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Abstract 45 

Objective: To investigate whether innate immunity is involved in the apoptosis of 

primary cultured salivary gland epithelial cells (SGECs) in primary Sjögren’s 

syndrome (pSS). 

Methods: Induction of apoptosis of SGECs was performed using a TLR3 ligand, poly 

(I:C). Activation of phosphorylated-Akt (pAkt) and cleaved-caspase 3 was determined 50 

by Western blotting or immunofluorescence.  

Results: Expression of TLR2 and TLR3 with pAkt was observed in cultured SGECs 

after 24 hours stimulation with each ligand. Compared to stimulation with the peptide 

glycan or lipopolysaccharide, that with poly (I:C) induced significant nuclear 

fragmentation, as determined by Hoechst staining (p=0.0098). Apoptosis was 55 

confirmed by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling 

(TUNEL) staining of SGECs from pSS patients and a normal subject. A significant 

increase in TUNEL-positive cells was observed by the addition of a PI3K inhibitor, 

LY294002. Poly (I:C) phosphorylated stress-activated protein kinase/Jun-terminal 

kinase and p44/42 MAP kinase as well as Akt. Furthermore, poly (I:C)-induced 60 

caspase 3 cleavage in SGECs was also inhibited by LY294002. Similar results were 

obtained using SGECs obtained from a normal subject.  

Conclusion: The results demonstrated for the first time that TLR3 induces the 

apoptotic cell death of SGECs via the PI3K-Akt signaling pathway. 

  65 
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Abbreviations: interferon (IFN); interferon (IFN) regulatory factor 3 (IRF3); 

fluorescein isothiocyanate (FITC); lipopolysaccharide (LPS); labial salivary gland 

(LSG); mitogen-activated protein (MAP); phosphate-buffered saline (PBS); 70 

peptidoglycan (PGN); phosphatidylinositol 3-kinase (PI3K); primary Sjögren’s 

syndrome (pSS); salivary gland epithelial cells (SGECs); TIR domain-containing 

adaptor-inducing IFNβ (TRIF); tetramethyl rhodamine isothiocyanate (TRITC); 

terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL).  
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Introduction 

   Toll-like receptors (TLRs) are known as intermediation receptors involved in 

innate immunity (1). Some TLRs are signaling adaptor molecules that are stimulated 

by bacterial or viral nucleic acid sequences (2, 3). We previously reported the 

expression of TLR2, 3, and 4 in labial salivary glands (LSGs) obtained from patients 95 

with primary Sjögren’s syndrome (pSS) (4) showing sicca symptoms due to salivary 

gland destruction (5, 6). These 3 types of TLRs have been shown to be expressed in a 

human salivary gland (HSG) cell line, as well as in LSGs from pSS patients in vitro 

(4). Additionally, in vitro stimulation of an immortalized human salivary gland cell 

line, HSG cells, with TLR ligands did not induce Akt phosphorylation but rather the 100 

phosphorylation of mitogen-activated protein kinases (MAPKs)(4). However, no 

detailed kinetic analyses of apoptotic signals and Akt activation in cultured primary 

salivary gland epithelial cells (SGECs) of pSS patients has been conducted to date. In 

our series of studies, apoptotic sensitivity to pro-apoptotic signaling in SGECs was 

differed from that in HSGs (7, 8). For instance, a significant difference in sensitivity to 105 

anti-Fas antibody was observed between these cell types. Although HSGs showed 

sensitivity to a single stimulation with anti-Fas antibody, cultured SGECs required 

stimulation with both anti-Fas antibody and phosphoinositide-3-kinase (PI3K) 

inhibitor to induce apoptosis (7). Since recent studies have shown that TLRs can 

induce apoptosis in certain types of cells such as human breast tumor cells (9, 10), it is 110 

reasonable to speculate that SGECs and HSGs may respond differently to TLR ligands. 

Thus, findings obtained thus far with SGECs appear to be more relevant to the clinical 

setting than those of series using HSGs. In the present study, we investigated 
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TLR-mediated cell death and the expression of relevant anti-apoptotic molecules in 

the SGECs of pSS patients. 115 

Materials and Methods 

Patients  

 This study contained 3 female patients with pSS (age: 62.7 ± 4.7). Diagnosis of 

pSS was determined by the revised criteria proposed by the American-European 

Consensus Group (11, 12). SGECs obtained from a 59-year-old female who showed 120 

sicca symptoms without a diagnosis of pSS were used as the normal control. Labial 

salivary gland (LSG) biopsies were performed after informed consent was obtained 

from all participants. The study was conducted in accordance with the human 

experimental guidelines of our institution. 

