Chapter IV

Diversity and function of aerobic culturable bacteria in the intestine of deep-sea holothurian

## 4.1 Introduction

Deep-sea is one of unexplored regions even today. Holothurians (~1430 species) are found on various sea floors from deep sea floors to intertidal areas (Foster et al., 1995, Uthicke et al., 2009). Holothurians belong to phylum Echinodermata and their diet is detritus such as organic matter, microalgae, and bacteria (Massin, 1982, Moriarty, 1982, Yingst, 1976).

Gut bacteria play an important role in digestion of diets. Studies on bacteria associated with Holothurians were reported only for *Holothuria atra* (Ward-Rainey et al, 1996) and Molpadia musculus (Amaro et al., 2009, 2012). Ward-Rainey et al. reported partial aerobic bacterial flora of Holothuria atra (Ward-Rainey et al, 1996). In their report, only 23 isolates were characterized by 16S rRNA gene sequences analysis (the first 300 nucleotides) and they were affiliated to the genera Vibrio and Bacillus. On the other hands, Amaro et al. used non-culturing methods to analyze bacterial community of abyssal holothurian, Molpadia musculus (Amaro et al., 2009). Their results suggested that the gut bacterial composition was similar to that of the organic matter-rich sediments. Members of Cytophaga- Flavobacteria-Bacteroides (CFB) group dominated in the bacterial community (Amaro et al., 2009). Recently, they also found that ca. 82% of total bacterial OTUs (Operational Taxonomic Unit) were common between the gut contents and the surrounding sediments (Amaro et al., 2012). Enomoto et al. also reported recently that  $\gamma$ -Proteobacteria members were mainly isolated as culturable bacteria from the intestine of Apostichopus japonicus (Enomoto et al., 2012). Using the

molecular techniques, they also found that *Proteobacteria* members were main metabolically active microbial populations in the intestine of *Apostichopus japonicus*.

Gut microorganisms play an important role in digestion of diets, but the diversity and function of aerobic culturable bacteria in the intestine of the deep-sea holothurian are still unclear.

In this report, I isolated ninety-two aerobic culturable bacterial strains from each part of the intestine of the deep-sea holothurian collected at the southeast of Fukue Island, Nagasaki, Japan, water depth of 236 m and in November 2010. I found that the aerobic culturable isolates belonged to 45 nearest type strain species (below, referred to as species). The bacterial diversity was similar among three parts, i.e. anterior, mid and posterior parts of the intestine. Most isolates showed various polysaccharide degradation activities but few isolates showed alginate or agar degradation activities probably because there were no seaweeds in deep-sea. On the other hand, when I compared the functions and properties of several species in three parts, the posterior part was likely to be different from the anterior or mid parts. Maybe the posterior part was related to the digestion of polysaccharides or high salt environment.

## 4.2 Materials and Methords

Sample collection and dissection. Deep-sea holothurian specimen was collected at southeast of Fukue Island, Nagasaki, Japan (32°30'N, 129°09'E), at a water

depth of 236 m in November 21, 2010 (Fig.1). The temperature of seawater at the water depth of the sampling point was estimated to be ca.13-14 °C from data in Japan Meteorological Agency. The specimen was kept in icebox and aseptically dissected in our laboratory in November 24, 2010. Whole intestine was excised from the animal body aseptically using sterilized instruments. Fraction of intestine was carried out according to Shimizu et al (Shimizu et al., 1992). The intact intestine was divided into three parts, the anterior part (0.71g), the mid part (0.88g) and the posterior part (1.80g) (Fig. 2). To isolate bacteria from both intestinal wall and contents, 1 ml of saline was added to each part and each part was crushed and mixed enough. Each suspension thus obtained was used for isolation of bacteria and 50  $\mu$  1 of the each suspension was spread on plates.

*Growth media*. Luria-Bertani medium (LB) and Horikoshi medium were used basically. But NaCl concentration was 3.5% instead of 1%. Polysaccharides such as carboxymethyl cellulose sodium salt (CMC) (Wako pure chemicals, Osaka, Japan), xylan (Sigma), sodium alginate (Wako pure chemicals, Osaka, Japan) and soluble starch (nacalai tesque, Kyoto, Japan) were added to Horikoshi medium as carbon sources (final concentration 1%).

LB solid medium (pH 7) contained 1% tryptone (Difco), 0.5% yeast extract (Difco), 3.5% NaCl, and 1.5 % agar (Wako pure chemicals, Osaka, Japan). Horikoshi solid medium (pH 7) contained 1% polysaccharide, 0.5% peptone (BD), 0.5% yeast extract, 0.1% KH<sub>2</sub>PO<sub>4</sub>, 0.02% MgSO<sub>4</sub>•7H<sub>2</sub>O, 3.5% NaCl, and 2% agar. Sodium alginate solid medium contained 2.5% agar. For 10% NaCl media, NaCl concentration of growth

media was 10% instead of 3.5%.

For alkaline agar plates, Na<sub>2</sub>CO<sub>3</sub> (autoclaved separately) was added to neutral agar medium (final pH: pH10.3-10.5). Na<sub>2</sub>CO<sub>3</sub> concentration of alkaline plate was 1%.

Isolation of bacteria. Fifty µl of the gut suspensions was directly plated on agar plates without enrichment culture. High salt concentration or high pH were used for isolation conditions to isolate various bacteria because marine water is semi-alkaline pH and contains 3.5% NaCl. Seventeen different media were prepared by combination of pH, NaCl concentration and carbon source (Table 1). The plates were incubated at 30 °C aerobically for two weeks to obtain slowly growing bacteria. Bacteria were isolated from each plate, purified and stored in slants for further analysis.

#### Physiological and biochemical characteristics of isolates.

Polysaccharide degradation activities were detected by plate methods using CMC, xylan, alginate, starch or agar as substrate. The following plates were prepared for detection of enzyme activities.

1. Neutral agar plates

1-1. Amylase detection: Horikoshi agar medium containing 1% potato starch instead of soluble starch was used for amylase detection. Amylase-producing colony showed turbid halo around a colony.

1-2. Cellulase detection: Basic neutral agar medium for cellulase detection contained 0.1% CMC, 3.7% marine broth, 0.6% MgCl<sub>2</sub> · 6H<sub>2</sub>O, 1.5% agar, 1.6% NaCl, 0.0015%

63

congo-red, adjust pH to 7.0 with 1N NaOH. Clear zone around a colony suggested cellulase activity.

1-3. Alginate lyase detection: The basic neutral agar medium for alginate lyase detection, contained 1% sodium alginate, 3% NaCl, 0.07% KCl, 0.26% MgSO<sub>4</sub>, 0.5% MgCl<sub>2</sub>, 0.1% CaSO<sub>4</sub>, 0.5% peptone, 0.01% ferric phosphate, 0.1% yeast extract, 2% agar; adjust the pH to 7.0 with 1N NaOH. After two weeks' incubation at 30 °C, 70% ethanol was filled into plates. A clear zone around the colony indicated the presence of alginate lyase.

1-4. Xylanase detection: Horikoshi agar medium containing 1% xylan was used for xylanase detection. Xylanase-producing colony showed clear zone around a colony.

