade		communis*	3
	harveyi clade		harveyi*	5
	harveyi clade		natriegens*	1
	harveyi clade		owensii*	1
	harveyi clade		rotiferianus*	1
	orientalis clade	1)	brasiliensis	1
	halioticoli clade	1)	ezurae	1
	splendidus clade	3)	gallaecicus	1(1)
	splendidus clade		gigantis*	1
	splendidus clade		tasmaniensis	1
	· · ·	1)	mediterranei*	1
	subtotal	19		30
	Nocardiopsis	1	salina	1
octinobacteria				
ctinobacteria	Paraoerskovia	1 2	marina	1 2

The boldface with brackets means the low identities (less than 97 %).* indicates the species found in two specimens. The display of more than one species in the column of species indicates the isolates showed the same identity with more than one type strain species.

Phylum/Class	Genus/Clade	Number of species	Species/tentative species	Number of isolates
Firmicutes	Bacillus	14	altitudinis	1
			clausii*	3
			gibsonii	2
			horneckiae*	3
			hunanensis*	2(1)
			hwajinpoensis	1
			lehensis*	9
			marisflavi*	1
			oshimensis*	1
			patagoniensis*	2(1)
			plakortidis*	1
			polygoni	1
			vietnamensis	1
			stratosphericus*	1
	Halobacillus	1	trueperi*	1
	Oceanobacillus	1	profundus*	1
	Sporosarcina	1	ureae	1(1)
	Staphylococcus	2	haemolyticus*	1
	Clapityloooodda	L	warneri	1
	Virgibacillus	1	dokdonensis*	1
	subtotal	20	uokuonensis+	35
Proteobacteria	Subtotal	20		00
	Dhatahaatani	1		0
Gammaproteobacteria	Photobacterium Shewanella	1	rosenbergii*	2
	Sriewariella	I	gaetbuli	
	Vibrio	11		
			- l-in - l-timeste	0
	harveyi clade	8)	alginolyticus*	2
	harveyi clade		alginolyticus/harveyi/communis	
	harveyi clade		azureus*	1
	harveyi clade		communis*	2
	harveyi clade		harveyi*	6
	harveyi clade		natriegens*	1
	harveyi clade		natriegens/alginolyticus	1
	harveyi clade		owensii*	2
	harveyi clade		parahaemolyticus	1
	harveyi clade		rotiferianus*	2
	splendidus clade	1)	gigantis/crassostreae	1
			pomeroyi/gigantis	1
			gigantis*	1
		1)	mediterranei*	2
		1)	neptunius	1
	subtotal	13		28
Actinobacteria	Micrococcus	1	luteus	1
	subtotal	1		1
	total	34		64

The boldface with brackets means the low identities (less than 97 %). * indicates the species found in two specimens. The display of more than one species in the column of species indicates isolates showed the same identity with more than one type strain species.

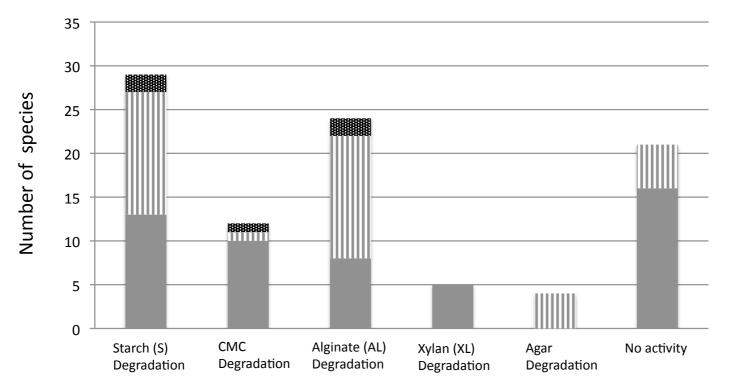


Fig.1 Number of the species of isolates degrading various polysaccharides

The species were divided into three groups: the phylum Firmicutes (black box), the phylum Proteobacteria (vertical stripes box) and the phylum Actinobacteria (dotted box). Fig.1 was summarized from Supplementary Table 1.