 125 

Antibodies and reagents 

 Anti-cleaved caspase 3 rabbit monoclonal antibody, phosphorylated-Akt S473, 

phosphorylated stress-activated protein kinase/Jun-terminal kinase (SAPK/JNK), 

phosphorylated p38 MAP kinase and phosphorylated p44/42 MAP kinase rabbit 

polyclonal antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, 130 

MA, USA). Polyclonal goat anti-TLR2, 3, and 4 antibodies were purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA). Secondary antibodies including 

donkey anti-mouse IgG conjugated with fluorescein isothiocyanate (FITC) and 

donkey anti-rabbit IgG conjugated with tetramethyl rhodamine isothiocyanate 

(TRITC) were purchased from Jackson ImmunoResearch Laboratories, Inc. (West 135 

Grove, PA, USA). Hoechst dye 33258 was purchased from Sigma (St. Louis, MO, 
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USA). The selective PI3K inhibitor LY294002 was purchased from Calbiochem (La 

Jolla, CA, USA). Peptidoglycan (PGN) from Staphylococcus aureus and poly (I:C) 

were purchased from InvivoGen (San Diego, CA, USA) and lipopolysaccharide (LPS) 

from Escherichia coli was purchased from Sigma (St. Louis, MO, USA). 140 

 

Culture of primary salivary epithelial cells 

 The method used for culturing SGECs from pSS patients has been described in 

our previous reports (7, 8). Briefly, minor salivary gland tissue was excised and 

cultured in a defined keratinocyte-SFM culture medium (Invitrogen Life Technologies, 145 

Carlsbad, CA, USA) supplemented with hydrocortisone (Sigma) and bovine pituitary 

extract (Kurabo, Osaka, Japan). For immunofluorescence studies, the SGECs were 

cultured on 12-mm2 cover slips that were prospectively coated with a Type I collagen, 

Cellmatrix (Nitta Gelatin, Inc., Osaka, Japan).  

 150 

Immunofluorescence  

The SGECs on 12-mm2 cover slips were incubated for 10 min in PBS containing 4% 

paraformaldehyde at 4°C, and the cells were subsequently immersed in methanol at 

-20°C for 10 min. After the reaction was blocked in 5% normal horse serum in PBS, 

the SGECs were incubated in the primary antibodies for 1 hour at room temperature. 155 

After the cells were washed three times in PBS, the SGECs were incubated with 

FITC-labeled and TRITC-labeled secondary antibodies in medium supplemented with 

Hoechst dye 33258 under dark conditions. After incubation with the secondary  

antibodies, the SGECs were mounted in Vectashield mounting medium (Vector  
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Laboratories, Inc., Burlingame, CA, USA), and were scanned by confocal microscopy  160 

(LSM5, PASCAL; Carl Zeiss, Jena, Germany). Control experiments were performed  

to confirm the isotype specificity of the secondary antibodies. 

 

Induction of apoptosis 

 165 

After 12 hours of growth-supplement starvation, the primary cultured SGECs were 

treated with poly (I:C) (final concentration: 25 µg/ml) for 24 hours.  

 

Terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) 

staining  170 

For the detection of apoptosis, TUNEL staining was employed to demonstrate 

double-stranded DNA breaks, as shown in our previous study (13). After the SGECs 

were fixed in 4% PFA 4°C for 15 minutes followed by immersion in PBS with 0.5% 

Tween 20 and 0.2% bovine serum albumin using the MEBSTAIN Apoptosis kit 

Direct (MBL, Nagoya, Japan). The SGECs were incubated with a 50-ul terminal 175 

deoxynucleotidyl transferase (TdT) solution at 37°C for 1 hour. The stained SGECs 

were captured by confocal microscopy and analyzed by WinROOF software (Mitani 

Corporation, Fukui, Japan) (14).  

