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Abstract: Mosquito-borne flavivirus infections, including dengue virus and Zika virus, are major
public health threats globally. While the plaque reduction neutralization test (PRNT) is considered the
gold standard for determining neutralizing antibody levels to flaviviruses, the assay is time-consuming
and laborious. This study, therefore, aimed to develop an enzyme-linked immunosorbent assay
(ELISA)-based microneutralization test (EMNT) for the detection of neutralizing antibodies to
mosquito-borne flaviviruses. The inhibition of viral growth due to neutralizing antibodies was
determined colorimetrically by using EMNT. Given the significance of Fcγ-receptors (FcγR) in
antibody-mediated neutralization and antibody-dependent enhancement (ADE) of flavivirus infection,
non-FcγR and FcγR-expressing cell lines were used in the EMNT to allow the detection of the sum of
neutralizing and immune-enhancing antibody activity as the neutralizing titer. Using anti-flavivirus
monoclonal antibodies and clinical samples, the utility of EMNT was evaluated by comparing the
end-point titers of the EMNT and the PRNT. The correlation between EMNT and PRNT titers was
strong, indicating that EMNT was robust and reproducible. The new EMNT assay combines the
biological functional assessment of virus neutralization activity and the technical advantages of ELISA
and, is simple, reliable, practical, and could be automated for high-throughput implementation in
flavivirus surveillance studies and vaccine trials.
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1. Introduction

Mosquito-borne viruses of the genus Flavivirus in the family Flaviviridae, including dengue virus
(DENV) and Zika virus (ZIKV), are major public health threats in approximately a third of the world
population that lives in transmission areas [1,2]. While the population at risk of these diseases is
increasing, there are no effective antiflaviviral treatment approved for clinical use [3]. The development
of an effective dengue vaccine has been hampered by limited understanding of the protection proxy

Vaccines 2020, 8, 297; doi:10.3390/vaccines8020297 www.mdpi.com/journal/vaccines

http://www.mdpi.com/journal/vaccines
http://www.mdpi.com
https://orcid.org/0000-0002-2165-907X
https://orcid.org/0000-0002-8103-6659
http://www.mdpi.com/2076-393X/8/2/297?type=check_update&version=1
http://dx.doi.org/10.3390/vaccines8020297
http://www.mdpi.com/journal/vaccines


Vaccines 2020, 8, 297 2 of 15

against the disease [4]. Neutralizing antibody activity at protective levels plays a central role in
flavivirus disease protection and disease development [5–8]. Hence, the determination of neutralizing
antibodies that reflect biological activity is vital in the development of effective flavivirus vaccines.
The gold standard for quantifying neutralizing antibody titers to flaviviruses is the plaque reduction
neutralization test (PRNT) [9]. This method, however, is time-consuming, difficult to automate and
low-throughput, representing a major bottleneck in conducting large-scale studies. PRNT is subject
to analyst variability from manual plaque counting. In addition, as conventional PRNT uses cell
lines that do not express FcγR receptors (FcγR) [10], the conventional method exclusively detects
neutralization activity of antibodies but not the infection-enhancement activity (ADE activity) of
antibodies. This limitation of the conventional PRNT has been highlighted in several studies, which
hypothesized that the neutralizing titers as determined by FcγR-bearing cells better reflect the biological
function of antibodies [11,12]. In this context, vaccine efficacy studies found that despite the induction
of reasonable levels of neutralizing antibodies against four DENV serotypes, protection in some
vaccinated participants was minimal [13–15].

A critical aspect regarding the evaluation of candidate dengue vaccines is the hypothetical risk
of severe dengue due to non-protective cross-reactive ADE antibodies. ADE has been reported to
occur in vitro [16–20] in vivo in animal models [20–22], and in dengue patients [23,24]. Hence, there
is a need to address the discrepancies between seropositivity and vaccine efficacy outcomes [13–15];
emphasizing on the need for a reliable surrogate assay to determine an immune proxy that better
reflects disease protection [25].

In this context, a simple, high-throughput neutralization test is also needed to adequately conduct
large-scale surveillance studies and vaccine trials. The use of a microneutralization test (96-well
plate format) offers a reliable alternative to the traditional PRNT—which is usually perfomed in
12-well or 24-well plate formats—as it is suitable for testing large numbers of samples. Several
different microneutralization tests have been reported to be technically possible for mosquito-borne
flaviviruses, such as the dengue virus [11,26–31] and Zika virus [28,30–35]. However, most of these
tests require sophisticated equipment that is not always available in peripheral laboratories. These
proposed methods may not be practical in countries with limited resources, and particularly when
mosquito-borne flaviviral diseases are endemic in these areas. Hence, in the developing world,
diagnostic and research laboratories need a simple, practical, economical, and reliable neutralization
test which is useful in laboratories equipped for serology analyses.