1-5. Agarase detection: Horikoshi agar medium without polysaccharide was used for agarase detection. Agarase-producing colony showed dent around a colony.

2. Alkaline agar plates

For alkaline agar plates, Na<sub>2</sub>CO<sub>3</sub> (autoclaved separately) was added to neutral agar medium (final pH: pH10.3-10.5). Na<sub>2</sub>CO<sub>3</sub> concentration of alkaline plate was 1%.

All isolates were tested for salt tolerance: 0%, 3.5%, 10%, 15%, 20%, 25% NaCl (w/v), pH tolerance (pH7 and pH10) and effect of oxygen.

Anaerobic growth was examined using gaspak (COSMO BIO) at 30 °C for two weeks, and then growth condition was changed to the aerobic condition at 30°C for two weeks. The isolates were assigned to three groups, facultative anaerobic bacteria (FA), anaerobic tolerant bacteria (AT) and aerobic bacteria (A). Facultative anaerobic bacteria form colony in both aerobic and anaerobic cultivation. Anaerobic tolerant bacteria do not form colony in anaerobic condition for two weeks but form colony in aerobic cultivation after the anaerobic cultivation. Aerobic bacteria do not form colony in anaerobic condition for two weeks and also do not form colony in aerobic cultivation after the anaerobic cultivation. Growth ability at various conditions of salinity or pH was measured at 30 °C for two weeks. The isolates were divided into two groups by effect of pH on growth, neutrophilic bacteria (NE) that grew only at pH7, and alkaliphilic/alkali-tolerant bacteria (ALK) that grew both at pH 7 and pH10.

Molecular identification of the isolates. Partial analysis of 16S ribosomal RNA (rRNA) gene of the isolates was carried out. The 16S rRNA gene was amplified using bacterial primers 27f (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492r (5'-GGTTACCTTGTTACGACTT-3') and the purified PCR product was sequenced with dideoxynucleotide chain-termination method using 3130 or 3730 DNA sequencer (Applied Biosystems). Primers 27F, 520R (5'-ACCGCGGCTGCTGGC-3') and 907R (5'-CCGTCAATTCMTTTRAGTTT-3') were used in gene sequencing reactions. Sequences of the partial 16S rRNA genes were assembled and edited using Sequencher (version 4.10.1 demo, Gene Codes Corporation) and MacVector (version 10.0.2). Nucleotide sequences of the partial 16S rRNA genes have been submitted to GenBank/EMBL/DDBJ databases under accession numbers AB741781 through AB741873 except AB741857 (Supplementary Table 1; see JJSE Web site).

The partial 16S rRNA gene sequences were compared with other sequences in DDBJ database using BLAST program and compared with type strain sequences in

Ribosomal database project (RDP). Each isolate was assigned to the nearest type strain species (Supplementary Table 1; see JJSE Web site). When isolate showed more than 97% identities with some type strain sequences, the isolate was assigned to the nearest type strain species (below, referred to as species). When isolate showed less than 97% identities with any type strain sequences, the isolate was assigned to the tentative nearest type strain species (below, referred to as tentative species).

## 4.3 Results

### Isolation of bacteria

Fig.2 shows photographs of the deep-sea holothurian and its dissection (C), including anterior intestine (1), mid intestine (2), posterior intestine (3), Polian vesicle (4) and respiratory trees (5). But Cuvierian tubules were not detected in the specimen. The each intestine suspension was directly plated on agar plates and seventeen isolation media were used. Table 1 summarized number of the isolates obtained by different cultural conditions. The intact intestine was divided into three parts, the anterior part, the mid part and the posterior part. The each part was crushed and mixed enough and the suspensions thus obtained were used for isolation of bacteria. Number of colony forming units (cfu) per g of the anterior, mid and posterior parts were  $1.4 \times 10^4$  cfu/g,  $0.6 \times 10^4$  cfu/g and  $0.58 \times 10^4$  cfu/g in LB medium, respectively. Similar cfu numbers were obtained in Horikoshi media (pH7), but lower cfu numbers in the alkaline Horikoshi media (ca, pH10.3).

Twenty-four, 33 and 35 isolates were obtained from the anterior, mid and posterior suspensions, respectively. In total, 92 isolates were purified and analyzed further.

### Phylogenic analysis of bacterial isolates

The partial 16S rRNA gene sequences were done and compared with other sequences in DDBJ database using BLAST program and compared with the type strain sequences in Ribosomal database project (RDP). Table 2 summarized the species/the tentative species of the isolates as determined via BLAST (Supplementary Table 1; JJSE Web site). By partial 16S rRNA gene sequences of the isolates, the isolates belonged to 45 species. Fourteen species were detected in multiple locations of three parts, i.e. anterior, mid and posterior parts of the intestine. The isolates belonged to the phyla Firmicutes (33 species) and Proteobacteria (12 species) (Table 2). Among 33 species of the phylum Firmicutes, 21 species belonged to the family Bacillaceae 1, the genus Bacillus. Ten species belonged to the family Bacillaceae 2, the genera Gracilibacillus, Halobacillus, Oceanobacillus, Thalassobacillus and Virgibacillus. Twelve species of the phylum Proteobacteria belonged to the genera Vibrio, Halomonas, Photobacterium, Pseudomonas and Marinobacter. Among them, high diversity was found in the genera Bacillus and Vibrio. The closest relatives of these isolates were observed in various sea environments. The bacterial diversity was similar among three parts, i.e. anterior, mid and posterior parts of the intestine (Fig.3) and 14 species (indicated by star in Table 2) were detected in multiple parts of the intestine. But, the number of species belonged to the family Bacillaceae 2 decreased in the posterior part of the intestine compared with those in the anterior or mid parts of the intestine (Fig.3).

Three isolates (isolate no. C214, C254 and C271) showed less than 97% identities with any type strain sequences. The isolates were assigned to the tentative species. (Supplementary Table 1; see JJSE Web site).

#### Polysaccharide degradation ability of isolates

Many isolates from the specimen showed polysaccharides degradation ability and degraded one or more substrates (S, CMC, AL and XL). Twenty-eight, 12, 3 and 12 species showed amylase activity, cellulase activity, alginate lyase activity and xylanase activity, respectively (Fig.4, Supplementary Table 1; see JJSE Web site). No agarase activity was observed in all isolates.

Amylase producing isolates were mainly affiliated with the genus *Bacillus* (15 tentative species). Twelve species such as *Bacillus horikoshii*, *B. hunanensis*, *B. licheniformis*, *B. megaterium*, *B. vietnamensis*, *Halobacillus kuroshimensis*, *H. trueperi*, *Photobacterium rosenbergii*, *Pseudomonas cedrina*, *P. libanensis*, *Vibrio pomeroyi*, and *V. rotiferianus* were found in multiple locations of three parts, i.e. anterior, mid and posterior parts of the intestine.