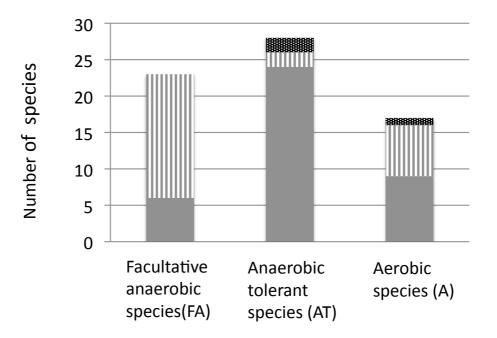


Fig.2 Number of the species of isolates classified by effect of oxygen on the growth

The species were divided into three groups: the phylum Firmicutes (black box), the phylum Proteobacteria (vertical stripes box) and the phylum Actinobacteria (dotted box). Fig.2 was summarized from Supplementary Table 1.

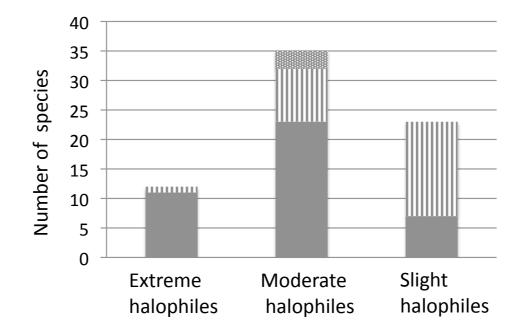


Fig. 3 Number of the species of isolates classified by effect of NaCl concentration on the growth

The species were divided into three groups: the phylum Firmicutes (black box), the phylum Proteobacteria (vertical stripes box) and the phylum Actinobacteria (dotted box).

Slight halophiles (SH): maximum concentration for growth is 3.5 % NaCl, moderate halophiles (MH): maximum concentration for growth is 10-15 % NaCl, extreme halophiles (EH): maximum concentration for growth is more than 20 % NaCl. Fig.3 was summarized from Supplementary Table 1.

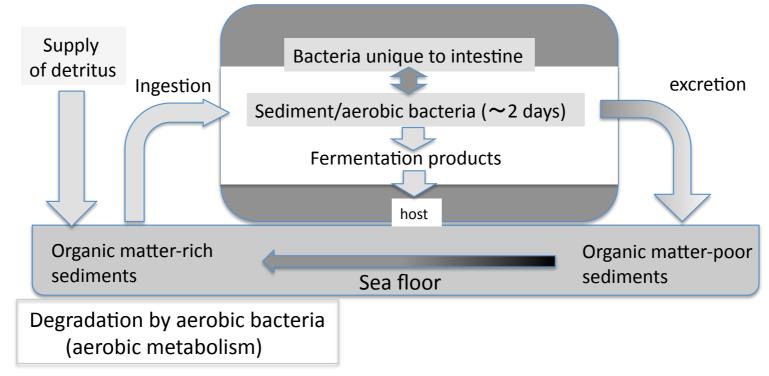


Fig.4 Model for the facultative symbiotic association between host holothurian, aerobic bacteria and the bacteria unique to the intestine of *H. leucospilota*.