In this study, the utility of an ELISA-based microneutralization test (EMNT) for the detection of
neutralizing antibodies to mosquito-borne flaviviruses was developed and evaluated. In addition, cells
that expresses the FcγR were used as assay cells in the EMNT to detect both neutralization activity and
ADE activity as neutralizing antibody titer. The enzyme-linked immunosorbent assay (ELISA) format
offers a practical approach as it is simple to perform and could be automated. Moreover, the ELISA
read-out instrument is relatively inexpensive, and is an all-around device used not just for clinical
diagnostics but for drug screening studies as well. The new test is useful in the detection of antibody
neutralization activity to flaviviruses and could be applicable as a diagnostic technique that could
contribute in seroepidemiological surveillance and evaluation of vaccine efficacy against flaviviruses.

2. Materials and Methods

2.1. Cells and Viruses

Baby hamster kidney cells (BHK-21, Japan Health Science Research Resource Bank) and African
green monkey kidney Vero cells were maintained in Eagle’s minimum essential medium (EMEM)
(Gibco, Gaithersburg, MD, USA) supplemented with heat-inactivated 10% fetal calf serum (FCS) without
antibiotics. BHK-21 cells that expressed FcγRIIA, an activating FcγR, [36] were maintained in EMEM
supplemented with heat-inactivated 10% FCS and 0.5 mg/mL neomycin (G418, PAA Laboratories
GmbH, Pasching, Austria). Human embryonic kidney 293T cells were maintained in Dulbecco’s
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modified Eagle’s medium (Gibco) supplemented with non-essential amino acids, penicillin (100 U/mL),
streptomycin (100 mg/mL), and heat-inactivated 10% FCS. All cell lines were cultured at 37 ◦C in a 5%
CO2 incubator.

Dengue virus type-1 (DENV-1) 01-44-1HuNIID strain (GenBank accession no. AB111070), Dengue
virus type-2 (DENV2) DHF0663 strain (GenBank accession no. AB189122), Dengue virus type-3
(DENV3) SLMC50 strain (GenBank accession no. GU377288), Dengue virus type-4 (DENV4) SLMC318
strain (GenBank accession no. KP893718), Zika virus (ZIKV) PRVABC59 strain (GenBank accession no.
KX377337), Japanese encephalitis virus (JEV) OH0566 strain (GenBank accession no. AY508813) and
yellow fever virus (YFV) 17D vaccine strain (GenBank accession no. NC_002031) were used. Viruses
were propagated on BHK-21 cells at 37 ◦C in 5% CO2 for 5 days. Cell culture supernatant was collected,
clarified by centrifugation, and stored in aliquots at −80 ◦C. DENV-4 SLMC318 was propagated on
FcγRIIA-expressing BHK-21 in the presence of a mouse monoclonal IgG2a antibody (MAb HB-112
D1-4G2-4-15). Virus titers (plaque-forming units (PFU) per mL) were determined by plaque assay on
BHK-21 cells.

2.2. Serum Samples and Monoclonal Antibodies

Serum samples were collected from confirmed dengue and Zika patients who resided in Ha Noi,
northern Viet Nam, and in Central Vietnam between 2015–2018. A commercially available serum sample,
obtained from a healthy donor (Human Serum Type AB, Lonza), was used as negative control serum.
Serum samples were heat-inactivated at 56 ◦C for 30 min before use in the experiments. All sera used had
been tested for DENV or ZIKV antibodies by IgG ELISA and IgM ELISA. Mouse monoclonal antibodies
(200 µg/mL) that were flavivirus cross-reactive (IgG2a: MAb HB-112 D1-4G2-4-15 and 6B6C-1) and
DENV-2 serotype-specific (IgG1: Mab HB-46 3H5-1) were also used for the neutralization assay.

2.3. Plaque Reduction Neutralization Test

Serial dilutions of heat-inactivated serum samples (serial 2-fold dilutions) were mixed with virus
in a 1:1 ratio, and were incubated at 37 ◦C in 5% CO2 for 1 h. The virus-antibody mixture was
inoculated in duplicate onto BHK-21 cells and FcγRIIA-expressing BHK-21 cells in 12-well plates.
After adsorption for 1 h, 1.5 mL of overlay medium (1% methylcellulose with EMEM 2% FCS) was
added to each well. Plates were incubated in 5% CO2 at 37 ◦C until plaques appeared. The cells were
fixed with 4% paraformaldehyde in phosphate-buffered solution (Wako Pure Chemical Industries) for
1 h at room temperature, and then stained with 0.25% crystal violet (Wako Pure Chemical Industries)
overnight. Plaques were counted by naked eye, and the reciprocal serum dilution corresponding to the
highest dilution with plaque counts less than 50% of the cut-off (≥50% inhibition) was considered the
neutralizing titer.