Most cellulase positive isolates belonged to the genera *Bacillus* (5 species) and *Vibrio* (4 species). Three species such as *Jeotgalibacillus campisalis*, *Vibrio pomeroyi* and *V. rotiferianus* were found in multiple locations. Only 3 isolates producing alginate-lyase were affiliated with *Gracilibacillus dipsosauri*, *Pseudomonas synxantha* 

and *Vibrio agarivorans*. All isolates producing xylanase were most closely related to the genera *Bacillus* (9 species) and *Pseudomonas* (3 species). One species, *Pseudomonas libanensis* was found in multiple locations. Several species showed multiple polysaccharides degradation activities. On the other hand, 11 species had no polysaccharides degradation ability and 7 species of them in the anterior or mid parts of the intestine belonged to the family Bacillaceae 2 but the number of them decreased in the posterior part of the intestine (Fig.4). It was observed that in the posterior part, the number of xylan degrading species related to the family Bacilliaceae 1 increased and the number of starch degrading species related to the order  $\gamma$  -Proteobacteria also increased (Fig.4).

### Physiological characteristics of the isolates

Fig.5 and Supplementary Table 1 (JJSE Web site) showed effect of anaerobic condition for growth of the isolates. The isolates were divided into three groups, facultative anaerobic bacteria (FA), anaerobic tolerant bacteria (AT) and aerobic bacteria (A). Twenty-five FA species were mainly affiliated with the phylum Proteobacteria and the family Bacillaceae 1. Six species such as *Bacillus licheniformis, Photobacterium rosenbergii, Pseudomonas cedrina, P. libanensis, Vibrio pomeroyi* and *V. rotiferianus* were found in multiple locations. Thirty AT species were mainly affiliated to the genera *Bacillus* (16 species), *Gracilibacillus, Halobacillus, Oceanobacillus* and *Virgibacillus*. Only one aerobic (A) species, *Halobacillus kuroshimensis* was found in multiple locations. The species belonging to the family

Bacillaceae 2 were mainly affiliated to AT group and species belonging to the family Bacillaceae 1 were mainly affiliated to FA or AT groups (Fig.5). The species belonging to the phylum Proteobacteria were mainly affiliated to FA group (Fig.5).

High salt concentration or high pH were used for isolation conditions to isolate various bacteria because marine water is semi-alkaline pH and contains 3.5% NaCl. Salinity tolerance of the isolates was examined (Fig.6, and Supplementary Table 1; JJSE Web site). The isolates most closely related to Halobacillus kuroshimensis and Bacillus clausii showed the highest salt tolerance (25 % NaCl) and some strains were able to grow in absent of NaCl. Twelve species were halophilic (20-25 % NaCl conc.) and mainly belonged to the family Bacillaceae 2, the genera Halobacillus, Virgibacillus and Oceanobacillus. Thirty-two species were moderate halophilic (10-15% NaCl) and 18 species belonged to the family Bacillaceae 1, the genus Bacillus and 9 species belonged to  $\gamma$ -proteobacteria such as the genera *Pseudomonas*, *Vibrio* and *Photobacterium*. Seven species were slight halophiles (3.5% NaCl) belonged to the genera Vibrio, Photobacterium, Jeotgalibacillus and Bacillus. It appears that the species belonging to the family Bacillaceae 2 are most salt-tolerant (more than 20% NaCl) and those belonging to the phylum Proteobacteria or the family Bacillaceae 1 were moderate halophilic (10-15% NaCl)(Fig.6). It was observed that number of species related to slight halophiles (3.5%) decreased in the posterior part compared with those in other parts.

All isolates were examined for growth responses to pH shift (pH7 $\rightarrow$ pH10 or pH10 $\rightarrow$ pH7). All alkaliphilic/alkali-tolerant strains isolated from alkali medium were

able to grow at pH 7, while half of species isolated from pH 7 were able to grow at pH 10. Nineteen species were the neutrophilic species (NE) growing only at pH7. Eleven species were affiliated with the genus *Bacillus*.

## 4.4 Discussion

In this report, I isolated aerobic culturable bacteria from each part of the gut of deep-sea holothurian using different culture conditions. The deep-sea holothurian was collected at southeast of Fukue Island, Nagasaki, Japan (32°30' N, 129°09' E), at a water depth of 236 m in November 21, 2010. Ninety-two aerobic culturable bacterial strains were isolated from each part of the intestine of deep-sea holothurian. By partial 16S rRNA gene sequences of the isolates, the isolates belonged to 45 species. The bacterial diversity was similar among three parts, i.e. anterior, mid and posterior parts of the intestine and 14 species were detected in multiple parts of the intestine. But, the number of species belonged to the family Bacillaceae 2 decreased in the posterior part of the intestine compared with those in the anterior or mid parts of the intestine. (I will discuss this later.)

As shown in Table2, the isolates belonged to the phyla Firmicutes (33 species) and Proteobacteria (12 species). Among 33 species of the phylum Firmicutes, 21 species belonged to the family Bacillaceae 1, the genus *Bacillus*. Recently, Enomoto et al. reported that Proteobacteria members were mainly isolated as culturable bacteria from the intestine of *Apostichopus japonicus* (Enomoto et al., 2012). These results suggested

that the sea environments such as deep sea or intertidal areas maybe affected diversity of aerobic culturable bacteria.

Detritus is organic materials and is used as a source of nutrient for detritus feeders (Hagen et al., 2012). Most important components of detritus are recalcitrant polysaccharides and bacteria are the main decomposers that degrade these materials. Therefore, I analyzed polysaccharide degradation of the isolates. I found that many isolates showed various polysaccharide degradation activities. High diversity was observed in starch degradation isolates, suggesting the large amount storage of starch in detritus, for example algae. But, there were few isolates showing alginate or agar degradation activities probably because deep-sea was not suitable area for seaweeds which contained a lot of alginate or agar. As mentioned in Fig.4, 11 species had no polysaccharides degradation ability and 7 species of them in the anterior or mid parts of the intestine belonged to the family Bacillaceae 2 but the number of them decreased in the posterior part of the intestine. It was observed that in the posterior part, the number of xylan degrading species related to the family Bacilliaceae 1 increased and the number of starch degrading species related to the order  $\gamma$ -Proteobacteria also increased (Fig.4). It was also observed that number of species related to slight halophiles (3.5%) decreased in the posterior part compared with those in other parts. These results suggested that the posterior part had a different role or environment compared with the anterior or mid parts, maybe the posterior part was involved in the digestion of polysaccharides.

I found that almost all isolates were facultative anaerobic bacteria or anaerobic

tolerant bacteria. It appears that oxygen will enter the intestine of the sea cucumber from the mouth with the detritus food and also some amount can penetrate from the body tissues. These results suggested that the aerobic culturable isolates potentially contributed to digest detritus and supply metabolic products (minor components and vitamins) to their host sea cucumber.

Three isolates (isolate no. C214, C254 and C271) showed less than 96% identities with any type strain sequences and two of them were obtained from alkaline plates and 10% NaCl. These results suggested that the intestines of deep-sea holothurians were still new resource for new species.

The temperature of seawater at the water depth of the sampling point was estimated to be ca.13-14 °C in November 2010 from data of Japan Meteorological Agency. But, it was surprising that the full year temperature of the sampling point was estimated to be ca.12-15 °C throughout the year (from data in Japan Meteorological Agency). These results suggested that this deep-sea environment seemed a little low temperature but more suitable environment for deep-sea holothurian and their intestinal bacteria.