 

Western blot analysis  180 

 The method used for Western blot analysis has also been described in our previous 

reports (8). Briefly, the SGECs were lysed and the protein concentrations were  
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determined, and identical amounts of protein were subjected to 12.5% sodium dodecyl  

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After the proteins were  

transferred to a polyvinylidene fluoride filter, blocking for 1 hour using 5% nonfat  185 

dried milk in Tris-buffered saline containing 0.1% Tween 20 was performed, after  

which the cells were incubated at 4°C overnight with anti-cleaved caspase  

3 rabbit monoclonal antibody, phosphorylated-Akt S473,  

phosphorylated stress-activated protein kinase/Jun-terminal kinase (SAPK/JNK),  

phosphorylated p38 MAP kinase and phosphorylated p44/42 MAP kinase rabbit  190 

polyclonal antibodies. After incubation with a 1:1000 dilution of donkey anti-rabbit  

IgG, coupled with horseradish peroxidase, detection with an enhanced  

chemiluminescence (ECL) system (Amersham, Arlington Heights, IL, USA) was  

performed. For statistical analysis, the Student-t test was used (p<0.05; considered as  

statistically significant).  195 

 

Results 

Expression of TLRs and phosphorylated Akt in primary SGECs with TLR ligand 

stimulation 

We initially examined the expression of 3 types of TLR in primary cultured 200 

SGECs stimulated by TLR ligands (Fig. 1, panel A). Although TLR2 and TLR3 were 

detected in the cell membrane or cytoplasm in the presence of PGN and poly (I:C), no 

TLR4 signal was detected (Fig. 1, panel B). Phosphorylated Akt was also detected in 

the presence of PGN and poly (I:C).  

  205 
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Frequency of nuclear fragmentation under the presence of TLR ligands in 

primary SGEC from pSS patients and a normal subject 

 Nuclear fragmentation was detected by use of Hoechst staining in pSS 

patients. When 100 cells in 3 different fields were counted to quantify the fragmented 

cells, poly (I:C) stimulation induced a statistically significant amount of fragmentation 210 

(p value = 0.0098, determined by Student’s t test, p<0.05; statistically significant) 

compared to that induced by PGN or LPS (Fig. 2, left panel). For the normal subject, 

poly (I:C) stimulation also induced significant nuclear fragmentation (p value = 

0.0023). A representative fragmentation in a pSS patient was observed (Fig. 2, right 

panel). 215 

 

Detection of poly (I:C)-induced apoptosis by TUNEL assay 

To determine whether the fragmentation determined by Hoechst staining was 

due to cell death, TUNEL staining was employed. Twenty-four hours after stimulation 

with poly (I:C) in SGECs from pSS patients, nuclear fragmentation was detected by 220 

bright-field and Hoechst staining. The Hoechst-positive cells were merged, as shown 

by TUNEL staining (Fig. 3, panel A). Furthermore, poly (I:C)-induced 

TUNEL-positive cells had merged, as determined by Hoechst staining in the SGECs 

from one normal subject (Fig. 3, panel B). Poly (I:C)-induced apoptosis detected by 

TUNEL staining (Fig. 4, upper panel) in pSS patients and the normal control was 225 

quantified by converting the TUNEL-positive signal (green) into a pink signal, as 

observed with an image analyzer (Fig. 4, lower panel); significant acceleration of 

poly (I:C)-induced apoptosis was seen, as was subsequent inhibition by the addition of 
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a PI3K inhibitor, LY294002, in both groups (Fig. 4, right panel). There was also 

significant difference of poly (I:C)-induced apoptosis between in both groups 230 

(p<0.01).  

 

Akt phosphorylation at the poly (I:C)-induced apoptotic site 

To determine whether the phosphorylation of Akt is associated with the poly 

(I:C)-induced cell death of SGECs, immunostaining of phosphorylated Akt and TLR3 235 

was performed at the site of nuclear fragmentation determined by Hoechst staining. In 

the SGECs from pSS patients, clear expression of TLR3 and phosphorylated Akt was 

observed in concert with nuclear fragmentation (Fig. 5, left panel). In the normal 

subject, poly (I:C)-induced expression of TLR3 and phosphorylated Akt was observed 

at the site of nuclear fragmentation (Fig. 5, right panel). In the normal subject, poly 240 

IC-induced expression of TLR3 and phosphorylated Akt was also observed in cells 

lacking nuclear fragmentation (Fig. 5, lower panel), which was similar to the 

co-expression of TLR3 and phosphorylated Akt found in patients with pSS described 

in Fig. 1 (panel B). 