2.4. ELISA-Based Microneutralization Test

An antigen-detection EMNT was performed in 96-well plates to measure virus neutralization.
Conventional BHK-21 cells and FcγRIIA-expressing BHK-21 cells were seeded in 96-well plates at a
density of 2 × 104. Serial dilutions of heat-inactivated serum samples (serial 2-fold dilutions) were
mixed with viruses at a 1:1 ratio and were incubated at 37 ◦C in 5% CO2 for 1 h. Each mixture was
inoculated onto plates with cells and incubated at 37 ◦C in 5% CO2 for 1 h. Fresh medium was added
and the plates were further incubated at 37 ◦C in 5% CO2 for 3 days. Each plate included both a virus
control (no antibody) and a cell control (no virus, no antibody).

Three days after inoculation, culture supernatant was collected and an in-house antigen-detection
ELISA was performed according to a previously described method [37]. Briefly, the polystyrene
96-well plates were coated with 100 µL/well (10 µg/mL) of anti-flavivirus immunoglobulin G (IgG)
12D11/7E8 [37] in ELISA coating buffer (0.05M carbonate-bicarbonate buffer, pH 9.6 containing 0.02%
sodium azide) at 4 ◦C overnight. To avoid non-specific binding, wells were blocked with 100 µL
of undiluted Block Ace UK-B 80 (Bio-Rad, Hercules, CA, USA) at room temperature for 1 h. Plates
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were washed five times with PBS containing 0.05% Tween 20 (PBS-T). Culture supernatant from the
neutralization step was added into duplicate wells and incubated at 37 ◦C for 1 h. Plates were washed
five times with PBS–T, and horseradish peroxidase (HRP)-conjugated 12D11/7E8 mouse monoclonal
antibody [37] was added and incubated at 37 ◦C for 1 h. Plates were washed again five times with PBS–T,
and HRP reaction was detected by adding o-phenylenediamine dihydrochloride (OPD) substrate
(Sigma Chemicals) and 0.03% hydrogen peroxide in 0.05 M citrate-phosphate buffer, pH 5.0, for 30 min
at room temperature away from light. The reaction was stopped with 1 N hydrochloric acid, and then
the optical density (OD) was measured at 492 nm. The neutralizing titer was defined as the titer of the
sample (antibody/serum) that reduced color development by 50% compared to the virus control wells.

2.5. Single-Round Infectious Particle Production and Neutralization Test

Single-round infectious particle (SRIP) production of the DENV-1 Yoyogi strain was performed
as described previously [28]. Briefly, 293T cells were grown in a 90-mm dish and co-transfected
with three plasmids: 2.5 µg of replicon plasmid, 1.25 µg of capsid-expression plasmid,
and 1.25 µg of prME-expression plasmid, using Polyethylenimine Max (Cosmo-Bio, Tokyo,
Japan). Culture medium was removed and replaced with fresh medium supplemented with
10 mM N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES) buffer 2 days post-transfection.
The medium was harvested after 3 days post-transfection and used as SRIPs. The infectious titer of
generated SRIPs was determined by infection in Vero cells with subsequent luciferase assay.

SRIPs (50–100 infectious units/well) were used for the neutralization assay. Serial dilutions
of monoclonal antibodies (serial 2-fold dilutions) were mixed with SRIPs in a 1:1 ratio and were
incubated at 37 ◦C in 5% CO2 for 1 h. Vero cells were seeded in 96-well plates at a density of 1.2 × 104.
SRIP-antibody mixtures were inoculated onto plates with cells and incubated at 37 ◦C in 5% CO2 for
1 h. Fresh medium was added and plates were further incubated at 37 ◦C in 5% CO2 for 3 days. Each
plate included both SRIP control (no antibody) and cell control (no SRIP, no antibody). The luciferase
activity of cells was subsequently determined at 3 days post-infection using the Nano-Glo Luciferase
Assay System (Promega, WI, USA). The neutralizing titer was determined as the antibody dilution that
inhibited more than 50% of the SRIP inoculum without antibody (SRIP control).