In this study, only one specimen, deep-sea holothurian was obtained and investigated. Therefore, future challenges remain regarding individual variations, morphological descriptions, haplotypes of host species and surrounding environments including sediments.

73

# 4.5 Summary

Ninety-two aerobic culturable bacterial strains were isolated from each part of the intestine of the deep-sea holothurian collected at 32°30' N, 129°09' E (southeast of Fukue Island, Nagasaki, Japan) and water depth of 236 m in November 2010. The temperature of seawater at the water depth of the sampling point was estimated to be ca.13-14 °C from data in Japan Meteorological Agency. By partial 16S rRNA gene sequences of the isolates, the isolates belonged to 45 nearest type strain species (below, referred to as species). High diversity was observed in the genera *Bacillus* (21 species) and *Vibrio* (6 species). The bacterial diversity was similar among three parts, i.e. anterior, mid and posterior parts of the intestine and 14 species were detected in multiple parts of the intestine. Most isolates showed various polysaccharide degradation activities but few isolates showed alginate or agar in this deep-sea. Comparing the functions and properties of several species in three parts, the posterior part was likely to be different from the anterior or mid parts.

| Table1 Number of the isolates obtained by differrent culture conditions |          |          |           |        |           |    |  |  |  |  |  |  |
|-------------------------------------------------------------------------|----------|----------|-----------|--------|-----------|----|--|--|--|--|--|--|
| <u>ь</u> П                                                              | Modium   | Sapility | part      | subtal |           |    |  |  |  |  |  |  |
| рп                                                                      | Wealum   | Samily   | anterior  | mid    | posterior |    |  |  |  |  |  |  |
|                                                                         | LB       | 3.5%     | -         | 6      | _         |    |  |  |  |  |  |  |
|                                                                         | CMC      | 3.5%     | 1         | 3      | _         |    |  |  |  |  |  |  |
|                                                                         |          | 10%      | 2         | 2      | 4         |    |  |  |  |  |  |  |
|                                                                         | ç        | 3.5%     | 2         | 3      | 1         |    |  |  |  |  |  |  |
| pH 7                                                                    | 5        | 10%      | -         | 1      | 3         |    |  |  |  |  |  |  |
|                                                                         | Δι       | 3.5%     | 1         | 1      | 1         |    |  |  |  |  |  |  |
|                                                                         |          | 10% 4    |           | 2      | 7         |    |  |  |  |  |  |  |
|                                                                         | ΥI       | 3.5%     | 2         | 3      | 1         |    |  |  |  |  |  |  |
|                                                                         |          | 10%      | 10% 3 3 2 |        | 2         |    |  |  |  |  |  |  |
|                                                                         | subtotal |          | 15        | 24     | 19        | 58 |  |  |  |  |  |  |
|                                                                         |          | 3.5%     | 1         | 5      | 2         |    |  |  |  |  |  |  |
|                                                                         | СМС      | 10%      | _         | _      | 2         |    |  |  |  |  |  |  |
|                                                                         | 0        | 3.5%     | 3         | 2      | 5         |    |  |  |  |  |  |  |
| -11.10                                                                  | 5        | 10%      | -         | _      | _         |    |  |  |  |  |  |  |
| рпто                                                                    | A 1      | 3.5%     | 2         | _      | 1         |    |  |  |  |  |  |  |
|                                                                         | AL       | 10%      | 1         | _      | _         |    |  |  |  |  |  |  |
|                                                                         | N/I      | 3.5% 1   |           | 2      | 4         |    |  |  |  |  |  |  |
|                                                                         | XL       | 10%      | 1         | _      | 2         |    |  |  |  |  |  |  |
|                                                                         | subtotal |          | 9         | 9      | 16        | 34 |  |  |  |  |  |  |
|                                                                         | Total    |          | 24        | 33     | 35        | 92 |  |  |  |  |  |  |

| Table2 Phylogenetic affiliation for isolates (92 strains) from various parts of intestine |                      |                                                       |                       |     |                                       |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|-----------------------|-----|---------------------------------------|--|--|--|--|--|
| n hudum (alaas (familu                                                                    |                      | ana sina (tantina ana sina                            | part of the intestine |     |                                       |  |  |  |  |  |
| pnylum/ class/ family                                                                     | genus                | species / tentive species                             | anterior              | mid | posterior                             |  |  |  |  |  |
| phylum Firmicutes                                                                         |                      |                                                       |                       |     |                                       |  |  |  |  |  |
| family Bacillaceae 1                                                                      | Bacillus (21)        | Bacillus aerophilus                                   |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus aerophilus/Bacillus altitudinis              | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus altitudinis/Bacillus stratosphericus         | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus aquimaris                                    |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus aryabhattai                                  |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus aurantiacus                                  |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus clarkii/Bacillus polygoni                    |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus clausii                                      |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus flexus                                       | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus hemicellulosilyticus                         |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus horikoshii*                                  | +                     |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus horti                                        |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus hunanensis*                                  | +                     |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus hunanensis/Bacillus oshimensis               |                       |     | +                                     |  |  |  |  |  |
|                                                                                           | -                    | Bacillus hwaiinpoensis                                |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus lehensis                                     |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus licheniformis*                               |                       | +   | +                                     |  |  |  |  |  |
|                                                                                           | -                    | Bacillus morioflavi                                   |                       |     | · · · · · · · · · · · · · · · · · · · |  |  |  |  |  |
|                                                                                           |                      | Bacillus marstarium*                                  |                       |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacilius megaterium*                                  | +                     | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacilius neizhouensis                                 | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus oshimensis*                                  | +                     |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus pseudalcaliphilus                            |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus pumilus                                      |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Bacillus vietnamensis*                                | +                     |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Bacillus wakoensis                                    |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      |                                                       |                       |     |                                       |  |  |  |  |  |
| family Bacillaceae 2                                                                      | Gracilibacillus (1)  | Gracilibacillus dipsosauri                            | +                     |     |                                       |  |  |  |  |  |
|                                                                                           | Halobacillus (2)     | Halobacillus kuroshimensis*                           | +                     | +   | +                                     |  |  |  |  |  |
|                                                                                           |                      | Halobacillus trueperi*                                |                       | +   | +                                     |  |  |  |  |  |
|                                                                                           | Oceanobacillus (3)   | Oceanobacillus kimchii                                |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Oceanobacillus oncorhynchi                            | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Oceanobacillus sojae                                  | +                     |     |                                       |  |  |  |  |  |
|                                                                                           | Thalassobacillus (1) | Thalassobacillus devorans                             | +                     |     |                                       |  |  |  |  |  |
|                                                                                           | Virgibacillus (3)    | Virgibacillus dokdonensis                             | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Virgibacillus halodenitrificans*                      |                       | +   | +                                     |  |  |  |  |  |
|                                                                                           |                      | Virgibacillus marismortui                             |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | 0                                                     |                       |     |                                       |  |  |  |  |  |
| family Planococcaceae                                                                     | Jeotgalibacillus (1) | Jeotgalibacillus campisalis*                          | +                     |     | +                                     |  |  |  |  |  |
| family Staphylococcaceae                                                                  | Staphylococcus (1)   | Staphylococcus warneri                                | 1                     | +   |                                       |  |  |  |  |  |
| , z                                                                                       |                      |                                                       | +                     |     |                                       |  |  |  |  |  |
| hylum Proteobacteria                                                                      |                      |                                                       |                       |     |                                       |  |  |  |  |  |
| class gamma                                                                               | Halomonas (1)        | Halomonas maridiana                                   |                       |     | +                                     |  |  |  |  |  |
| ciass gainina                                                                             | Maninaharter (1)     |                                                       |                       |     | +                                     |  |  |  |  |  |
|                                                                                           | Warinobacter (1)     | marinobacter alkaliphilus                             | ·····                 |     | +                                     |  |  |  |  |  |
|                                                                                           | Photobacterium (2)   | Photobacterium lutimaris                              | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Photobacterium rosenbergii*                           |                       | +   | +                                     |  |  |  |  |  |
|                                                                                           | Pseudomonas (3)      | Pseudomonas cedrina*                                  |                       | +   | +                                     |  |  |  |  |  |
|                                                                                           |                      | Pseudomonas libanensis*                               | +                     | +   | +                                     |  |  |  |  |  |
|                                                                                           |                      | Pseudomonas synxantha                                 |                       | +   |                                       |  |  |  |  |  |
|                                                                                           | Vibrio (5)           | Vibrio agarivorans                                    |                       |     | +                                     |  |  |  |  |  |
|                                                                                           |                      | Vibrio harveyi                                        |                       | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Vibrio mediterranei                                   | +                     |     |                                       |  |  |  |  |  |
|                                                                                           |                      | Vibrio pomeroyi*                                      | +                     | +   |                                       |  |  |  |  |  |
|                                                                                           |                      | Vibrio rotiferianus*                                  | +                     |     | +                                     |  |  |  |  |  |
|                                                                                           | 45 species           |                                                       |                       |     |                                       |  |  |  |  |  |
|                                                                                           | * indicated t        | he species/tentive species found in multiple parts of | the intestine         |     |                                       |  |  |  |  |  |



