Synthesis of Chiral α-Trifluoromethyl α, α-Disubstituted α-Amino Acids and Conformational Analysis of L-Leu-Based Peptides with (R) - or (S)- α-Trifluoromethylalanine

Atsushi Ueda, ${ }^{[a]}$ Misuzu Ikeda, ${ }^{[a]}$ Takuya Kasae, ${ }^{[a]}$ Mitsunobu Doi, ${ }^{[b]}$ Yosuke Demizu, ${ }^{[c]}$ Makoto Oba, ${ }^{[d]}$ and Masakazu Tanaka*[a]

Abstract

Various racemic α-trifluoromethyl α, α-disubstituted α amino acids were synthesized by the reaction of methyl 3,3,3trifluoropyruvate imines with Grignard reagents. The optical resolution of racemates using (R)-1,1'-bi-2-naphthol $\{(R)$-BINOL $\}$ esters gave optically active α-trifluoromethylated α, α-disubstituted α amino acids, such as α-trifluoromethylalanine $\left(\alpha \mathrm{CF}_{3} \mathrm{Ala}\right), \alpha$ trifluoromethylleucine ($\alpha \mathrm{CF}_{3} \mathrm{Leu}$), and α-trifluoromethylphenylalanine $\left(\alpha \mathrm{CF}_{3}\right.$ Phe). The optically active (R)- or (S) - $\alpha \mathrm{CF}_{3}$ Ala was incorporated into the L-Leu-based pentapeptides, and their preferred conformation in solution and in the crystal state was studied by Fourier transform infrared (FT-IR) absorption, nuclear Overhauser effect spectroscopy (NOESY) NMR, and circular dichroism (CD) spectra, as well as X-ray crystallographic analysis. Both L-Leu-based peptides with (R)- or (S)$\alpha \mathrm{CF}_{3} \mathrm{Ala}$ formed right-handed 3_{10}-helical structures. Both peptidebackbones at the N -terminal residues 1-3 were very similar, but the ϕ and ψ torsion angles of residues 4 and 5 between peptides with (R) or (S)- $\alpha \mathrm{CF}_{3}$ Ala were different.

Introduction

α, α-Disubstituted α-amino acids (dAAs) are non-proteinogenic α amino acids, in which the α-hydrogen atom is replaced with an alkyl substituent. ${ }^{[1]}$ It is known that the incorporation of achiral dAAs, such as dimethylglycine (α MeAla, Aib), diethylglycine (Deg), and cyclic amino acids ($\mathrm{Ac}_{n} \mathrm{c}$), into peptides induces stable secondary structures such as α-helix, 3_{10}-helix, and planar conformations. ${ }^{[2]}$ Furthermore, chiral dAAs such as α-methylated dAAs, α-ethylated dAAs, and chiral cyclic dAAs have been reported, and their homo- and heteropeptides preferentially

[^0]formed right-handed (P) or left-handed (M) helical structures, or fully planar C_{5}-conformations. ${ }^{[3,4]}$
α-Trifluoromethyl $\left(\alpha \mathrm{CF}_{3}\right) \mathrm{dAAs}$ have been designed instead of α MedAAs because hydrogen can be isosterically replaced with fluorine from the point of medicinal chemistry. The CF_{3} group is one of the most hydrophobic substituents, with polarization effects on neighboring groups, and acts as an electron donor for hydrogen bonding. Thus, peptides with $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ would be good candidates for screening of lead compounds in drug development, and chiral $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ have become attractive synthetic targets. ${ }^{[5]}$

The synthesis of chiral $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ has already been reported, but there are few different types of optically active $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ and their applicability is limited. ${ }^{[6]}$ For example, Zanda et al. used optically active N -sulfinyl imine for stereoselective synthesis of α-trifluoromethyl α-amino acids but dr and ee values were varied by alkyl substituents due to the epimerization of imine moieties during the reaction. ${ }^{[6]}$ Herein, we synthesized racemic $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ using Burger's methods, ${ }^{[7]}$ resolved racemic $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ using an (R)-1,1'-bi-2-naphthol $\{(R)$-BINOL $\}$ as chiral esters, and studied the preferred structures of L-Leu-based pentapeptides with (R)- or (S)- α-trifluoromethylalanine $\left(\alpha \mathrm{CF}_{3} \mathrm{Ala}\right) .{ }^{[3 \mathrm{~h}]}$

