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Game theory has been extensively applied to elucidate the
evolutionary mechanism of cooperative behaviour. Dilemmas
in game theory are important elements that disturb the
promotion of cooperation. An important question is how to
escape from dilemmas. Recently, a dynamic utility function
(DUF) that considers an individual’s current status (wealth)
and that can be applied to game theory was developed.
The DUF is different from the famous five reciprocity
mechanisms called Nowak’s five rules. Under the DUF,
cooperation is promoted by poor players in the chicken
game, with no changes in the prisoner’s dilemma and stag-
hunt games. In this paper, by comparing the strengths of the
two dilemmas, we show that the DUF is a novel reciprocity
mechanism (sixth rule) that differs from Nowak’s five rules.
We also show the difference in dilemma relaxation between
dynamic game theory and (traditional) static game theory
when the DUF and one of the five rules are combined. Our
results indicate that poor players unequivocally promote
cooperation in any dynamic game. Unlike conventional rules
that have to be brought into game settings, this sixth rule is
universally (canonical form) applicable to any game because
all repeated/evolutionary games are dynamic in principle.
1. Background
The evolution of cooperation in human and animal societies is
enigmatic because a non-cooperative agent (defector) can obtain an
evolutionarily selective advantage by taking the benefits of social
contributions of other cooperators while avoiding the costs of
cooperation [1]. However, we often observe cooperative behaviour
in human and animal societies, even though society is constructed
by non-kin agents [2,3]. Game theory has been extensively studied
to explain how cooperation is promoted in human and animal
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societies [4–9]. One of the main foci of studies in game theory is the kind of reciprocity mechanisms that can

resolve social dilemmas that disturb the promotion and evolution of cooperative behaviour and how the
reciprocity mechanisms can allow players to escape from dilemmas [9–11]. In game theory, many 2 × 2
(pairwise) dilemma games have been built to investigate the types of reciprocity mechanisms that enable a
player to overcome conflicts of interests and promote cooperative behaviour [10,11]. We can denote the
pay-off matrix of pairwise games with two strategies: cooperation (C) and defection (D). The rewards of
players are determined by the pay-off matrix and the strategies that the players choose (equation (1.1)).

A ; [aij] ¼
C D

C
D

R S
T P

� �
: ð1:1Þ

This pay-off matrix means as follows: if both cooperate, they receive the ‘reward’ R; if both defect, they get
‘punishment’ P; and if one chooses cooperation while the other defects, the defector gets the ‘temptation’ T
and the cooperator left the pay-off of ‘sucker’ S [11].

In a pairwise game, there are two indicators with which to measure the strength of the dilemma
situation. One is the gamble-intending dilemma (GID), which appears because players try to exploit
their opponents, and the other is the risk-averting dilemma (RAD), which appears because players try
not to be exploited by their opponents [9,12–14]. The strengths of these two dilemmas, namely, the
GID and RAD, can be calculated from the elements of the pay-off matrix (equation (1.1)) [14]. Let Dg

0

and Dr
0 be the values of GID and RAD, respectively. Then, we obtain the following:

D
0
g ¼

T � R
R� P

ð1:2Þ

and

D
0
r ¼

P� S
R� P

: ð1:3Þ

Note that the following equations are established by defining [15]

T ¼ Rþ (R� P)D0
g ð1:4Þ

and

S ¼ P� (R� P)D0
r: ð1:5Þ

Depending on the strengths of these twodilemmas, the game can bedivided into four classes: a prisoner’s
dilemma (PD) game, a chicken game (also known as a snowdrift or hawk-dove game), a stag-hunt (SH) game
and a trivial gamewith nodilemma. Therefore,we can evaluate the evolution of cooperationmore precisely if
we quantitatively compare the two constitutional strengths of the reciprocity mechanisms in all pairwise
games (irrespective of the reciprocity mechanisms and finiteness properties) using a RAD–GID phase
plane diagram that consists of the two standardized measures (figure 1a) [15]. According to the concept of
universal scaling, the relaxation of these two types of dilemmas is expressed by shifting the x-axis (i.e. the
RAD-axis) and the y-axis (i.e. the GID-axis) of the RAD–GID phase plane diagram to the positive domain
[15]. In this paper, we refer to the D0

r �D0
g phase diagram without reciprocity as the ‘default’ (figure 1a).