Fig.1 Map of sampling site (arrow) and environmental conditions. Sampling point : 32°30′ N, 129°09′ E

(Southeast of Fukue Island, Nagasaki, Japan)

Water depth: 236 m

Sampling data: November 21, 2010

Temperature of water depth 200 m : ca.13-14 °C Sea surface temperature: ca. 21-22 °C (Data from Japan Meteorological Agency)



Fig. 2 . Photograph of the deep-sea holothurian (dorsal side A, ventral side face B) and it dissection (C), including anterior intestine (1), mid intestine (2), posterior intestine (3), Polian vesicle (4) and respiratory trees (5). Cuvierian tubules were not detected in the sample.



Fig.3 Number of the species of isolates in each part of the intestine The species were divided into five groups: the family Bacillaceae 1 (gray box), the family Bacillaceae 2 (vertical stripes), the family Planococcaceae (dotted box), the family Staphylococcaceae (black box) and the order  $\gamma$ -Proteobacteria (diagonal stripes box). Fig.3 was summarized from Supplementary Tables 1 (JJSE web site).



Fig.4 Number of the species of isolates degrading various polysaccharides The species were divided into five groups shown in the legend of Fig.3. S, CMC, AL, XL and None indicated starch degradation activity (S), CMC degradation activity (CMC), alginate degradation activity (AL), xylan degradation activity (XL) and No degradation activity (None) of polysaccharides mentioned in this study, respectively. All isolates showed no agarase activity.



Fig.5 Number of the species of isolates classified by effect of oxygen on the growth The species were divided into five groups as shown in Fig.3. Facultative anaerobic bacteria (FA) form colony in both aerobic and anaerobic cultivation. Anaerobic tolerant bacteria (AT) do not form colony in anaerobic condition for two weeks but form colony in aerobic cultivation after the anaerobic cultivation. Aerobic bacteria (A) do not form colony in anaerobic condition for two weeks and also do not form colony in aerobic cultivation after the anaerobic cultivation.



Fig. 6 Number of the species of isolates classified by effect of NaCl concentration on the growth The species were divided into five groups as shown in Fig.3.