			· ·		Accession No. of			Degrad	ding act	ivitie	es	Requirement of	Maximum NaCl concentration	Thermal	pH	phylum
isolate No.	Accession No.	Medium	Specimen	species / tentative species	type strain	Idenities	s	СМС	AL >		Agar	oxygen	for growth	tolerance	tolerance	
C001	AB719059	LB(pH7, 3.5%)	1	Vibrio alginolyticus	X56576	594/598 (99%)	+	-		-	-	FA	10	N	ALK	Proteobacter
C002	AB719060	LB(pH7, 3.5%)	1	Vibrio tasmaniensis	AJ316192	767/772 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacter
C003	AB719061	LB(pH7, 3.5%)	1	Bacillus horneckiae	EU861362	628/628 (100%)	-	-		-	-	Α	3.5	TT	ALK	Firmicutes
C004	AB719062	LB(pH7, 3.5%)	1	Vibrio natriegens	X74714	775/778 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacter
C005	AB719063	LB(pH7, 3.5%)	1	Bacillus horneckiae	EU861362	609/609 (100%)	-	-		-	-	FA	3.5	TT	ALK	Firmicutes
C006	AB719064	LB(pH7, 3.5%)	1	Vibrio brasiliensis	AJ316172	586/599 (97%)	+	-		-	+	FA	3.5	N	ALK	Proteobacte
C007	AB719065	LB(pH7, 3.5%)	1	Bacillus stratosphericus	AJ831841	550/552 (99%)	-	-		+	-	FA	20	то	ALK	Firmicutes
C008	AB719066	LB(pH7, 3.5%)	2	Vibrio harveyi	AY750575	753/760 (99%)	+	-		-	-	FA	10	N	NE	Proteobacte
C009	AB719067	LB(pH7, 3.5%)	2	Vibrio pomeroyi/ Vibrio gigantis	AJ491290/ EF094888	787/793 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacte
C011	AB719068	LB(pH7, 3.5%)	2	Photobacterium rosenbergii	AJ842344	639/643 (99%)	+	-		-	+	FA	3.5	N	NE	Proteobacte
C012	AB719069	LB(pH7, 3.5%)	1	Vibrio harveyi	AY750575	563/569 (98%)	+	-		-	-	FA	10	N	NE	Proteobacte
C013	AB719070	LB(pH7, 3.5%)	1	Vibrio rotiferianus	AJ316187	791/795 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacte
C014	AB719071	LB(pH7, 3.5%)	1	Vibrio harveyi	AY750575	515/521 (98%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C015	AB719072	LB(pH7, 3.5%)	1	Vibrio harveyi	AY750575	580/586 (98%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C016	AB719073	LB(pH7, 3.5%)	2	Vibrio rotiferianus	AJ316187	788/793 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacte
C017	AB719074	LB(pH7, 3.5%)	2	Vibrio harveyi	AY750575	546/552 (98%)	+	-		-	-	FA	10	N	NE	Proteobacte
C018	AB719075	LB(pH7, 3.5%)	2	Vibrio alginolyticus	X56576	760/768 (98%), Gaps = 3/768 (0%)	+	-	+	- 1	-	FA	10	N	NE	Proteobacte
C019	AB719076	LB(pH7, 3.5%)	2	Micrococcus luteus	AJ536198	634/646 (98%)	+	-		-	-	AT	10	N	ALK	Actinobacte
C021	AB719077	LB(pH7, 3.5%)	2	Vibrio neptunius	AJ316171	823/837 (98%)	+	-	+	-	-	FA	3.5	N	NE	Proteobact
C022	AB719078	LB(pH7, 3.5%)	2	Bacillus clausii	X76440	589/590 (99%)	+	-		-	-	AT	10	то	ALK	Firmicute
C022	AB719079	LB(pH7, 3.5%)	2	Vibrio gigantis	EF094888	792/793 (99%)	+	-	+	_	-	FA	3.5	N	NE	Proteobacte