 245 

Poly (I:C)-induced MAP kinases cleavage of caspase 3 and reversal of effect by 

PI3K inhibitor 

Poly (I:C)-induced expression of MAP kinases including phosphorylated 

stress-activated protein kinase/Jun-terminal kinase (SAPK/JNK), phosphorylated p38 

MAP kinase and phosphorylated p44/42 MAP kinase was performed. Phosphorylation 250 

of SAPK/JNK and p44/42 MAP kinase was observed, although phosphorylation of 
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p38 was not found. In addition, poly (I:C)-induced signal of phosphorylated 

SAPK/JNK and p44/42 MAP kinase in pSS was stronger than that in a normal subject. 

Slight phosphorylation of Akt induced by poly (I:C) was also found. Poly 

(I:C)-induced cleavage of caspase 3 was examined by Western blot analysis (Fig. 6). 255 

Poly (I:C) stimulation clearly revealed cleavage of caspase 3 in the pSS-SGEC lysate 

by Western blotting, and this result was also obtained in the case of the lysate from the 

normal subject. Furthermore, cleavage of caspase 3 induced by poly (I:C) was 

reversed by the addition of LY294002.  

 260 

Discussion 

 In this study, TLR-induced apoptosis was clearly observed in the SGECs of 

pSS patients, as well as in a normal subject. Hsu et al (15) initially demonstrated that 

TLRs had the potential to induce MyD88-independent apoptosis in the presence of the 

protein kinase PKR. Liew et al (16) reported that TLR2, TLR3, and TLR4 could 265 

induce caspase-dependent or -independent apoptosis, in which MyD88-dependent and 

TIR domain-containing adaptor-inducing IFNβ (TRIF)-dependent pathways were 

initiated. In addition, Khvalevsky et al (10) reported that TLR3 signaling also induced 

apoptosis in specific cell lines. Usually, in TLR3 signaling, TRIF is recruited after 

ligand binding, followed by the activation of NF-κB (17) and interferon (IFN) 270 

regulatory factor 3 (IRF3). However, some cell lines showed no induction of NF-κB 

or IRF3; instead, TLR3-dependent cell death was induced in these cell lines. However, 

in the report (10) by Khvalevsky and co-workers, higher levels of poly (I:C)-induced 

apoptosis were observed in a colon adenocarcinoma cell line, HepG2, then in a 
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hepatoma cell line, Huh7, or in a human embryonic kidney cell line, HEK293, which 275 

suggested that sensitivity to poly (I:C) might be cell-species specific. One explanation 

for such a difference in apoptotic sensitivity was suggested by Meylan et al (18), who 

previously noted that RIP1 activity was required in TLR3 signaling, which indicated 

that in some cell species, the ability of RIP1 to induce caspase activation was 

impaired.  280 

 With regard to the involvement of Akt in TLR3 signaling, Sarkar et al (19) 

revealed that the PI3K-Akt pathway was crucial for TLR3-mediated double-strand 

RNA-induced genes such as ISG56. Sarkar and colleagues demonstrated that TLR3 

downstream of IRF3 was not fully phosphorylated when recruitment of PI3 kinase to 

TLR3 was blocked, suggesting an essential role for the PI3K-Akt pathway in the 285 

TLR3-mediated innate response. Inhibition of PIK3 by a specific inhibitor, LY294002, 

was followed by clearly impaired TLR3-mediated signaling. In our experiment, 

phosphorylation of Akt was accompanied by poly (I:C)-induced apoptosis of SGECs. 

It remains unclear why the phosphorylation of Akt was correlated with the apoptotic 

process; however, the downstream signal following the adaptation of TRIF to TLR3 290 

might be involved in the phosphorylation of Akt, coupled with RIP1 activation, which 

is known to lead to the cleavage of caspase. 