2.6. Data Analysis

EMNT calculations were determined for each plate individually. Virus control wells should at
least reach a median OD492nm = 1.0–3.0, with the cell control at a low background median OD492nm

<0.2. Any sample well with an OD492nm greater than twice the median OD492nm of the cell control
wells was considered positive; otherwise, it was considered negative. The OD492nm cut-off of 50% virus
neutralization for each plate was determined using the following equation [38]:

x =
median OD492nm o f virus control wells + median OD492nm o f cell control wells

2
(1)

Here, x is defined as 50% of the neutralization cut-off. The reciprocal antibody/serum dilution
corresponding to the highest antibody/serum dilution with OD492nm less than 50% of the cut-off

(≥50% inhibition) was considered the neutralizing antibody titer for that sample.
Statistical analyses were performed using GraphPad Prism, version 8.2.1 (GraphPad, San Diego,

CA, USA), with a 5% level of significance and two-tailed p values. Logarithmic transformation of the
data were carried out to obtain an approximately normal distribution of the neutralizing titers. Data
were tested for normal distribution using the Shapiro-Wilk test, and the correlation between EMNT
and PRNT was determined using the Spearman correlation test.
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2.7. Ethics Statement

This study was approved by the Institutional Review Board of the Institute of Tropical Medicine,
Nagasaki University (EAN: 08061924-7). All participants provided their written informed consent to
participate in this study.

3. Results

3.1. Development of the ELISA-Based Microneutralization Test

To develop the EMNT, several parameters were tested in order to optimize the assay for sensitivity,
reproducibility and efficiency. At first, the incubation time and challenge virus titer needed were
optimized for the neutralization assay. Growth curves were established to determine the viral antigen
production for representative mosquito-borne flaviviruses, namely: DENV1-4, ZIKV, JEV, and YFV.
On a 96-well plate, BHK-21 cells were infected at a multiplicity of infection (MOI) of 0.25, followed
by serial ten-fold dilutions up to 0.0025 for each virus. The growth curve between the first and sixth
day after infection was determined to optimize the time point to recover cell culture supernatants for
subsequent tests. At each time point, a total of 100 µL culture supernatant was collected and analyzed
by antigen-detection ELISA [37]. The peak of viral antigen secretion generally occurred about three
days after infection (Figure 1). In this study, a MOI of 0.25 in subsequent neutralization tests for
DENV1-4, a MOI of 0.025 for ZIKV and YFV, and a MOI of 0.0025 for JEV was used. For each virus strain,
the amount of optimal MOI that was used in the initial infection varied. The corresponding MOIs were
approximately the highest dilution of virus that produced an OD of 1.0–3.0 in the antigen-detection
ELISA after three days of incubation.
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Figure 1. Quantitation of optical density (OD492nm) induced in BHK-21 cells post virus infection.
BHK-21 cells were infected with virus at different MOIs as indicated. OD492nm values were determined
at 1 through 6 days post-infection. Growth curves of DENV 1–4 (A) and other flaviviruses: JEV,
ZIKV and YFV (B) in BHK-21 cells were measured by antigen-detection ELISA [37]. Each data point
represents the geometric mean value of duplicates ran independently thrice. Error bars depict standard
deviation of six replicates.

3.2. Determination of EMNT Titers Using Monoclonal Antibodies

After the optimization step, EMNT was performed by using mouse anti-E monoclonal antibodies
with known neutralizing activities against flaviviruses. The OD in each well represents the amount of
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virus in the cell culture supernatant of BHK-21 or FcγRIIA-expressing BHK-21 cells, in the presence of
serially diluted mouse monoclonal antibodies.

A DENV-2 serotype-specific mouse monoclonal antibody, 3H5, was tested against DENV-2
in BHK-21 cells and FcγRIIA-expressing BHK-21 cells (Figure 2). OD492nm was plotted against the
antibody dilutions, and the reciprocal of the highest antibody dilution that achieved≥50% neutralization
(EMNT50) was interpreted as the neutralizing titer. Consistent with the PRNT results, cross-reactive
(4G2 and 6B6C-1) and DENV-2 serotype-specific (3H5) anti-E mouse monoclonal antibodies showed
comparable neutralizing titers by using the EMNT (Table 1). Moreover, neutralizing titers to DENV
serotypes as determined by BHK-21 cells were higher than those determined by FcγRIIA-expressing
BHK-21 cells, which was consistent with a previous study [36].
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Figure 2. Sample EMNT results of an anti-E mouse monoclonal antibody tested against DENV-2.
DENV-2 type-specific mouse monoclonal antibody, 3H5, was tested against DENV-2 DHF0663 using
BHK-21 cells (A) and FcγRIIA-expressing BHK-21 cells (B). The neutralizing titer is the reciprocal
of the highest antibody dilution that achieved ≥50% virus neutralization, as indicated by the arrow.
No neutralization was observed when EMNT was performed using FcγRIIA-expressing BHK-21 cells.
Each data point represents the median value of duplicates ran independently thrice. Error bars indicate
95% confidence interval of six replicates.
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Table 1. Neutralizing Titers of Anti-E Monoclonal Antibodies (EMNT50 vs. PRNT50) to DENV, JEV,
ZIKV and YFV Using BHK-21 and FcγRIIA-Expressing BHK-21 as Assay Cells.