C024	AB719080	CMC(pH7, 3.5%)	1	Vibrio harveyi	AY750575	642/648 (99%)	+	-		_	-	FA	10	N	ALK	Proteobacte
C025	AB719081	CMC(pH7, 3.5%)	0	Ruegeria lacuscaerulensis	U77644	734/753 (97%)	-	-		_	-	A	3.5	N	NE	Proteobacte
C026	AB719082	CMC(pH7, 3.5%)	0	Vibrio ezurae	AY426980	755/760 (99%)	-	_		_	-	A	3.5	N	NE	Proteobacte
C027	AB719083	CMC(pH7, 3.5%)	2	Vibrio harveyi	AY750575	610/616 (99%)	+	_		_	-	FA	10	N	ALK	Proteobacte
C027	AB719083 AB719084	CMC(pH7, 3.5%) CMC(pH7, 3.5%)	2	Vibrio narveyi Vibrio alginolyticus/ Vibrio harveyi/ Vibrio communis	X56576/ AY750575/ GU078672	497/497 (100%)	+	-		_	_	FA	10	N	ALK	Proteobacte
C028			1		AB428897		+	-		_	_	FA	10	N		
	AB719085	CMC(pH7, 3.5%)	0	Vibrio azureus		728/736 (98%)	-	-		-	_				ALK	Proteobacte
C031	AB719086	CMC(pH7, 3.5%)	0	Pseudoalteromonas prydzensis	U85855	758/772 (98%)	-	-		-	-	A	10	N	NE	Proteobacte
C032	AB719087	CMC(pH7, 3.5%)		Virgibacillus dokdonensis	AY822043	804/805 (99%)	-	-				FA	15	TT	ALK	Firmicute
C034	AB719088	CMC(pH7, 3.5%)	1	Virgibacillus dokdonensis	AY822043	819/820 (99%)				-	-	AT	15		ALK	Firmicutes
C036	AB719089	CMC(pH7, 3.5%)	1	Bacillus clausii	X76440	383/390 (98%)	-	-		-	-	AT	10	то	ALK	Firmicute
C037	AB719090	CMC(pH7, 3.5%)	1	Vibrio communis	GU078672	768/771 (99%)	+	-		-	-	FA	3.5	N	ALK	Proteobacte
C038	AB719091	CMC(pH7, 3.5%)	1	Virgibacillus dokdonensis	AY822043	592/604 (98%)	-	-		-	-	FA	10	TT	ALK	Firmicute
C039	AB719092	CMC(pH7, 3.5%)	2	Vibrio communis	GU078672	764/767 (99%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C040	AB719093	CMC(pH7, 3.5%)	2	Vibrio harveyi	AY750575	778/785 (99%)	+	-		-	-	FA	3.5	N	ALK	Proteobacte
C041	AB719094	CMC(pH7, 3.5%)	2	Vibrio alginolyticus	X56576	608/608 (100%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C042	AB719095	CMC(pH7, 3.5%)	2	Vibrio owensii	GU018180	758/761 (99%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C043	AB719096	CMC(pH7, 3.5%)	2	Vibrio harveyi	AY750575	598/603 (99%)	+	-		-	-	FA	10	N	ALK	Proteobacte
C044	AB719097	CMC(pH10,3.5 %)	1	Bacillus lehensis	AY793550	590/591 (99%)	+	+		-	-	AT	10	TT	ALK	Firmicute
C045	AB719098	CMC(pH10,3.5 %)	1	Oceanobacillus iheyensis	AB010863	831/846 (98%), Gaps = 1/846 (0%)	-	+		-	-	AT	20	TT	ALK	Firmicute
C046	AB719099	CMC(pH10,3.5 %)	2	Bacillus lehensis	AY793550	780/783 (99%)	+	+		-	-	AT	10	N	ALK	Firmicute
C047	AB719100	CMC(pH10,3.5 %)	1	Bacillus lehensis	AY793550	805/808 (99%)	+	+		-	-	AT	10	TT	ALK	Firmicute
C048	AB719101	CMC(pH10,3.5 %)	1	Bacillus murimartini	AJ316316	820/826 (99%)	-	-		-	-	Α	3.5	N	ALK	Firmicute
C049	AB719102	CMC(pH10,3.5 %)	1	Bacillus patagoniensis	AY258614	833/838 (99%)	-	+		-	-	AT	3.5	TT	ALK	Firmicutes
C050	AB719103	CMC(pH10,3.5 %)	-	Geomicrobium halophilum	AB449106	457/467 (97%)	-	-		-	-	AT	25	TT	ALK	Firmicute