 Proapoptotic signals in pSS have been reported in previous studies of  

Fas/Fas ligands, i.e., granzyme/perforin cytotoxic granules generated by CD8+ 

cytotoxic T lymphocytes (20-24). As we have reported recently, in cultured SGECs, 295 

the Fas/Fas ligand system is well understood (7, 8), and the Fas signal accompanying 

PI3K inhibition is known to have the potential to induce apoptosis. Furthermore, we 
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recently revealed a rapid induction of apoptosis by tumor necrosis factor 

(TNF)-related apoptosis-inducing ligand (TRAIL) in the SGECs of pSS (8). As 

regards TLR3-mediated cell death in patients with pSS, Manoussakis et al (25) 300 

recently reported that detachment-induced apoptosis was observed in poly 

(I:C)-treated SGECs from patients with SS.  However, the innate immunity-related 

induction of apoptosis and the anti-apoptotic system in pSS has not yet been fully 

elucidated. Although no direct association with SS was observed, Numata et al (26) 

more recently demonstrated TLR3-mediated apoptosis of human bronchial epithelial 305 

cells. Their study clearly showed that insulin-dependent PI3K-Akt signaling inhibited 

TLR3-mediated cell death. Thus, their results might help elucidate the role of the 

PI3K-Akt pathway as an anti-apoptotic process in TLR3-mediated cell death. Here, 

another possibility except TLR3 to induce apoptosis can be considered because TLR3 

expression was observed after 24 hours stimulation with poly (I:C). Since poly (I:C) 310 

also strongly induced melanoma differentiation-associated gene-5 or retinoic 

acid-induced protein I (27), these mechanisms should be concerned in the apoptotic 

process of SGEC in SS. The present study suggests a new mechanism to account for 

salivary gland cell death. The detailed relationship between PI3K-Akt signaling and 

molecules downstream of the ligation with TLR3 remains supported by the evidence, 315 

since PI3K-Akt appears to act as an inducer of the poly (I:C)-induced apoptotic cell 

death of SGECs. However, we should note that poly (I:C)-induced expression of 

TLR3 and phosphorylated Akt in pSS patients and a normal subject were similar. 

Since the difference was found in poly (I:C)-induced MAP kinases and apoptosis, the 

phenomenon might explain difference of sensitivity toward pro-apoptotic signal in 320 
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both groups. Phosphorylation of MAP kinases induced by poly (I:C) is different due to 

cell species or time course. For example, phosphorylation of p38 is found in corneal 

fibroblasts at 60 minutes stimulation with poly (I:C) (28). 

 In summary, we focused on TLR3-induced apoptosis and the associated 

phosphorylation of Akt in pSS. These findings may provide novel insights into the 325 

apoptotic and anti-apoptotic systems found in the labial salivary glands in pSS. 

However, the precise signals downstream of TLR-3 have yet to be determined. 

Downstream signal analysis and related investigations will be necessary to elucidate 

TLR3-mediated apoptosis of SGECs in pSS. 

 330 
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Figure Legends 

Figure 1. Expression of TLRs in the presence of their ligands in primary cultured 

salivary gland epithelial cells (SGECs)  

After 12 hours of starvation of growth supplement, primary cultured SGECs were 430 

treated with 10 µg/ml of PGN, 25 µg/ml of poly (I:C), or 1 µg/ml of LPS for 24 hours 

(low magnification; panel A). The SGECs were double-labeled using goat anti-TLR2, 

3, or 4 antibody with FITC-conjugated secondary antibody (green) and rabbit 

anti-phosphorylated Akt antibody with tetramethyl rhodamine isothiocyanate 

(TRITC)-conjugated secondary antibody (red). The status of the nucleus was observed 435 

by Hoechst staining (blue). Panel B shows a higher-magnification view after 24 hours 

stimulation with each ligand. Shown are the representative results of three 

independent experiments (bar, 20 µM).  

 

Figure 2. Nuclear fragmentation induced by poly (I:C) in primary cultured 440 

salivary gland epithelial cells (SGECs) 

After 12 hours of starvation of growth supplement, primary cultured SGECs were 

treated with 10 µg/ml of PGN, 25 µg/ml of poly (I:C), or 1 µg/ml of LPS for 24 hours. 