Note that in the RAD–GID phase diagram, the first, second, third and fourth quadrants represent the PD,
chicken, trivial and SH game structures, respectively (figure 1a).

Nowak’s five reciprocity rules (i.e. direct reciprocity, indirect reciprocity, kin selection, group selection
and network reciprocity) work as reciprocity mechanisms to resolve (relax) social dilemmas and promote
cooperative behaviour [9,14,16]. These fundamental mechanisms are collectively known as social
viscosity. In our previous paper, we used a RAD–GID phase plane diagram to visually show how
Nowak’s five rules relax the dilemma structure [15]. Our results showed that Nowak’s five rules had
different relaxation functions for the two dilemma strengths [15].

Recently, however, the promotion of cooperation was reported in a chicken game using a dynamic utility
function (DUF) [17]. The DUF was developed in dynamic utility theory based on the maximization of a
stochastic growth process by applying the optimality principle of Bellman’s dynamic programming
[18,19]. Because dynamic utility theory optimizes Markov chains (stochastic processes) as a form of
sequential decision making, it maximizes the geometric mean of multiplicative growth rates [20]. The DUF
is derived as follows [21,22]. Let time t = 0,… ,T (final time), and let wt and rt represent wealth and the
growth rate, respectively, at time t. Note that rt (>0) is the non-negative state variable of a decision maker
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Figure 1. Phase planes of a pairwise game with coordinate movements with the introduction of a dynamic utility function.
The shaded background colours indicate the regions of trivial (blue), prisoner’s dilemma (PD) (red), chicken (yellow) and stag-
hunt (SH) (green) games. The default game classes for each coordinate are indicated by the colour of the dots. (a) Default
RAD–GID phase plane. (b,c) Transformed phase plane after the introduction of the DUF with R = 3 and P = 2. The current
wealth of the player is (b) w = 1 and (c) w = 0.1. The red squares indicate the default phase planes. The thick black arrows
indicate the relaxation and enhancement of the GID and RAD.
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(independent, identically distributed random variable). Let rt denote the multiplicative growth rate of
wealth at time t, such that wt+1 = rtwt. Wealth at the final time point, wT, is then expressed as follows: wT =
w0r0r1r2 · · · rT−1. We assume that the growth rates rt (t = 0,… ,T ) are independent, identically distributed
random variables that represent a stochastic process. The decision maker can optimize this
stochastic process by choosing the best option at every time point. Therefore, we maximize wealth at
the final time point T, wT, such that wT→max. The maximization of wT is equivalent to that of the
geometric mean growth rate, such that G(r) ¼ QT�1

i¼0 r1=Ti ! max. Taking the logarithm, we obtain
log {G(r)} ¼ 1=T

P
log (ri) ¼ E{log (r)}: ! max. Therefore, we can define the DUF u(r) for this

maximization as u(r) = log r. We now maximize the expected dynamic utility E(u) [23]. From the temporal
equation wt+1 = rtwt, we can rewrite rt =wt+1/wt = (gt +wt)/wt to obtain r = (g +w)/w, where g and w are
the current gain and current wealth, respectively. The growth utility formula is then rewritten in the form
of g (decision variable) given w (state variable), such that

u(g; w) ¼ log
gþ w
w

� �
, ð1:6Þ

and we maximize the expected utility E{u(g; w)}, which indicates that current wealth is the state variable for
maximization of final wealth. Thus, the derived dynamic utility is in the form of a logarithmic function
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(equation (1.6)). Note that the value of g satisfies−w < g. This analytical solution demonstrates that the utility

function depends on the current gain (decision variable) and the current wealth status (state variable) at the
time of decision making, as in dynamic programming [17–24]. These properties show that cooperative
behaviour evolves with the introduction of a DUF that accommodates the current wealth condition of
individuals (decision makers) without the known five reciprocity mechanisms. However, we cannot
explain why cooperation is promoted by poor players (whose current wealth, w, are very low) in the
chicken game but not in the PD game or SH game [17].