			-				1.1				1					
C051	AB719104	CMC(pH10,3.5 %)	1	Gracilibacillus ureilyticus	EU709020	771/791 (97%)	+	-	-	-	-	AT	10	TT	ALK	Firmicutes
C052	AB719105	CMC(pH10,3.5 %)	1	Bacillus patagoniensis	AY258614	816/820 (99%)	-	+	-	-	-	AT	10	N	ALK	Firmicutes
C053	AB719106	CMC(pH10,3.5 %)	2	Bacillus lehensis	AY793550	677/678 (99%)	+	+	-	-	-	AT	3.5	N	ALK	Firmicutes
C054	AB719107	CMC(pH10,3.5 %)	2	Vibrio mediterranei	X74710	776/779 (99%)	-	+	-	-	-	FA	3.5	N	ALK	Proteobacteria
C055	AB719108	CMC(pH10,3.5 %)	2	Vibrio mediterranei	X74710	757/771 (98%)	-	+	+	-	+	FA	3.5	N	ALK	Proteobacteria
C056	AB719109	CMC(pH10,3.5 %)	2	Bacillus gibsonii	X76446	797/801 (99%)	-	+	-	-	-	A	15	N	ALK	Firmicutes
C059	AB719110	S(pH7,10 %)	1	Staphylococcus haemolyticus	X66100	761/763 (99%)	-	-	-	-	-	FA	20	N	ALK	Firmicutes
C061	AB719111	S(pH7,10 %)	1	Halobacillus trueperi	AJ310149	841/844 (99%)	-	-	-	-	-	AT	20	N	ALK	Firmicutes
C064	AB719112	S(pH7,10 %)	2	Staphylococcus warneri	L37603	829/829 (100%)	-	-	-	-	-	FA	15	N	ALK	Firmicutes
C065	AB719113	S(pH7,10 %)	2	Bacillus vietnamensis	AB099708	578/578 (100%)	+	-	-	-	-	AT	15	N	ALK	Firmicutes
C066	AB719114	S(pH7,10 %)	2	Vibrio owensii	GU018180	569/573 (99%)	-	-	-	-	-	A	10	N	ALK	Proteobacteria
C077	AB719115	S(pH10,3.5 %)	1	Bacillus lehensis	AY793550	520/524 (99%)	+	+	-	-	-	AT	10	TT	ALK	Firmicutes
C078	AB719116	S(pH10,3.5 %)	1	Photobacterium rosenbergii	AJ842344	764/767 (99%)	-	-	+	-	-	FA	3.5	N	ALK	Proteobacteria
C079	AB719117	S(pH10,3.5 %)	1	Vibrio gallaecicus	EU541605	734/759 (96%) *	-	-	+	-	-	FA	3.5	N	ALK	Proteobacteria
C080	AB719118	S(pH10,3.5 %)	2	Bacillus patagoniensis	AY258614	518/521 (99%)	-	+	+	-	-	AT	10	N	ALK	Firmicutes
C082	AB719119	S(pH10,3.5 %)	2	Photobacterium rosenbergii	AJ842344	445/449 (99%)	-	-	+	-	-	FA	3.5	N	ALK	Proteobacteria
C083	AB719120	S(pH10,3.5 %)	1	Bacillus oshimensis	AB188090	419/423 (99%)	-	+	-	-	-	AT	10	N	ALK	Firmicutes
C086	AB719121	S(pH10,3.5 %)	2	Bacillus lehensis	AY793550	551/555 (99%)	-	+	-	-	-	AT	10	N	ALK	Firmicutes
C087	AB719122	S(pH10,3.5 %)	2	Bacillus clausii	X76440	441/449 (98%)	+	-	-	-	-	FA	10	то	ALK	Firmicutes
C088	AB719123	S(pH10,3.5 %)	2	Bacillus hunanensis	HM054473	793/819 (96%), Gaps = 2/819 (0%) *	+	+	-	_	-	AT	10	N	ALK	Firmicutes
C090	AB719124	S(pH10,10 %)	2	Bacillus lehensis	AY793550	438/443 (98%), Gaps = 1/443 (0%)	+	-	-	-	-	AT	20	N	ALK	Firmicutes
C091	AB719125	S(pH10,10 %)	1	Bacillus lehensis	AY793550	522/525 (99%)	-	+	-	-	-	AT	20	N	ALK	Firmicutes
C092	AB719126	S(pH10,10 %)	2	Bacillus oshimensis	AB188090	668/668 (100%)	+	-	-	-	-	AT	20	N	ALK	Firmicutes
C093	AB719127	S(pH10,10 %)	2	Sporosarcina ureae	AF202057	467/521 (89%), Gaps = 1/521 (0%) *	-	+	-	-	-	AT	20	TT	ALK	Firmicutes
C095	AB719128	AL(pH7, 10%)	1	Bacillus marisflavi	AF483624	818/818 (100%)	-	_	-	_	-	A	15	N	ALK	Firmicutes
C096	AB719129	AL(pH7, 10%)	1	Vibrio alginolyticus/ Vibrio harveyi/ Vibrio communis	X56576/ AY750575/ GU078672	513/513 (100%)	+	_	-	_	-	AT	10	N	ALK	Proteobacteria
C097	AB719130	AL(pH7, 10%)	1	Bacillus aquimaris	AF483625	652/659 (98%)	+	_	-	_	-	A	10	N	NE	Firmicutes
C098	AB719131	AL(pH7, 10%)	1	Pseudoalteromonas tetraodonis	AF214730	770/770 (100%)	+	_	-	_	-	A	10	N	NE	Proteobacteria
C099	AB719132	AL(pH7, 10%)	2	Staphylococcus haemolyticus	X66100	596/597 (99%)	-	_	-	-	-	FA	15	N	NE	Firmicutes
C101	AB719133	AL(pH7, 10%)	1	Virgibacillus dokdonensis	AY822043	678/680 (99%)	-	-	-	-	-	FA	20	TT	ALK	Firmicutes
C101	AB719134	AL(pH7, 10%)	1	Halomonas denitrificans	AM229317	789/806 (98%)		-	-	-	-	AT	20	N	NE	Proteobacteria
C102 C103	AB719134 AB719135	AL(pH7, 10%)	1	Halobacillus salinus	AF500003	834/836 (99%)	-	_	-	-	-	AT	20	N	NE	Firmicutes
C103	AB719135 AB719136	AL(pH10,3.5 %)	1	Bacillus lehensis	AY793550	540/543 (99%)	-	+	-	_	-	AT	10	TT	ALK	
			-				+		+							Firmicutes
C105	AB719137	AL(pH10,3.5 %)	1	Vibrio mediterranei	X74710	712/729 (97%)	-	+	+	-	+	A	3.5	N	ALK	Proteobacteria
C108	AB719138	AL(pH10,3.5 %)	2	Bacillus lehensis	AY793550	833/836 (99%)	+	+		-	-	AT	10	N	ALK	Firmicutes
C109	AB719139	AL(pH10,3.5 %)	2	Bacillus plakortidis	AJ880003	781/795 (98%), Gaps = 1/795 (0%)	-	-	+	-	-	AT	10	N	ALK	Firmicutes
C110	AB719140	AL(pH10,3.5 %)	2	Bacillus horneckiae	EU861362	657/657 (100%)	-	+	+	-	-	AT	3.5	N	ALK	Firmicutes
C111	AB719141	AL(pH10,3.5 %)	2	Bacillus clausii	X76440	489/490 (99%)	+	+	-	-	-	AT	3.5	TO	ALK	Firmicutes
C112	AB719142	AL(pH10,3.5 %)	1	Bacillus lehensis	AY793550	740/743 (99%)	+	+	-	-	-	AT	10	TT	ALK	Firmicutes
C113	AB719143	AL(pH10,3.5 %)	1	Bacillus hunanensis	HM054473	816/817 (99%)	-	+	+	-	-	A	3.5	N	ALK	Firmicutes
C115	AB719144	AL(pH10,3.5 %)	1	Bacillus lehensis	AY793550	551/556 (99%)	+	+	+	-	-	AT	10	N	ALK	Firmicutes
C116	AB719145	AL(pH10,3.5 %)	1	Geomicrobium halophilum	AB449106	747/823 (90%), Gaps = 2/823 (0%) *	+	-	+	-	-	AT	15	N	ALK	Firmicutes