Then, to quantify nuclear fragmentation identified by Hoechst staining, 100 cells of 

interest were counted in 3 different fields. In the left panel, the average number of cell 445 

deaths observed among poly (I:C)-stimulated cells was statistically compared to that 

of PGN or LPS-stimulated cells, as evaluated by unpaired Student’s t-test (p<0.05; 

statistically significant). NS; not significant. Shown are the representative results of 
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two independent experiments. The right panel shows representative nuclear 

fragmentation (arrowheads) induced by poly (I:C). 450 

 

Figure 3. Detection of double-stranded DNA breakage by terminal 

deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) staining 

in primary cultured salivary gland epithelial cells (SGECs)  

After 12 hours of starvation of growth supplement, primary cultured SGECs were 455 

treated with 25 µg/ml of poly (I:C) for 24 hours. To confirm apoptosis as a 

double-stranded DNA break at the site of nuclear fragmentation, we employed 

TUNEL-staining coupled with bright-field view. Panels A and B show the results from 

a pSS patient and a normal subject, respectively. The inset shows representative 

staining for each panel. The merged view shows that nuclear fragmentation 460 

corresponded to apoptosis (bar, 20 µM). Shown in panel A are the representative 

results of two independent experiments with pSS patients. 

 

Figure 4. Quantification of terminal deoxynucleotidyltransferase-mediated dUTP 

nick end-labeling (TUNEL)-positive apoptotic cells in primary cultured salivary 465 

gland epithelial cells (SGECs) 

After 12 hours of starvation of growth supplement, primary cultured SGECs 

were treated with 25 µg/ml of poly (I:C) for 24 hours. The TUNEL staining image 

from a pSS patient and a normal subject (upper panel) was merged by Hoechst 

staining (merged view; bar, 50 µM). Then, poly (I:C)-induced apoptosis with or 470 

without 50 µM of the PI3K inhibitor, LY294002, was detected by TUNEL staining 
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(green) in pSS patients and a normal control, followed by quantification with 

WinROOF software (pink signal) (lower panel). The calculated areas of the captured 

signals were statistically compared using unpaired Student’s t-test (p<0.05; 

statistically significant) (right panel). NS; not significant. Shown are the 475 

representative results of two independent experiments. 

 

Figure 5. Co-expression of TLR3 and phosphorylated Akt in apoptotic cells in 

primary cultured salivary gland epithelial cells (SGECs) 

After 12 hours of starvation of growth supplement, primary cultured SGECs were 480 

treated with 25 µg/ml of poly (I:C) for 24 hours with or without 50 µM of the PI3K 

inhibitor LY294002. Nuclear fragmentation detected by Hoechst staining from a pSS 

patient (left panel) and a normal subject (right panel) was observed, and the results 

of Hoechst staining were merged with double-labeled samples using goat anti-TLR3 

antibody with FITC-conjugated secondary antibody (green), and rabbit 485 

anti-phosphorylated Akt antibody with tetramethyl rhodamine isothiocyanate 

(TRITC)-conjugated secondary antibody (red). (Bar 10 µM). Shown are the 

representative results of two independent experiments. The lower panel shows the 

expression of TLR3 along with phosphorylated Akt in primary cultured SGECs treated 

with 25 µg/ml poly (I:C) for 24 hours in a normal subject. (Bar 20 µM). Shown are 490 

the representative results of two independent experiments with pSS patients. 

 

Figure 6. Detection of poly (I:C)-induced mitogen-activated protein (MAP) 

kinases and cleavage of caspase 3 in the presence of PI3K inhibitor in primary 
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cultured salivary gland epithelial cells (SGECs) 495 

Primary cultured SGECs from a pSS patient or a normal subject were treated with 25 

µg/ml of poly (I:C) for 24 hours. Then, poly (I:C)-induced expression of Akt and 

mitogen-activated protein kinases including phosphorylated-stress-activated protein 

kinase/Jun-terminal kinase (SAPK/JNK), phosphorylated-p38 MAP kinase and 

phosphorylated-p44/42 MAP kinase was determined by Western blotting (Fig. 6 left 500 

panel). 

With or without 50 µM of the PI3K inhibitor LY294002, primary cultured SGECs 

from a pSS patient or a normal subject were treated with 25 µg/ml of poly (I:C) for 24 

hours. Then, poly (I:C)-induced cleavage of caspase 3 was determined by Western 

blotting (Fig. 6 right panel). As a control, β-actin was used. Shown are the 505 

representative results of two independent experiments with pSS patients. 
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