Here, we combine two new developments, namely, universal scaling parameters and the DUF.
Specifically, we apply the DUF to a traditional (well-mixed infinite population) 2 × 2 game and
analyse how it relaxes the strengths of the two dilemmas. By drawing the RAD–GID phase plane
diagram, we compare the dilemma relaxation mechanism of the DUF with that of the Nowak’s five
rules which were investigated in a previous study [15]. According to this comparison, we present that
the DUF has an entirely different dilemma relaxation mechanism from that of the all five rules. Then,
we show the dilemma relaxation when the DUF and one of the five rules are combined. We here
introduce the completely different pictures from previous studies that have achieved only an
understanding of the social dilemma relaxation mechanism of the five rules [15]. Our aim is to
demonstrate the difference between dynamic game theory and (traditional) static game theory. Finally,
we discuss and predict the evolution of cooperation in truly dynamic games.
i.7:200891
2. Methods
Here, we verify the two dilemma strengths of a 2 × 2 dynamic game comprising a pay-off matrix
(equation (1.1)). We assume an infinite, well-mixed population (i.e. an infinite number of agents) with
no previous social viscosities. Two individuals (players) are selected from an unlimited population at
random and asked to play the game. Players receive a reward depending on the selected strategies C
and D (equation (1.1)).
2.1. Dynamic utility function
Here, we introduce the concept of individual current status from the DUF, where w is the current wealth
of the player:

log
Rþ w
w

� �
log

Sþ w
w

� �

log
T þ w
w

� �
log

Pþ w
w

� �
0
BB@

1
CCA: ð2:1Þ

Then, the coordinates (D0
r, D

0
g) are transformed to (D0

r rev, D
0
g rev) by the DUF as follows:

D0
g rev ¼ log (ðT þ wÞ=w)� log (ðRþ wÞ=w)

log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼
log [(T þ w)=(Rþ w)]
log [(Rþ w)=(Pþ w)]

¼ fDUF(T,R,P) ¼ fDUF(D0
g,R,P) ð2:2Þ

and

D0
r rev ¼ log (ðPþ wÞ=w)� log (ðSþ wÞ=w)

log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼
log [(Pþ w)=(Sþ w)]
log [(Rþ w)=(Pþ w)]

¼ gDUF(S,R,P) ¼ gDUF(D0
r,R,P), ð2:3Þ

when R = 3 and P = 2, T and S are derived from equations (1.4) and (1.5) based on the values of D0
r and

D0
g. Therefore, when w = 1, the coordinates (D0

r, D
0
g) = {(1, 1), (−1, 1), (−1, −1) and (1, −1)} shift to (D0

r rev,
D0

g rev) = {(1.41, 0.78), (−1, 0.78), (−1, −1) and (1.41, −1)} by means of the DUF, respectively (figure 1b).
By introducing dynamic utility, i.e. the sixth reciprocity mechanism, the coordinates (D0

r, D
0
g) of the

default game are transferred to the new coordinates (D0
r rev, D

0
g rev) (figure 1). The DUF-transformed

diagram depends on the current wealth level w (figure 1b and c: w-dependence of the new diagram).
Mathematically, if current wealth w is small, the distortion of the dilemma structure is very large
compared with the static model. But when w→∞ (means a person becomes extraordinarily rich), this
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distortion disappears and converges to the solution for the static model

D0
g rev ¼ lim

w!1
log [(T þ w)=(Rþ w)]
log [(Rþ w)=(Pþ w)]

� �
¼ lim

w!1
log (1þ T=w)� log (1þ R=w)
log (1þ R=w)� log (1þ P=w)

� �
ffi T=w� R=w

R=w� P=w

¼ T � R
R� P

¼ D0
g ð2:4Þ

and

D0
r rev ¼ lim

w!1
log [(Pþ w)=(Sþ w)]
log [(Rþ w)=(Pþ w)]

� �
¼ lim

w!1
log (1þ P=w)� log (1þ S=w)
log (1þ R=w)� log (1þ P=w)

� �
ffi P=w� S=w

R=w� P=w
¼ P� S

R� P

¼ D0
r: ð2:5Þ

Thus, the static model is considered an approximate model of the DUF games for extremely rich
people, but not for the ordinary people.