| Isolate No. | Accession<br>Isolate No. number of | isolation medium | letters | part of the | Accession nnumber of | species/tentative species                     | Identities                       | De | egrading a | activitie:<br>charids | s on | Requiment | Maximum<br>NaCl              | pН        | phylum         | family                   |
|-------------|------------------------------------|------------------|---------|-------------|----------------------|-----------------------------------------------|----------------------------------|----|------------|-----------------------|------|-----------|------------------------------|-----------|----------------|--------------------------|
| aolace NO.  | isolates                           | issiación medium | .000015 | intestine   | type strain          | apolica/ tentative apolica                    | TUBITCHES                        | S  | CMC        | AL                    | XL   | of oxygen | concentratio<br>n for growth | tolerance | priyiam        | ranny                    |
|             |                                    |                  |         |             |                      |                                               |                                  |    |            |                       |      |           |                              |           |                |                          |
| C210        | AB741781                           | LB(pH7,3.5%)     | 528     | mid         | EF114313             | Bacillus aryabhattai                          | 522/522 (100%)                   | +  | +          | -                     | -    | FA        | 10                           | NE        | firmicutes     | family Bacillaceae 1     |
| C212        | AB741782                           | LB(pH7,3.5%)     | 818     | mid         | AF483624             | Bacillus marisflavi                           | 818/818 (100%)                   | -  | -          | -                     | +    | AT        | 20                           | NE        | firmicutes     | family Bacillaceae 1     |
| C214        | AB741783                           | LB(pH7,3.5%)     | 623     | mid         | AJ009793             | Virgibacillus marismortui                     | 555/577 (96%)                    | -  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 2     |
| C219        | AB741784                           | LB(pH7,3.5%)     | 825     | mid         | AJ310149             | Halobacillus trueperi                         | 816/825 (98%)                    | +  | -          | -                     | -    | AT        | 20                           | ALK       | firmicutes     | family Bacillaceae 2     |
| C220        | AB741785                           | LB(pH7,3.5%)     | 819     | mid         | L37603               | Staphylococcus warneri                        | 819/819 (100%)                   | -  | -          | -                     | -    | AT        | 15                           | NE        | firmicutes     | family Staphylococcaceae |
| C221        | AB741786                           | LB(pH7,3.5%)     | 509     | mid         | AJ491290             | Vibrio pomeroyi                               | 503/509 (98%)                    | +  | +          | -                     | -    | FA        | 3.5                          | ALK       | proteobacteria | gamma                    |
| C234        | AB741787                           | CMC(pH10,10%)    | 817     | posterior   | HM054473             | Bacillus hunanensis                           | 816/817 (99%)                    | +  | -          | -                     | -    | AT        | 20                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C235        | AB741788                           | CMC(pH10,10%)    | 813     | posterior   | AB125942             | Marinobacter alkaliphilus                     | 807/813 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | proteobacteria | gamma                    |
| C236        | AB741789                           | CMC(pH10,3.5%)   | 594     | anterior    | AY190535             | Jeotgalibacillus campisalis                   | 590/594 (99%)                    | -  | +          | -                     | -    | AT        | 3.5                          | ALK       | firmicutes     | family Planococcaceae    |
| C240        | AB741790                           | CMC(pH10,3.5%)   | 499     | mid         | X76440               | Bacillus clausii                              | 497/499 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C241        | AB741791                           | CMC(pH10,3.5%)   | 589     | mid         | D87035               | Bacillus horti                                | 585/589 (99%), Gaps = 1/589 (0%) | +  | -          | -                     | -    | AT        | 3.5                          | ALK       | firmicutes     | family Bacillaceae 1     |
| C242        | AB741792                           | CMC(pH10,3.5%)   | 540     | mid         | AJ842344             | Photobacterium rosenbergii                    | 537/540 (99%)                    | +  | -          | -                     | -    | FA        | 3.5                          | ALK       | proteobacteria | gamma                    |
| C243        | AB741793                           | CMC(pH10,3.5%)   | 797     | mid         | D87035               | Bacillus horti                                | 791/797 (99%), Gaps = 2/797 (0%) | +  | -          | -                     | -    | AT        | 3.5                          | ALK       | firmicutes     | family Bacillaceae 1     |
| C245        | AB741794                           | CMC(pH10,3.5%)   | 812     | mid         | GU784860             | Oceanobacillus kimchii                        | 807/812 (99%)                    | -  | -          | -                     | -    | FA        | 20                           | ALK       | firmicutes     | family Bacillaceae 2     |
| C246        | AB741795                           | CMC(pH10,3.5%)   | 574     | posterior   | AB188090             | Bacillus oshimensis                           | 571/574 (99%)                    | -  | -          | -                     | -    | FA        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C247        | AB741796                           | CMC(pH10,3.5%)   | 427     | posterior   | AJ492830             | Pseudomonas cedrina                           | 425/427 (99%)                    | +  | -          | -                     | -    | FA        | 15                           | ALK       | proteobacteria | gamma                    |
| C254        | AB741797                           | AL(pH10,10%)     | 453     | anterior    | AJ717299             | Thalassobacillus devorans                     | 437/453 (96%)                    | -  | -          | -                     | -    | AT        | 20                           | ALK       | firmicutes     | family Bacillaceae 2     |
| C258        | AB741798                           | AL(pH10,3.5%)    | 621     | anterior    | EU925618             | Bacillus neizhouensis                         | 609/616 (98%)                    | -  | -          | -                     | +    | FA        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C259        | AB741799                           | AL(pH10,3.5%)    | 715     | anterior    | AJ316187             | Vibrio rotiferianus                           | 691/699 (98%)                    | -  | +          | -                     | -    | FA        | 3.5                          | ALK       | proteobacteria | gamma                    |
| C263        | AB741800                           | AL(pH10,3.5%)    | 524     | posterior   | AF057645             | Pseudomonas libanensis                        | 523/524 (99%)                    | +  | +          | -                     | -    | AT        | 10                           | ALK       | proteobacteria | gamma                    |
| C265        | AB741801                           | XL(pH10,10%)     | 535     | anterior    | AB188090             | Bacillus oshimensis                           | 530/535 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C270        | AB741802                           | XL(pH10,10%)     | 565     | posterior   | HM054473             | Bacillus hunanensis                           | 565/565 (100%)                   | +  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C271        | AB741803                           | XL(pH10,10%)     | 764     | posterior   | AJ605773             | Bacillus aurantiacus                          | 732/759 (96%), Gaps = 6/759 (0%) | +  | -          | -                     | +    | AT        | 20                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C277        | AB741804                           | XL(pH10,3.5%)    | 677     | anterior    | AB043865             | Bacillus horikoshii                           | 675/677 (99%), Gaps = 1/677 (0%) | +  | -          | -                     | -    | AT        | 10                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C280        | AB741805                           | XL(pH10,3.5%)    | 544     | mid         | D84025               | Pseudomonas synxantha                         | 540/544 (99%)                    | +  | -          | +                     | +    | FA        | 10                           | ALK       | proteobacteria | gamma                    |