C117	AB719146	AL(pH10.3.5 %)	(2)	Bacillus patagoniensis	AY258614	414/437 (94%) *	+	+	-	+	_	AT	3.5	N	ALK	Firmicutes
C119	AB719147	AL(pH10,3.5 %)	2	Bacillus lehensis	AY793550	817/821 (99%), Gaps = 1/821 (0%)	+		-	-	-	AT	10	N	ALK	Firmicutes
C122	AB719148	AL(pH10,10 %)	1	Bacillus lehensis	AY793550	819/827 (99%)	-	-	+	-	-	AT	15	N	ALK	Firmicutes
C123	AB719149	AL(pH10,10 %)	1	Bacillus lehensis	AY793550	540/544 (99%)	+	+	-	-	-	A	15	N	ALK	Firmicutes
C123	AB719149	AL(pH10,10 %)	1	Nocardiopsis salina	AY373031	781/793 (98%)	+	+	+	-	-	A	15	N	ALK	Actinobacteria
C124	AB719150	AL(pH10,10 %)	1	Geomicrobium halophilum	AB449106	717/788 (90%), Gaps = 1/788 (0%) *		-	+	-	_	AT	15	N	ALK	Firmicutes
C125	AB719151 AB719152	XL(pH10,10%)	1	Bacillus aerophilus/ Bacillus stratosphericus	AJ831844/ AJ831841	829/829 (100%)	-	-	-	+	_	AT	10	TO	ALK	Firmicutes
			1	· · · · · · · · · · · · · · · · · · ·	X56576		+	-	-	- -	_	FA	10	N		
C127	AB719153	XL(pH7, 3.5%)	-	Vibrio alginolyticus		601/601 (100%)	+	-	-	_	-				ALK	Proteobacteria
C128	AB719154	XL(pH7, 3.5%)	1	Ruegeria lacuscaerulensis	U77644	734/753 (97%)	-					AT	3.5	N	NE	Proteobacteria
C129	AB719155	XL(pH7, 3.5%)	1	Vibrio gigantis	EF094888	828/831 (99%), Gaps = 2/831 (0%)	-	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C130	AB719156	XL(pH7, 3.5%)	1	Bacillus plakortidis	AJ880003	592/593 (99%)	-	-	-	-	-	AT	10	TT	ALK	Firmicutes
C131	AB719157	XL(pH7, 3.5%)	2	Bacillus stratosphericus	AJ831841	454/462 (98%)	-	-	-	+	-	AT	10	TO	ALK	Firmicutes
C132	AB719158	XL(pH7, 3.5%)	2	Vibrio parahaemolyticus	AF388386	816/821 (99%), Gaps = 2/821 (0%)	+	-	-	-	-	FA	10	N	ALK	Proteobacteria
C134	AB719159	XL(pH7, 3.5%)	2	Bacillus gibsonii	X76446	809/813 (99%)	-	-	-	-	-	A	3.5	TT	ALK	Firmicutes
C135	AB719160	XL(pH7, 3.5%)	2	Shewanella gaetbuli	AY190533	787/791 (99%)	-	-	+	-	+	FA	3.5	N	NE	Proteobacteria
C136	AB719161	XL(pH7, 3.5%)	2	Vibrio gigantis/ Vibrio crassostreae	EF094888/ EF094887	817/820 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C137	AB719162	XL(pH7, 3.5%)	2	Bacillus altitudinis	AJ831842	776/776 (100%)	-	-	-	+	-	AT	15	то	ALK	Firmicutes
C138	AB719163	XL(pH7, 3.5%)	2	Vibrio harveyi	AY750575	553/558 (99%)	+	-	-	-	-	FA	15	N	ALK	Proteobacteria
C139	AB719164	XL(pH7, 3.5%)	1	Pseudoalteromonas mariniglutinosa	AJ507251	601/604 (99%)	-	-	-	-	-	FA	3.5	N	NE	Proteobacteria
C140	AB719165	XL(pH7, 3.5%)	1	Gracilibacillus ureilyticus	EU709020	529/546 (96%) *	-	-	-	-	-	AT	10	TT	ALK	Firmicutes
C141	AB719166	XL(pH7, 3.5%)	1	Vibrio owensii	GU018180	504/507 (99%)	+	-	-	-	-	FA	10	N	ALK	Proteobacteria
C142	AB719167	XL(pH7, 3.5%)	1	Gracilibacillus dipsosauri	AB101591	606/606 (100%)	+	-	-	+	-	A	15	TT	NE	Firmicutes