Note that thedefault phaseplane is the regionenclosedby the red square. Thedefault gameclasses foreach
coordinate are indicated by the colour of the dot. For example, the red dot is the coordinate of the default PD
gamewithout any reciprocitymechanism. The introduction of reciprocitymechanisms enhances or relaxes the
strengths of the two dilemmas, and the phase plane is transformed into the black square from the red default
square. The transformation of the coordinates changes the game class in the regionwhere the dotmoved from
the same coloured background to another coloured background. For example, if a red dot moves to a region
with a green background, the game structure in that region has changed from a PD game to an SH game
due to the introduction of the reciprocity mechanism. These methods expand upon those detailed within
our previous work [15]. Note that the introduction of the DUF does not change the game class.

2.2. Direct reciprocity
R

1� l
Sþ lP

1� l

T þ lP
1� l

P
1� l

0
B@

1
CA: ð2:6Þ

Note that λ is the probability of two players meeting each other in another round. The coordinates (D0
r,

D0
g) are transferred to (D0

r rev, D
0
g rev) by direct reciprocity as follows:

D0
g rev ¼ (T þ ðlP=1� lÞ)� (R=ð1� lÞ)

(R=ð1� lÞ)� (P=ð1� lÞ) ¼ fDR(T,R,P) ¼ fDR(D0
g,R,P) ð2:7Þ

and

D0
r rev ¼

P
1� l

� �
� Sþ lP

1� l

� �

R
1� l

� �
� P

1� l

� � ¼ gDR(S,R,P) ¼ gDR(D0
r,R,P) ð2:8Þ

when R= 3 and P= 2, T and S are derived from equations (1.4) and (1.5) based on the values of D0
r and D0

g.
Therefore, when λ= 0.2, the coordinate (D0

r, D
0
g) = (1, 1) shifts to (D0

r rev, D
0
g rev) = (0.8, 0.6) by means of direct

reciprocity (figure 2a). Here, we also show the derivations of the dilemma strength of a game that applies one
of the other four reciprocity rules (i.e. indirect reciprocity, kin selection, group selection andnetwork reciprocity).

2.3. Indirect reciprocity
R (1� q)Sþ qP

(1� q)T þ qP P

� �
: ð2:9Þ

Note that q is the probability of knowing the reputation of another individual. The coordinates (D0
r, D

0
g)

are transferred to (D0
r rev, D

0
g rev) by indirect reciprocity as follows (figure 2a):

D0
g rev ¼ {(1� q)T þ qP}� R

R� P
¼ fIR(T,R,P) ¼ fIR(D0

g,R,P) ð2:10Þ

and

D0
r rev ¼ {(1� q)T þ qP}� {(1� q)Sþ qP}

R� P
¼ gIR(S,R,P) ¼ gIR(D0

r,R,P): ð2:11Þ

Note that direct reciprocity and indirect reciprocity of the same strength will transfer the phase plane to
the same coordinates [25].
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Figure 2. Transformation of the default phase plane (–1 � D0g, D
0
r � þ1) with the introduction of the DUF and three rules (direct

reciprocity, indirect reciprocity and kin selection) in all 2 × 2 games. The shaded background colours indicate the regions of trivial (blue),
prisoner’s dilemma (PD) (red), chicken (yellow) and stag-hunt (SH) (green) games. The default game classes for each coordinate are
indicated by the colour of the dots. Transformed phase plane with the introduction of (a–c) direct reciprocity or indirect reciprocity and
(d–f ) kin selection. Direct reciprocity and indirect reciprocity both transfer the phase plane to the same coordinates. (b,e) The DUF for
the rich player (w = 1) and (c,f ) that for the poor player (w = 0.1) are introduced. The origin in the default (white circle) moves in the
direction of the points indicated by pink arrows. The red squares indicate the default phase planes. The thick black arrows indicate the
relaxation and enhancement of the GID and RAD. The basic parameters of the pay-off matrix are fixed as R = 3 and P = 2.
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2.4. Kin selection
R