| C281        | AB741806                           | XL(pH10,3.5%)    | 475     | mid         | X76444/AB292819      | Bacillus clarkii/Bacillus polygoni            | 474/475 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C285        | AB741807                           | XL(pH10,3.5%)    | 581     | posterior   | AY190535             | Jeotgalibacillus campisalis                   | 581/583 (99%), Gaps = 1/583 (0%) | -  | +          | -                     | -    | FA        | 10                           | ALK       | firmicutes     | family Planococcaceae    |
| C287        | AB741808                           | XL(pH10,3.5%)    | 637     | posterior   | HM054473/AB188090    | Bacillus hunanensis/Bacillus oshimensis       | 634/637 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C288        | AB741809                           | XL(pH10,3.5%)    | 772     | posterior   | X76449               | Bacillus pseudalcaliphilus                    | 743/760 (97%)                    | +  | -          | -                     | +    | FA        | 10                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C291        | AB741810                           | XL(pH10,3.5%)    | 521     | posterior   | AB043851             | Bacillus wakoensis                            | 521/521 (100%)                   | -  | -          | -                     | +    | FA        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C295        | AB741811                           | S(pH10,3.5%)     | 515     | anterior    | DQ534014             | Photobacterium lutimaris                      | 512/515 (99%)                    | +  | -          | -                     | -    | FA        | 3.5                          | ALK       | proteobacteria | gamma                    |
| C298        | AB741812                           | S(pH10,3.5%)     | 816     | anterior    | HM054473             | Bacillus hunanensis                           | 815/816 (99%)                    | +  | -          | -                     | -    | FA        | 15                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C302        | AB741813                           | S(pH10,3.5%)     | 411     | anterior    | X74710               | Vibrio mediterranei                           | 407/411 (99%)                    | -  | +          | -                     | -    | FA        | 3.5                          | ALK       | proteobacteria | gamma                    |
| C304        | AB741814                           | S(pH10,3.5%)     | 540     | mid         | AJ842344             | Photobacterium rosenbergii                    | 535/540 (99%)                    | +  | -          | -                     | -    | FA        | 10                           | ALK       | proteobacteria | gamma                    |
| C305        | AB741815                           | S(pH10,3.5%)     | 683     | mid         | X76440               | Bacillus clausii                              | 673/677 (99%)                    | +  | -          | -                     | -    | FA        | 10                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C307        | AB741816                           | S(pH10,3.5%)     | 550     | posterior   | AB043846             | Bacillus hemicellulosilyticus                 | 547/550 (99%)                    | +  | +          | -                     | +    | AT        | 10                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C309        | AB741817                           | S(pH10,3.5%)     | 565     | posterior   | AJ842344             | Photobacterium rosenbergii                    | 560/565 (99%)                    | -  | +          | -                     | -    | FA        | 10                           | ALK       | proteobacteria | gamma                    |
| C310        | AB741818                           | S(pH10,3.5%)     | 623     | posterior   | AF057645             | Pseudomonas libanensis                        | 619/623 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | ALK       | proteobacteria | gamma                    |
| C312        | AB741819                           | S(pH10,3.5%)     | 516     | posterior   | AJ310647             | Vibrio agarivorans                            | 505/516 (97%)                    | +  | -          | +                     | -    | FA        | 10                           | ALK       | proteobacteria | gamma                    |
| C313        | AB741820                           | S(pH10,3.5%)     | 388     | posterior   | AB043865             | Bacillus horikoshii                           | 388/388 (100%)                   | +  | -          | -                     | -    | FA        | 10                           | ALK       | firmicutes     | family Bacillaceae 1     |
| C317        | AB741821                           | CMC(pH7,10%)     | 580     | anterior    | AB099708             | Bacillus vietnamensis                         | 579/580 (99%)                    | +  | -          | -                     | -    | FA        | 10                           | NE        | firmicutes     | family Bacillaceae 1     |
| C318        | AB741822                           | CMC(pH7,10%)     | 780     | anterior    | AJ831844/AJ831842    | Bacillus aerophilus/Bacillus altitudinis      | 780/780 (100%)                   | -  | -          | -                     | -    | AT        | 10                           | NE        | firmicutes     | family Bacillaceae 1     |
| C324        | AB741823                           | CMC(pH7,10%)     | 569     | mid         | AY543169             | Virgibacillus halodenitrificans               | 568/569 (99%)                    | -  | -          | -                     | -    | AT        | 20                           | NE        | firmicutes     | tamily Bacillaceae 2     |
| C327        | AB741824                           | CMC(pH7,10%)     | 811     | mid         | AB195680             | Halobacillus kuroshimensis                    | 808/811 (99%), Gaps = 2/811 (0%) | +  | -          | -                     | -    | AT        | 25                           | NE        | firmicutes     | tamily Bacillaceae 2     |
| C333        | AB741825                           | CMC(pH7,10%)     | 679     | posterior   | AY543169             | Virgibacillus halodenitrificans               | 675/676 (99%)                    | -  | -          | -                     | -    | AT        | 20                           | NE        | firmicutes     | tamily Bacillaceae 2     |
| C334        | AB741826                           | CMC(pH7,10%)     | 586     | posterior   | CP000002             | Bacillus licheniformis                        | 580/580 (100%)                   | +  | -          | -                     | -    | FA        | 15                           | NE        | firmicutes     | tamily Bacillaceae 1     |
| C335        | AB741827                           | CMC(pH7,10%)     | 808     | posterior   | AJ310149             | Halobacillus trueperi                         | 806/808 (99%)                    | +  | -          | -                     | -    | AT        | 20                           | NE        | firmicutes     | tamily Bacillaceae 2     |
| C336        | AB741828                           | CMC(pH7,10%)     | 740     | posterior   | AF483625             | Bacillus aquimaris                            | 735/740 (99%)                    | +  | -          | -                     | -    | AT        | 15                           | NE        | firmicutes     | family Bacillaceae 1     |
| C339        | AB741829                           | AL(pH7,10%)      | 589     | anterior    | AJ640134             | Oceanobacillus oncorhynchi                    | 577/589 (97%)                    | -  | -          | -                     | -    | AT        | 20                           | ALK       | firmicutes     | tamily Bacillaceae 2     |
| C341        | AB741830                           | AL(pH7,10%)      | 558     | anterior    | AJ831842/AJ831841    | Bacillus altitudinis/Bacillus stratosphericus | 558/558 (100%)                   |    | -          | -                     | -    | AT        | 10                           | NE        | firmicutes     | tamily Bacillaceae 1     |