C143	AB719168	XL(pH7, 3.5%)	1	Vibrio communis	GU078672	763/767 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C145	AB719169	XL(pH7, 3.5%)	1	Bacillus pumilus	AY876289	589/589 (100%)	-	-	-	+	-	AT	10	то	ALK	Firmicutes
C146	AB719170	XL(pH7, 3.5%)	1	Vibrio harveyi	AY750575	817/824 (99%), Gaps = 1/824 (0%)	+	-	+	-	-	FA	10	N	ALK	Proteobacteria
C148	AB719171	XL(pH7, 3.5%)	1	Vibrio alginolyticus	X56576	639/639 (100%)	+	-	-	-	-	FA	10	N	ALK	Proteobacteria
C150	AB719172	XL(pH7, 3.5%)	1	Vibrio communis	GU078672	798/803 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C151	AB719173	XL(pH7, 3.5%)	1	Vibrio alginolyticus/ Vibrio harveyi/ Vibrio communis	X56576/ AY750575/ GU078672	550/551 (99%)	+	-	-	-	-	FA	10	N	ALK	Proteobacteria
C152	AB719174	XL(pH7, 3.5%)	1	Oceanobacillus profundus	DQ386635	433/433 (100%)	-	-	-	-	-	AT	10	TT	ALK	Firmicutes
C154	AB719175	XL(pH7, 3.5%)	2	Vibrio rotiferianus	AJ316187	812/818 (99%)	+	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C155	AB719176	XL(pH7, 3.5%)	2	Bacillus horneckiae	EU861362	589/589 (100%)	-	-	-	-	-	Α	3.5	TT	ALK	Firmicutes
C156	AB719177	XL(pH7, 3.5%)	2	Bacillus horneckiae	EU861362	606/606 (100%)	-	-	-	-	-	A	3.5	N	ALK	Firmicutes
C157	AB719178	XL(pH7, 3.5%)	2	Vibrio azureus	AB428897	717/725 (98%)	-	-	+	-	-	FA	3.5	N	NE	Proteobacteria
C159	AB719179	XL(pH7, 3.5%)	2	Vibrio natriegens/ Vibrio alginolyticus	X74714/ X56576	646/646 (100%)	+	-	-	-	-	FA	10	N	ALK	Proteobacteria
C160	AB719180	XL(pH7, 3.5%)	2	Visreibacillus dokdonensis	AY822043	522/524 (99%)	+	-	-	-	-	FA	20	TT	ALK	Firmicutes
C161	AB719180	XL(pH7, 3.5%)	2	Vigitacinas dokoonensis	GU078672	800/804 (99%)	+	-	-	-	-	FA	3.5	N	NE	Proteobacteria
C164	AB719181 AB719182	XL(pH7, 3.5%) XL(pH7, 10%)	1	Bacillus marisflavi	AF483624	816/818 (99%)	-	-	-	_	_	AT	15	N	ALK	Firmicutes
C164	AB719182 AB719183	XL(pH7, 10%) XL(pH7, 10%)	1	Bacillus megaterium	D16273	807/809 (99%)	+	-	-	_	_	A	10	N	NE	Firmicutes
C105	AB719183 AB719184	XL(pH7, 10%) XL(pH7, 10%)	2	_	X74714		+	-	-	_	_	A	10	N	ALK	
			2	Vibrio natriegens		700/700 (100%)	++	-	+	-	-			N		Proteobacteria
C171	AB719185	XL(pH7, 10%)	2	Bacillus marisflavi	AF483624	599/602 (99%)	+	-	+	-	-	AT	15	N	NE	Firmicutes
C174	AB719186	XL(pH7, 10%)	-	Halobacillus trueperi	AJ310149	808/811 (99%)	-					AT	25		NE	Firmicutes
C175	AB719187	XL(pH7, 10%)	2	Oceanobacillus profundus	DQ386635	543/543 (100%)	-	-	-	-	-	AT	15	TT	ALK	Firmicutes
C176	AB719188	XL(pH7, 10%)	1	Bacillus marisflavi	AF483624	444/445 (99%)	+	-	-	-	-	AT	15	TT	NE	Firmicutes
C177	AB719189	XL(pH7, 10%)	1	Paraoerskovia marina	AB445007	709/709 (100%)	-	-	+	-	-	AT	10	N	NE	Actinobacteria
C180	AB719190	XL(pH7, 10%)	1	Gracilibacillus dipsosauri	AB101591	827/827 (100%)	+	-	-	+	-	AT	15	TT	NE	Firmicutes