Sþ rT
1þ r

T þ rS
1þ r

P

0
BB@

1
CCA: ð2:12Þ

Note that r is the average relatedness between interacting individuals. The coordinates (D0
r, D

0
g) are

transferred to (D0
r rev, D

0
g rev) by kin selection as follows (figure 2d ):

D0
g rev ¼

T þ rS
1þ r

� �
� R

R� P
¼ fKS(T,R,P) ¼ fKS(D0

g,R,P) ð2:13Þ

and

D0
r rev ¼

P� Sþ rT
1þ r

� �

R� P
¼ gKS(S,R,P) ¼ gKS(D0

r,R,P): ð2:14Þ
2.5. Group selection
(mþ n)R nSþmR
nT þmP (mþ n)P

� �
: ð2:15Þ

Note that m is the number of groups and n is the maximum size of a group. The coordinates (D0
r, D

0
g) are

transferred to (D0
r rev, D

0
g rev) by group selection as follows (figure 3a):

D0
g rev ¼ (nT þmP)� (mþ n)R

(mþ n)R� (mþ n)P
¼ fGS(T,R,P) ¼ fGS(D0

g,R,P) ð2:16Þ
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and

D0
r rev ¼ (mþ n)P� (nSþmR)

(mþ n)R� (mþ n)P
¼ gGS(S,R,P) ¼ gGS(D0

r,R,P): ð2:17Þ

2.6. Network reciprocity
R SþH

T �H P

� �
: ð2:18Þ

The term H is defined as follows:

H ¼ (k þ 1)(R� P)� T þ S
(k þ 1)(k � 2)

: ð2:19Þ

Note that k is the number of neighbours. The coordinates (D0
r, D

0
g) are transferred to (D0

r rev, D
0
g rev) by

direct reciprocity as follows (figure 3d ):

D0
g rev ¼ (T �H)� R

R� P
¼ fNR(T,R,P) ¼ fNR(D0

g,R,P) ð2:20Þ

and

D0
r rev ¼ P� (SþH)

R� P
¼ gNR(S,R,P) ¼ gNR(D0

r,R,P): ð2:21Þ

D0
r rev and D0

g rev are derived according to equations (2.2)–(2.3) (DUF), equations (2.7)–(2.8) (direct
reciprocity), equations (2.10)–(2.11) (indirect reciprocity), equations (2.13)–(2.14) (kin selection), equations
(2.16)–(2.17) (group selection) or equations (2.20)–(2.21) (network reciprocity). Note that the last two
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terms in each of equations (2.2)–(2.3), (2.7)–(2.8), (2.10)–(2.11), (2.13)–(2.14), (2.16)–(2.17) and (2.20)–(2.21)

are equal because equations (1.4) and (1.5) are established by definition. Equations (2.2)–(2.3), (2.7)–(2.8),
(2.10)–(2.11), (2.13)–(2.14), (2.16)–(2,17) and (2.20)–(2.21) suggest a conversion rule of representation, i.e.
(D0

r, D0
g) ! (D0

r rev, D0
g rev). Note that these calculations of coordination transformation by five rules

are detailed within our previous work (i.e. equations (2.6)–(2.21)) [15].
The shift in new coordinates (D0

r rev, D
0
g rev) by the DUF is different from that under all the previous five

rules. Unlike Nowak’s five rules, the DUF simultaneously relaxes the GID and enhances the RAD (figure 1):
the DUF does not unilaterally enhance the negative value of dilemma strength (figure 1b and c). Moreover,
the introduction of the DUF does not change the game class. By contrast, the five reciprocity rules can cause
three types of changes in game class by shifting the origin of the coordinates: (i) PD to chicken, (ii) PD to SH,
and (iii) PD to trivial (no dilemmas). The DUF is unique in the enhancement of dilemma strength and is the
only rule that can cause enhancement of the RADwhile relaxing the GIDwithout changes in the origin. No
other rules lead to the enhancement of any dilemma upon introduction.
R.Soc.Open
Sci.7:200891
3. Analysis
We combine the concept of DUF with the five reciprocity rules; thus, the player, considering their current
wealth, plays a game in which one of the five reciprocity rules works. Each combination of reciprocity
mechanisms is calculated as follows.