Virus

Flavivirus Cross-Reactive Monoclonal Antibody DENV-2 Type-Specific
Monoclonal Antibody

mAb 6B6C-1 mAb 4G2 mAb 3H5

BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21

EMNT a PRNT b EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT

DENV-1 40 40 10 <10 c 40 40 10 <10 <10 <10 <10 <10
DENV-2 80 40 20 10 80 80 10 10 20 40 <10 <10
DENV-3 20 10 <10 <10 10 10 <10 <10 <10 <10 <10 <10
DENV-4 40 20 <10 <10 40 80 <10 <10 <10 <10 <10 <10

JEV 20 <10 20 <10 20 <10 10 <10 <10 <10 <10 <10
ZIKV 80 <10 80 <10 80 <10 40 <10 <10 <10 <10 <10
YFV 320 <10 40 <10 160 <10 80 <10 <10 <10 <10 <10

a EMNT50 end points were determined by using the reciprocal of the final antibody dilution that reduced color
development (OD492nm) by 50% compared to the virus control wells (no antibodies); b PRNT50 end points were
determined by using the reciprocal of the final antibody dilution showing ≥50% reduction in plaque counts in test
wells compared to the number of plaques from the virus control wells (no antibodies); c Titers less than 10 (<10)
indicates neutralization titers below the detection limit of the assay. Samples were serially diluted two-fold from
1:10 to 1:2560.

3.3. Determination of EMNT Titers Using Clinical Samples

To evaluate the utility of EMNT, neutralization tests were performed with a panel of characterized
clinical samples. This panel includes sera that were positive for either DENV IgG or ZIKV IgG.
Neutralizing antibodies were detected against DENV1-4, JEV and ZIKV (Tables 2 and 3). Most of the
clinical samples demonstrated comparable levels of neutralizing titers or within 2- to 4-fold dilutions
to that of the PRNT. Neutralizing titers to JEV or specific DENV serotype determined by BHK-21 cells
were higher than those determined by FcγRIIA-expressing BHK-21 cells, and in some serum samples,
neutralizing antibodies were not detected when FcγRIIA-expressing BHK-21 cells were used as the assay
cells (Table 2). Some of the DENV IgG positive clinical samples exhibited cross-neutralization against JEV.

3.4. Comparison of EMNT to the PRNT

The neutralizing antibody titers of 25 serum samples [DENV IgG+: n = 12 and ZIKV IgG+:
n = 13] and three mouse anti-E monoclonal antibodies were determined by using EMNT and PRNT.
A strong correlation between EMNT titers and PRNT titers was obtained by using both BHK-21
cells or FcγRIIA-expressing BHK-21 cells, with a coefficient of determination (r) of 0.8361 and 0.7865,
respectively (Figure 3). Additionally, there was a strong correlation between EMNT and PRNT to each
DENV serotype, and to JEV and ZIKV (Table S1).
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Figure 3. Correlation of neutralizing titers measured by EMNT vs PRNT. Correlation of the neutralizing
titers of 25 serum samples (12 DENV IgG+ and 13 ZIKV IgG+ sera) and 3 anti-E mouse monoclonal
antibodies determined by EMNT and PRNT using BHK-21 and FcγRIIA-expressing BHK-21 as assay
cells. Neutralizing titers were expressed in log 10.
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Table 2. Neutralizing Titers of 12 DENV IgG+ Clinical Samples Against DENV and JEV Using EMNT and PRNT by Using BHK-21 Cells and FcγRIIA-Expressing
BHK-21 Cells as Assay Cells.