C184	AB719191	XL(pH7, 10%)	2	Bacillus hwajinpoensis	AF541966	523/523 (100%)	-	-	-	-	-	AT	25	N	NE	Firmicutes
C187	AB719192	XL(pH10,3.5 %)	1	Bacillus clarkii	X76444	566/567 (99%)	-	-	-	-	-	AT	10	TT	ALK	Firmicutes
C188	AB719193	XL(pH10,3.5 %)	2	Bacillus hunanensis	HM054473	816/817 (99%)	+	-	-	-	-	AT	10	TT	ALK	Firmicutes
C189	AB719194	XL(pH10,3.5 %)	1	Bacillus lehensis	AY793550	817/820 (99%)	+	+	-	-	-	AT	10	TT	ALK	Firmicute
C190	AB719195	XL(pH10,3.5 %)	2	Bacillus lehensis	AY793550	659/666 (98%)	+	+	-	-	-	AT	10	TT	ALK	Firmicute
C192	AB719196	XL(pH10,10 %)	2	Bacillus lehensis	AY793550	822/830 (99%)	-	+	-	-	-	AT	10	N	ALK	Firmicute
C196	AB719197	XL(pH10,10 %)	2	Bacillus polygoni	AB292819	798/798 (100%)	-	+	-	-	-	AT	10	N	ALK	Firmicute
C197	AB719198	XL(pH10,10 %)	1	Bacillus lehensis	AY793550	523/526 (99%)	+	+	-	-	-	AT	10	N	ALK	Firmicute
C201	AB719199	XL(pH10,10 %)	2	Bacillus lehensis	AY793550	548/551 (99%)	+	+	-	-	-	A	10	N	ALK	Firmicute

Abbreviations: S, starch; CMC, carboxymethyl cellulose sodium salt; AL, alginate; XL, xylan; FA, facultative anaerobic bacteria; AT, anaerobic tolerant bacteria; A, aerobic bacteria; TO, thermophiles; TT, thermo-tolerant bacteria; N, non-thermal bacteria; NE, neutrophilic bacteria; ALK, alkaliphilic bacteria; ALK, alkaliphilic bacteria; A. arobic bacteria; ALK, anaerobic tolerant bacteria; A, aerobic bacteria; A, aerobic bacteria; ALK, alkaliphilic bacteria; N, non-thermal bacteria; NE, neutrophilic bacteria; A, aerobic bacteria; ALK, alkaliphilic bacteria; A. arobic bacteria; ALK, alkaliphilic bacteria; ALK, a