3.1. Combining dynamic utility function and direct reciprocity

log
{R=(1� l)}þ w

w

� �
log

{Sþ lP=(1� l)}þ w
w

� �

log
{T þ lP=(1� l)}þ w

w

� �
log

{P=(1� l)}þ w
w

� �
0
BB@

1
CCA: ð3:1Þ

Again, λ is the probability of two players meeting each other in another round, and w is the current
wealth of a player. The coordinates (D0

r, D
0
g) are transferred to (D0

r rev2, D
0
g rev2) by DUF and direct

reciprocity as follows (figure 2b and c):

D0
g rev2 ¼

log (ð{T þ lP=(1� l)}þ wÞ=w)� log (ð{R=(1� l)}þ wÞ=w)
log (ð{R=(1� l)}þ wÞ=w)� log (ð{P=(1� l)}þ wÞ=w) ¼ fDUF&DR(T,R,P)

¼ fDUF&DR(D0
g,R,P) ð3:2Þ

and

D0
r rev2 ¼

log (ð{P=(1� l)}þ wÞ=w)� log (ð{Sþ lP=(1� l)}þ wÞ=w)
log (ð{R=(1� l)}þ wÞ=w)� log (ð{P=(1� l)}þ wÞ=w) ¼ gDUF&DR(S,R,P)

¼ gDUF&DR(D0
r,R,P): ð3:3Þ
3.2. Combining dynamic utility function and indirect reciprocity

log
Rþ w
w

� �
log

{(1� q)Sþ qP}þ w
w

� �

log
{(1� q)T þ qP}þ w

w

� �
log

Pþ w
w

� �
0
BB@

1
CCA: ð3:4Þ

Again, q is the probability of knowing the reputation of another individual, and w is the current wealth of
a player. The coordinates (D0

r, D
0
g) are transferred to (D0

r rev2, D
0
g rev2) by DUF and indirect reciprocity as

follows (figure 2b and c):

D0
g rev2 ¼

log
{(1� q)T þ qP}þ w

w

� �
� log

Rþ w
w

� �

log
Rþ w
w

� �
� log

Pþ w
w

� � ¼ fDUF&IR(T,R,P) ¼ fDUF&IR(D0
g,R,P) ð3:5Þ
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and

D0
r rev2 ¼

log
Pþ w
w

� �
� log

{(1� q)Sþ qP}þ w
w

� �

log
Rþ w
w

� �
� log

Pþ w
w

� � ¼ gDUF&IR(S,R,P) ¼ gDUF&IR(D0
r,R,P): ð3:6Þ

Again, direct reciprocity and indirect reciprocity of the same strength will transfer the phase plane to the
same coordinates [25].

3.3. Reciprocity mechanism combining dynamic utility function and kin selection

log
Rþ w
w

� �
log

{(Sþ rT)=(1þ r)}þ w
w

� �

log
{(T þ rS)=(1þ r)}þ w

w

� �
log

Pþ w
w

� �
0
BB@

1
CCA: ð3:7Þ

Again, r is the average relatedness between interacting individuals, andw is the currentwealth of aplayer. The
coordinates (D0

r,D
0
g) are transferred to (D0

r rev2, D
0
g rev2) by DUF and kin selection as follows (figure 2e and f ):