Sample Code

DENV-1 DENV-2 DENV-3 DENV-4 JEV

BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21 BHK-21 FcγR-BHK-21

EMNT a PRNT b EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT EMNT PRNT

HN.15.001/1 20 <10 c 20 <10 <10 <10 <10 <10 <10 10 <10 <10 80 20 <10 <10 320 320 160 160
HN.15.018/1 <10 <10 10 10 20 40 <10 <10 <10 <10 <10 <10 160 40 <10 <10 20 40 <10 10
HN.15.022/1 40 20 40 <10 80 80 10 40 20 40 10 <10 80 20 <10 <10 80 20 <10 <10
HN.15.056/1 20 40 40 20 10 <10 <10 <10 <10 <10 <10 <10 20 <10 <10 <10 160 160 80 80
HN.15.068/1 <10 20 10 10 80 80 <10 10 <10 <10 <10 <10 80 20 <10 <10 40 40 <10 <10
HN.15.071/1 <10 10 <10 <10 80 80 <10 10 <10 <10 <10 <10 40 10 <10 <10 <10 <10 <10 <10
HN.15.082/1 320 160 160 160 20 40 10 20 160 160 40 40 160 20 10 <10 160 160 80 40
HN.15.084/1 640 160 160 160 <10 <10 <10 <10 160 160 <10 <10 80 10 <10 <10 <10 <10 <10 <10
HN.15.086/1 160 160 160 160 40 160 20 40 80 80 20 10 320 160 20 20 40 20 <10 <10
HN.15.097/1 640 320 160 160 40 40 40 40 160 160 80 80 320 160 20 10 40 20 10 10
HN.15.011/1 640 640 160 160 80 40 40 20 NT NT NT NT NT NT NT NT 640 160 40 40
HN.15.026/1 20 40 <10 <10 160 160 <10 20 NT NT NT NT NT NT NT NT <10 <10 <10 <10

a EMNT50 end points were determined by using the reciprocal of the final antibody dilution that reduced color development (OD492nm) by 50% compared to the virus control wells
(no antibodies); b PRNT50 end points were determined by using the reciprocal of the final antibody dilution showing ≥50% reduction in plaque counts in test wells compared to the number
of plaques from the virus control wells (no antibodies); c Titers less than 10 (<10) indicates neutralization titers below the detection limit of the assay. Samples were serially diluted two-fold
from 1:10 to 1:1280.



Vaccines 2020, 8, 297 9 of 15

Table 3. Neutralizing Titers of 13 ZIKV IgG Positive Clinical Samples to ZIKV by Using BHK-21 Cells.

Neutralizing Titers to ZIKV

Sample Code EMNT a PRNT b

Z67 SRII 2560 640
Z68 SRII 2560 320

Z77 1280 320
Z78 10240 5120
Z79 1280 640
Z84 2560 320

Z78H2 5120 1280
Z79H2 1280 320
Z120 <20 c <20
Z123 640 80
Z125 40 20
Z126 20 20
Z129 40 40

a EMNT50 end points were determined by using the reciprocal of the final serum dilution that reduced color
development (OD492nm) by 50% compared to the virus control wells (no sera); b PRNT50 end points were determined
by using the reciprocal of the final serum dilution showing a 50% or greater reduction in plaque counts in wells
compared to the number of plaque from the virus control wells (no sera); c Titers less than 20 (<20) indicates
neutralization titers below the detection limit of the assay. Samples were serially diluted two-fold from 1:20 to
1:10,240.

3.5. EMNT on a 384-Well Plate Format

To determine the utility of EMNT in a higher plate format, the EMNT was performed in a 384-well
plate. In this plate format, the sample volume and reagent was reduced by two-folds (Table S2).
Neutralizing antibody titers to DENV-2 by mouse monoclonal antibodies (6B6C-1, 4G2 and 3H5) was
determined by BHK-21 cells. OD492nm was plotted against the antibody dilutions, and the reciprocal
of the highest antibody dilution that achieved ≥50% neutralization (EMNT50) was considered the
neutralizing titer for the sample (Figure 4). The end-point titration values (EMNT50) using the 384-well
plate format were consistent to those obtained using a 96-well plate format (Table 4). The result
indicates that EMNT can be adapted to a 384-well plate format for neutralization tests.
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Table 4. Neutralizing Titers of Anti-E Monoclonal Antibodies (EMNT50) to DENV-2 Using BHK-21
Cells on Both 96-Well and 384-Well Plates.

Monoclonal Antibody 384-well 96-well

6B6C-1 40 80
4G2 80 80
3H5 20 20
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3.6. EMNT Using Single-Round Infectious Particles (SRIPs)

The utility of single-round infectious particles (SRIPs) as an alternative to live viruses in
neutralization tests has an advantage in terms of safety [39,40]. It has already been reported
that SRIP [39,40] and reporter SRIP [28] can be used as an alternative in place of live virus in
neutralization tests. These studies demonstrated that the dose-response curves obtained by using
either SRIP or live virus were at similar levels. To determine the utility of SRIPs in the EMNT format,
the neutralization test was performed by using DENV1-SRIP and Vero cells as assay cells, as previously
described [28]. Neutralizing titer of an anti-flavivirus mouse monoclonal antibody, 6B6C-1 to DENV1
was determined by the EMNT format. Cell culture supernatants were harvested after 3 days incubation
with SRIP-antibody mixture, and the levels of DENV NS1 antigen was determined by using EMNT
based on a commercial ELISA kit (Platelia Dengue NS1 Ag kit (Bio-Rad)). The dose-response curve
obtained using EMNT and the luciferase assay was consistent in both neutralization tests using 6B6C-1
(Figure 5). This result indicates that the DENV1-SRIP can be used in performing EMNT on Vero cells.
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using anti-flavivirus monoclonal antibody (6B6C-1). The monoclonal antibody was serially diluted
two-fold and incubated with DENV1-SRIP at 37 ◦C for 1 h. The mixture was then titrated on Vero cells.
A dose-dependent percentage reduction curve was obtained with the luciferase assay and EMNT.