| C344 | AB741831 | AL(pH7,10%)   | 768 | anterior  | AJ831844/AJ831842 | Bacillus aerophilus/Bacillus altitudinis | 768/768 (100%)                   | - | - | - | - | AT | 10  | NE  | firmicutes     | family Bacillaceae 1 |
|------|----------|---------------|-----|-----------|-------------------|------------------------------------------|----------------------------------|---|---|---|---|----|-----|-----|----------------|----------------------|
| C347 | AB741832 | AL(pH7,10%)   | 704 | anterior  | AY822043          | Virgibacillus dokdonensis                | 691/704 (98%)                    | - | - | - | - | AT | 10  | NE  | firmicutes     | family Bacillaceae 2 |
| C350 | AB741833 | AL(pH7,10%)   | 823 | mid       | AB195680          | Halobacillus kuroshimensis               | 816/820 (99%), Gaps = 3/820 (0%) | + | - | - | - | Α  | 20  | NE  | firmicutes     | family Bacillaceae 2 |
| C355 | AB741834 | AL(pH7,10%)   | 684 | mid       | AB195680          | Halobacillus kuroshimensis               | 682/685 (99%), Gaps = 2/685 (0%) | + | - | - | - | AT | 20  | NE  | firmicutes     | family Bacillaceae 2 |
| C358 | AB741835 | AL(pH7,10%)   | 753 | posterior | AF541966          | Bacillus hwajinpoensis                   | 746/749 (99%), Gaps = 1/749 (0%) | - | - | - | - | AT | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C359 | AB741836 | AL(pH7,10%)   | 528 | posterior | CP000002          | Bacillus licheniformis                   | 528/528 (100%)                   | + | - | - | - | AT | 10  | NE  | firmicutes     | family Bacillaceae 1 |
| C360 | AB741837 | AL(pH7,10%)   | 557 | posterior | AB099708          | Bacillus vietnamensis                    | 557/557 (100%)                   | + | - | - | - | AT | 10  | NE  | firmicutes     | family Bacillaceae 1 |
| C361 | AB741838 | AL(pH7,10%)   | 665 | posterior | AY543169          | Virgibacillus halodenitrificans          | 663/665 (99%)                    | - | - | - | - | AT | 20  | NE  | firmicutes     | family Bacillaceae 2 |
| C362 | AB741839 | AL(pH7,10%)   | 813 | posterior | AB195680          | Halobacillus kuroshimensis               | 810/814 (99%), Gaps = 2/814 (0%) | + | - | - | - | Α  | 25  | NE  | firmicutes     | family Bacillaceae 2 |
| C365 | AB741840 | AL(pH7,10%)   | 772 | posterior | AF483625          | Bacillus aquimaris                       | 760/772 (98%)                    | + | - | - | - | AT | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C367 | AB741841 | AL(pH7,10%)   | 520 | posterior | AF541966          | Bacillus hwajinpoensis                   | 515/520 (99%)                    | - | - | - | - | AT | 20  | NE  | firmicutes     | family Bacillaceae 1 |
| C370 | AB741842 | XL(pH7,10%)   | 420 | anterior  | AB101591          | Gracilibacillus dipsosauri               | 420/420 (100%)                   | + | - | + | - | AT | 15  | ALK | firmicutes     | family Bacillaceae 2 |
| C375 | AB741843 | XL(pH7,10%)   | 598 | anterior  | AB473561          | Oceanobacillus sojae                     | 596/598 (99%)                    | - | - | - | - | AT | 20  | ALK | firmicutes     | family Bacillaceae 2 |
| C377 | AB741844 | XL(pH7,10%)   | 760 | anterior  | AB195680          | Halobacillus kuroshimensis               | 758/761 (99%), Gaps = 2/761 (0%) | + | - | - | - | FA | 25  | ALK | firmicutes     | family Bacillaceae 2 |
| C379 | AB741845 | XL(pH7,10%)   | 533 | mid       | CP000002          | Bacillus licheniformis                   | 531/532 (99%)                    | + | - | - | - | FA | 15  | ALK | firmicutes     | family Bacillaceae 1 |
| C380 | AB741846 | XL(pH7,10%)   | 535 | mid       | X76440            | Bacillus clausii                         | 534/535 (99%)                    | - | - | - | - | AT | 25  | NE  | firmicutes     | family Bacillaceae 1 |
| C381 | AB741847 | XL(pH7,10%)   | 836 | mid       | AB195680          | Halobacillus kuroshimensis               | 831/837 (99%), Gaps = 2/837 (0%) | + | - | - | - | Α  | 20  | ALK | firmicutes     | family Bacillaceae 2 |
| C392 | AB741848 | XL(pH7,10%)   | 655 | posterior | CP000002          | Bacillus licheniformis                   | 653/655 (99%)                    | + | - | - | + | FA | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C397 | AB741849 | XL(pH7,10%)   | 568 | posterior | AJ842344          | Photobacterium rosenbergii               | 565/569 (99%), Gaps = 1/569 (0%) | + | - | - | - | FA | 15  | NE  | proteobacteria | gamma                |
| C416 | AB741850 | S(pH7,10%)    | 711 | mid       | CP000002          | Bacillus licheniformis                   | 710/711 (99%)                    | + | - | - | - | FA | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C417 | AB741851 | S(pH7,10%)    | 672 | posterior | CP000002          | Bacillus licheniformis                   | 671/672 (99%)                    | + | + | - | - | FA | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C431 | AB741852 | S(pH7,10%)    | 777 | posterior | AY543169          | Virgibacillus halodenitrificans          | 777/777 (100%)                   | - | - | - | - | AT | 20  | NE  | firmicutes     | family Bacillaceae 2 |
| C435 | AB741853 | CMC(pH7,3.5%) | 706 | anterior  | AJ491290          | Vibrio pomeroyi                          | 699/706 (99%), Gaps = 1/706 (0%) | + | + | - | - | FA | 3.5 | ALK | proteobacteria | gamma                |
| C442 | AB741854 | CMC(pH7,3.5%) | 531 | mid       | AJ491290          | Vibrio pomeroyi                          | 525/531 (98%)                    | + | + | - | - | FA | 3.5 | ALK | proteobacteria | gamma                |
| C444 | AB741855 | CMC(pH7,3.5%) | 421 | mid       | D16273            | Bacillus megaterium                      | 417/421 (99%)                    | + | + | - | - | AT | 10  | NE  | firmicutes     | family Bacillaceae 1 |
| C446 | AB741856 | CMC(pH7,3.5%) | 568 | mid       | AY876289          | Bacillus pumilus                         | 568/569 (99%)                    | - | - | - | + | FA | 10  | NE  | firmicutes     | family Bacillaceae 1 |
| C460 | AB741858 | AL(pH7,3.5%)  | 477 | anterior  | AJ491290          | Vibrio pomeroyi                          | 471/477 (98%)                    | + | + | - | - | FA | 3.5 | ALK | proteobacteria | gamma                |
| C463 | AB741859 | AL(pH7,3.5%)  | 462 | mid       | AF057645          | Pseudomonas libanensis                   | 461/462 (99%)                    | + | - | - | - | AT | 10  | ALK | proteobacteria | gamma                |
| C466 | AB741860 | AL(pH7,3.5%)  | 664 | posterior | AJ316187          | Vibrio rotiferianus                      | 662/664 (99%)                    | + | + | - | - | FA | 3.5 | ALK | proteobacteria | gamma                |
| C471 | AB741861 | XL(pH7,3.5%)  | 544 | anterior  | AF057645          | Pseudomonas libanensis                   | 542/544 (99%)                    | - | - | - | + | FA | 15  | NE  | proteobacteria | gamma                |
| C475 | AB741862 | XL(pH7,3.5%)  | 655 | anterior  | AJ316187          | Vibrio rotiferianus                      | 654/655 (99%)                    | + | + | - | - | FA | 15  | ALK | proteobacteria | gamma                |
| C483 | AB741863 | XL(pH7,3.5%)  | 673 | mid       | AF057645          | Pseudomonas libanensis                   | 671/673 (99%)                    | + | - | - | + | AT | 15  | ALK | proteobacteria | gamma                |
| C484 | AB741864 | XL(pH7,3.5%)  | 542 | mid       | AJ492830          | Pseudomonas cedrina                      | 540/542 (99%)                    | + | - | - | - | FA | 15  | ALK | proteobacteria | gamma                |
| C487 | AB741865 | XL(pH7,3.5%)  | 535 | mid       | AY750575          | Vibrio harveyi                           | 529/535 (98%)                    | - | + | - | - | FA | 15  | ALK | proteobacteria | gamma                |
| C494 | AB741866 | XL(pH7,3.5%)  | 761 | posterior | AJ831844          | Bacillus aerophilus                      | 761/761 (100%)                   | - | - | - | + | AT | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C503 | AB741867 | S(pH7,3.5%)   | 749 | anterior  | D16273            | Bacillus megaterium                      | 747/749 (99%)                    | + | - | - | - | FA | 10  | NE  | firmicutes     | family Bacillaceae 1 |
| C506 | AB741868 | S(pH7,3.5%)   | 540 | anterior  | AB021185          | Bacillus flexus                          | 538/540 (99%)                    | + | + | - | - | AT | 15  | NE  | firmicutes     | family Bacillaceae 1 |
| C512 | AB741869 | S(pH7,3.5%)   | 556 | mid       | AF057645          | Pseudomonas libanensis                   | 554/556 (99%)                    | + | - | - | + | FA | 10  | NE  | proteobacteria | gamma                |
| C520 | AB741870 | S(pH7,3.5%)   | 563 | mid       | AJ492830          | Pseudomonas cedrina                      | 561/564 (99%), Gaps = 1/564 (0%) | - | - | - | + | FA | 15  | NE  | proteobacteria | gamma                |
| C521 | AB741871 | S(pH7,3.5%)   | 669 | mid       | AY793550          | Bacillus lehensis                        | 668/669 (99%)                    | + | - | - | - | AT | 15  | ALK | firmicutes     | family Bacillaceae 1 |
| C528 | AB741872 | S(pH7,3.5%)   | 578 | posterior | AF057645          | Pseudomonas libanensis                   | 576/578 (99%)                    | - | + | - | + | FA | 10  | NE  | proteobacteria | gamma                |
| C538 | AB741873 | S(pH7,10%)    | 746 | posterior | AJ306891          | Halomonas meridiana                      | 746/746 (100%)                   | + | - | - | - | AT | 15  | ALK | proteobacteria | gamma                |
|      |          |               |     |           |                   |                                          |                                  |   |   |   |   |    |     |     |                |                      |