D0
g rev2 ¼

log (ð{(T þ rS)=(1þ r)}þ wÞ=w)� log (ðRþ wÞ=w)
log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼ fDUF&KS(T,R,P) ¼ fDUF&KS(D0

g,R,P) ð3:8Þ

and

D0
r rev2 ¼

log (ðPþ wÞ=w)� log (ð{(Sþ rT)=(1þ r)}þ wÞ=w)
log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼ gDUF&KS(S,R,P) ¼ gDUF&KS(D0

r,R,P): ð3:9Þ

3.4. Combining dynamic utility function and group selection

log
(mþ n)Rþ w

w

� �
log

(nSþmR)þ w
w

� �

log
(nT þmP)þ w

w

� �
log

(mþ n)Pþ w
w

� �
0
BB@

1
CCA: ð3:10Þ

Again,m is thenumberof groups,n is themaximumsizeof agroupandw is the currentwealthof aplayer. The
coordinates (D0

r,D
0
g) are transferred to (D0

r rev2,D
0
g rev2) byDUFandgroup selection as follows (figure 3b and c):

D0
g rev2 ¼

log (ð(nT þmP)þ wÞ=w)� log (ð(mþ n)Rþ wÞ=w)
log (ð(mþ n)Rþ wÞ=w)� log (ð(mþ n)Pþ wÞ=w) ¼ fDUF&GS(T,R,P) ¼ fDUF&GS(Dg

0,R,P) ð3:11Þ

and

D0
r rev2 ¼

log
(mþ n)Pþ w

w

� �
� log

(nSþmR)þ w
w

� �

log
(mþ n)Rþ w

w

� �
� log

(mþ n)Pþ w
w

� � ¼ gDUF&GS(S,R,P) ¼ gDUF&GS(D0
r,R,P): ð3:12Þ

3.5. Combining dynamic utility function and network reciprocity

log
Rþ w
w

� �
log

SþH þ w
w

� �

log
T �H þ w

w

� �
log

Pþ w
w

� �
0
BB@

1
CCA: ð3:13Þ

Again, k is the number of neighbours and w is the current wealth of a player. The coordinates (D0
r, D

0
g) are

transferred to (D0
r rev2, D

0
g rev2) by DUF and network reciprocity as follows (figure 3e and f ):

D0
g rev2 ¼

log (ðT �H þ wÞ=w)� log (ðRþ wÞ=w)
log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼ fDUF&NR(T,R,P) ¼ fDUF&NR(D0

g,R,P) ð3:14Þ
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and

D0
r rev2 ¼

log (ðPþ wÞ=w)� log (ðSþH þ wÞ=w)
log (ðRþ wÞ=w)� log (ðPþ wÞ=w) ¼ gDUF&NR(S,R,P) ¼ gDUF&NR(D0

r,R,P): ð3:15Þ

D0
r rev2 and D0

g rev2 are derived as equations (3.2)–(3.3) (DUF & direct reciprocity), equations (3.5)–(3.6)
(DUF & indirect reciprocity), equations (3.8)–(3.9) (DUF & kin selection), equations (3.11)–(3.12) (DUF &
group selection) and equations (3.14)–(3.15) (DUF & network reciprocity). Again, the last two terms in
each of equations (3.2)–(3.3), (3.5)–(3.6), (3.8)–(3.9), (3.11)–(3.12) and (3.14)–(3.15) are equal because
equations (1.4) and (1.5) are established by definition. Equations (3.2)–(3.3), (3.5)–(3.6), (3.8)–(3.9),
(3.11)–(3.12) and (3.14)–(3.15) suggest a conversion rule of representation, i.e. (Dr

0, Dg
0) ! (Dr

0
rev2, Dg

0
rev2).
rnal/rsos
R.Soc.Open

Sci.7:200891
4. Discussion
The current study is very similar to our previous study [15]. However, this is distinctively different in the
findings. DUF is a dynamic version of the utility function, whereas the traditional utility function
assumes the independence from current wealth, that is, a static model. Game theory by its definition
should be dynamic as long as players repeat games. In this sense, the five rules should be
fundamentally viewed not under the static utility functions, but under DUF. We here call the DUF the
sixth reciprocity mechanism because it modifies the elements of a pay-off matrix, as the Nowak’s
five rules do. However, we should note that the current DUF model is not a functional mechanism,
unlike the Nowak’s five rules, but a more realistic model considering the effects of current wealth in
the optimization of individual behaviour. We here show that DUF changes the traditional view of
dilemma structure that has been assumed under static, or quasi-static model of the von Neumann–
Morgenstern axioms. Thus, we showed that the dilemma structures under DUF are what we have to
look for when we consider all other dilemma relaxation rules.