4. Discussion

Mosquito-borne flaviviruses are a major public health burden worldwide; hence, accurate
diagnosis of flaviviral infections is vital for proper patient management. For diagnostic serology and
evaluation of vaccine immunogenicity to flaviviruses, neutralization tests are extensively used to
determine whether serum antibodies are able to inhibit virus infection either by blocking virus entry
or preventing virus uncoating [41,42]. In this study, the novel EMNT detected not only neutralizing
antibody activity to several mosquito-borne flaviviruses, but the test also detects the neutralizing
titer in the presence of ADE activity by using FcγR-expressing assay cells. The EMNT yielded robust
results that were consistent with the PRNT and was replicable in different cell lines. Furthermore,
the EMNT method was applicable to both live viruses and SRIPs, highlighting the assay’s versatility
and suitability in determining neutralizing titers to mosquito-borne flaviviruses.

The EMNT quantifies the amount of non-neutralized virus in the infected cell culture supernatant.
In principle, the growth of non-neutralized virus is measured in a 96-well plate by using an
antigen-detection ELISA system that uses a mouse anti-flavivirus envelope (E) monoclonal antibody [37].
The EMNT is based on the premise that the reduction in virus growth due to neutralization by antibodies
can be measured optically by colorimetric changes. In this context, the approach to analyze viral
antigen levels in the cell culture supernatant may be more effective than previously reported cell-based
ELISA microneutralization assays [26,35] as cells can be flushed from the plate during multiple plate
washings, resulting in lower OD values and hence lower sensitivity.

Like the PRNT, the EMNT end-point titers could be determined for a clinical sample at any
selected percent reduction of virus activity. A potential advantage of this new test is eliminating
the bottleneck of visualization of plaques that must be large enough to be visible to the naked eye.
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The PRNT measures the presence of visible plaques, whereas the EMNT quantifies the amount of
viral antigen secreted to the cell culture supernatant. The integration of colorimetric detection and
automated counting of OD values allows rapid detection; from 5–7 days incubation with the PRNT
to 3 days with the EMNT. Because the readout does not require laborious manual plaque counting,
the EMNT is highly relevant in high-throughput screening of large numbers of sera for neutralizing
activity. Notably, as not all clinical isolates produce clear plaques, the PRNT method is applicable only
to virus strains that are capable of forming plaques. The EMNT circumvents the need for visualizing
plaques as the test detects the viral antigen secreted to the cell culture supernatant.

To evaluate the performance of EMNT on representative mosquito-borne flaviviruses we used
anti-flavivirus mouse monoclonal antibodies and characterized clinical samples. Using an in-house
ELISA method [37], the results suggest that the EMNT was technically easy to perform as compared to
the PRNT and the results were comparable to that of the PRNT. The higher titers and titer increases
detected by the EMNT in comparison to PRNT contrasts with the findings of a previous study that also
used an ELISA-based format [26]. However, it should be noted that the EMNT of ZIKV and YFV using
mouse monoclonal antibodies (Table 1) showed substantially higher neutralizing titers (≥4 fold) than
the PRNT which did not demonstrate neutralization activity, indicating that virus secretion mechanism
could differ from that of plaque formation. However, the ZIKV-EMNT on BHK-21 cells using sera
from individuals with confirmed ZIKV infection (Table 3) demonstrated a strong correlation between
the ZIKV-EMNT and the ZIKV-PRNT (Supplementary Table S1). Serum samples from DENV IgG+

patients neutralized JEV at comparable levels to that of DENV. These results confirm the presence of
cross-reactive neutralizing activity between DENV and JEV in these patients [43,44]. In the sampling
site (Vietnam) wild-type JEV continues to co-circulate with DENV, and JEV vaccination coverage in
this region is high [45,46]. For this reason, significant cross-reactivity was observed between DENV
and JEV from DENV patients.