We analysed the dilemma strength of a game with a sixth reciprocity mechanism, a DUF, compared
with that of a game with Nowak’s five rules. The current result explains why the DUF promotes
cooperative behaviour only in a chicken game [17]. RAD enhancement by the DUF means that the
DUF strengthens the dilemma under the SH game (figure 1). We should also note that the coordinates
change in the chicken and trivial regions in the DUF (see the grids of these regions in figure 1b and
c). An increase in the wealth level w in the DUF decreases the degree of relaxation/enhancement
towards the default (figure 1). This result is consistent with previous analysis of a dynamic game
(with a DUF) that becomes a static game as wealth w→∞ [17]. These properties of the DUF are
distinct from those of Nowak’s five rules of relaxation [15,16].

Under the DUF, the GID is relaxed and the RAD is amplified simultaneously in the same game
structure (figure 1b and c). This fact is intuitive because the GID relegates humans to defective
behaviours that deviate from cooperative actions more than the RAD does in social contexts. Note
that the GID is inspired by an ambitious intention to exploit others more seriously, while the RAD is
caused by the fear of being exploited by others. In other words, the GID is an indicator of the
intention of exploitation, while the RAD is an indicator of the avoidance of exploitation [9]. Therefore,
the relaxation of the GID is more critical to the development of cooperative behaviour. In this sense,
the DUF should have played an important role in the evolution of animal and human societies.

We assume that the pay-off (utility) matrix depends on the player’s current state, but more realistically,
we can expect that the pay-off matrix also depends on the current state of opponent [24,26]. We also
currently assume that rt are independent, identically distributed random variables (i.e. i.i.d.r.v.). In
future, this condition may be relaxed, for example, depending on the current wealth, because growth
rates are more likely to be depending on it. This random variable is more likely to be dependent on the
current wealth. However, any changes in the current conditions remain to be unsolved, invoking the
difficulty in analytic derivations.

The concept of the DUF, which considers the player’s current wealth, can be combined with five
reciprocity rules. All combinations of the DUF and five rules work effectively to relax the dilemma
strength (figures 2, 3 and 4). In particular, the GID is dramatically relaxed by a combination of
reciprocity mechanisms because both the DUF and the five rules relax the GID. By contrast, the DUF
enhances the RAD; thus, the combinations of the DUF and five rules cannot be expected to relax the
RAD. If the effect of the DUF is strong (i.e. the current wealth of player is small), the RAD may be
enhanced by the DUF, despite RAD relaxation according to the five rules. However, as mentioned
above, the GID is a more critical obstacle than the RAD for the promotion of cooperation. Therefore,
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Figure 4. Transformation of the default phase plane (–1 � D0g, D
0
r � þ1) with the introduction of the combined reciprocity

mechanism of all five rules and the DUF in all 2 × 2 games. The shaded background colours indicate the regions of trivial
(blue), prisoner’s dilemma (PD) (red), chicken (yellow) and stag-hunt (SH) (green) games. The default game classes for each
coordinate are indicated by the colour of the dots. (a) Default phase plane. (b–f ) Transformed phase plane with the
introduction of the DUF and (b) direct reciprocity, (c ) indirect reciprocity, (d) kin selection, (e) group selection and ( f ) network
reciprocity. The origin in the default (white circle) moves in the direction of the points indicated by pink arrows. The red
squares indicate the default phase planes. The thick black arrows indicate the relaxation and enhancement of the GID and
RAD. The basic parameters of the pay-off matrix are fixed as R = 3 and P = 2.
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the combination of the DUF and the five reciprocity mechanisms is a highly effective promotion
mechanism of cooperative behaviour in pairwise games.

The concept of the DUF is a possible alternative framework to the five reciprocity protocols elucidated
by Nowak, leading to the evolution of mutual cooperation. More importantly, any games played by
human and animal societies are dynamic [17,24]. Therefore, the current DUF should apply to any
game in any society. This universality means that a game with the DUF is a true dynamic game that
should follow the canonical form of games.
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