In the context of assessing vaccine immunogenicity, a major advantage of the EMNT may be
the better prediction of in vivo protection from flavivirus infections as this test can be adapted to
use FcγR-bearing cells as assay cells. FcγR-bearing monocytes have been demonstrated to be major
target cells for DENV infection and replication in vivo [47,48]. Given the significance of FcγR in
mediating neutralization and ADE especially in DENV infection, the use of FcγR-bearing cells as assay
cells in EMNT allows the determination of the biological properties of anti-flavivirus antibodies with
both neutralizing and ADE activity and thus, offers a correlate that better reflect protection against
mosquito-borne flavivirus infections. The results on the DENV IgG+ clinical samples demonstrated
that the DENV-EMNT performed on conventional BHK-21 cells (non-FcγR cells) showed higher
neutralizing titers as compared to the FcγRIIA-expressing BHK-21 cells. These results are consistent
with previous studies in which DENV neutralizing titers were higher in FcγR-negative cells [11,49–51].

To examine the correlation between the EMNT and the PRNT, the neutralizing titers of three mouse
monoclonal antibodies and 25 characterized clinical samples using both tests was used. For BHK-21
cells and FcγRIIA-expressing BHK-21 cells, the EMNT end-point titers (EMNT50) correlated with the
PRNT end-point titers (PRNT50), with a coefficient of determination (r) of 0.8361 and 0.7865, respectively,
suggesting a strong correlation between the EMNT and the PRNT. The EMNT was concordant with
the PRNT for each virus on a given cell line and neutralizing titer (Table S1). Collectively, these results
demonstrate that the EMNT maintains the reliability of the PRNT.

The results also suggest that the 384-well format EMNT is suitable for use in detecting neutralizing
titers, and that the smaller volume of the 384-well plate did not affect the ability of the EMNT to
detect neutralizing titers. Further reduction in sample and reagent volumes may be possible in future
experiments with optimization. The capability of the 384-EMNT to use lesser amounts of reagents and
samples is especially important if higher-throughput neutralization tests will contribute to a faster
turnaround time in surveillance and vaccine trials. The development of large-scale neutralization
tests for flaviviruses would enable larger numbers of serum samples to be tested in follow-up studies
on currently available vaccines and would also allow more rapid routine surveillance on naturally



Vaccines 2020, 8, 297 12 of 15

occurring protective immunity against flaviviral infections. In addition, a robotic platform for
high-throughput determination of neutralizing titers allows the rapid evaluation of large numbers
of samples, which is worth considering especially in conducting vaccine trials. The use of a robotics
system in the EMNT would provide an opportunity to rapidly evaluate vast numbers of samples,
hence increasing the efficiency of screening for neutralizing antibodies.

In this study, the utility of SRIPs in place of live viruses was also evaluated using the EMNT
format. In SRIPs, the absence of the structural gene in the packaged genome allows SRIP-infected cells
to produce non-infectious progeny viruses [28]. To determine the levels of the SRIP in the cell culture
supernatant, the levels of non-structural protein 1 (NS1) in the cell culture supernatant of SRIP-infected
cells was determined. Neutralizing titers were at comparable levels between the SRIP-luciferase assay
and the EMNT. The results suggest that the EMNT format was useful in the detection of neutralizing
antibodies by using either live virus strains or SRIPs. Of note, the EMNT, like the PRNT, is a cell-based
assay associated with high variability where intra-assay variability is high especially when the same
sample is tested on different days. However, unlike the PRNT, the ELISA system was used to detect
neutralizing titers instead of manual plaque count, hence, the ELISA OD results is not subjected
to plaque formation and variability due to clinical strains, which can lead to difficulties in plaque
visualization and results interpretation.

5. Conclusions

A novel test based on the EMNT method was developed to determine the sum of neutralizing
antibody titer in the presence of ADE activity to representative mosquito-borne flaviviruses. There was
a strong correlation between the EMNT and the PRNT, indicating that the newly developed test is
robust, replicable and could be used as a high-throughput alternative to the PRNT. The new test has
potential value as a basic research and diagnostic tool that could be used to fast-track the throughput
of neutralization assays for seroepidemiological investigations and vaccine studies. As EMNT is
ELISA-based, the test could also be translated as an in vitro immunoassay kit that could aid in
standardizing the performance of neutralization tests for multiple flaviviruses. More importantly, due
to the simplicity of the EMNT and as both live viruses and SRIPs could be ultilized, the new test has
the potential to play a critical role in improving capacity for diagnosis and routine surveillance of
flaviviral infections, particularly in the developing world.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/2/297/s1,
Table S1: Correlation coefficients between EMNT and PRNT for each virus on BHK-21 cells and FcγRIIA-expressing
BHK-21 cells. Table S2. EMNT conditions on both 96-well and 384-well plates.
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