Results and Discussion

Methyl 2-(benzyloxycarbonylimino)- and 2-(t-butoxycarbonylimino)-3,3,3-trifluoropyruvates 3 were prepared from methyl 3,3,3-trifluoropyruvate 1 via addition of Cbz- or Bocprimary carbamate and subsequent dehydration, according to Burger's methods (Scheme 1). ${ }^{[7]}$ Reaction of imines 3 with Grignard reagents at $-78{ }^{\circ} \mathrm{C}$ afforded Boc- and Cbz-protected $\alpha \mathrm{CF}_{3} \mathrm{dAA}$ methyl esters 4-8, as shown in Table 1. The Grignard addition reactions of Cbz-protected 3 gave Cbz-protected $\alpha \mathrm{CF}_{3} \mathrm{dAA}$ methyl esters, such as $\mathrm{Cbz}-\alpha \mathrm{CF}_{3} \mathrm{Ala}-\mathrm{OMe} \mathrm{4}, \mathrm{Cbz-}$ $\alpha \mathrm{CF}_{3} \mathrm{Val}-\mathrm{OMe} 6$, and $\mathrm{Cbz}-\alpha \mathrm{CF}_{3}$ Leu-OMe 7 in $72-93 \%$ isolated yields (entries 1-5). The reactions of Boc-protected 3 also produced Boc-protected $\alpha \mathrm{CF}_{3} \mathrm{dAA}$ methyl esters Boc-4-8 in good yields, except for Boc- $\alpha \mathrm{CF}_{3} \mathrm{Val}-\mathrm{OMe} 6$ (entries $6-10$). In the reaction of ${ }^{\prime} \mathrm{PrMgCl}$, the steric hindrance between Boc and Pr groups may decrease the isolated yield of Boc-6 to 58%.

Scheme 1. Synthesis of Cbz- and Boc-protected imines 3.

Table 1. The 1,2-addition reactions of Grignard reagents to imines 3.

Entry	Pg	R	X	Products: Yield (\%)
1	Cbz	Me	Br	Cbz-4: 93
2	Cbz	Et	Cl	Cbz-5: 79
3	Cbz	${ }^{\text {i Pr }}$	Cl	Cbz-6: 80
4	Cbz	'Bu	Br	Cbz-7: 72
5	Cbz	PhCH2	Cl	Cbz-8: 78
6	Boc	Me	Br	Boc-4: 87
7	Boc	Et	Cl	Boc-5: 85
8	Boc	'Pr	Cl	Boc-6: 58
9	Boc	'Bu	Br	Boc-7: 84
10	Boc	PhCH_{2}	Cl	Boc-8: 82

The optical resolutions of racemic $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ were performed via (R)-BINOL ester derivatives, and separation of their diastereo-isomers by chromatography. ${ }^{[8]}$ After alkaline hydrolysis of methyl esters in 4-8, the resulting carboxylic acids $9-13$ were converted into (R)-BINOL esters using 1 -ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride (EDCI) and N, N-dimethyl-4-aminopyridine (DMAP) (Scheme 2). Although the diastereo-isomers of Boc- $\alpha \mathrm{CF}_{3} \mathrm{dAA}(R)$-BINOL esters could not be separated by chromatography, fortunately, the diastereoisomers of five $\mathrm{Cbz}-\alpha \mathrm{CF}_{3} \mathrm{dAA}(R)$-BINOL esters 14-18 could be separated by column chromatography on silica gel or preparative TLC.

 and 14: $R=\mathrm{Me}, 5,10$, and $15: R=E t ; 6,11$, and $16: R=i \operatorname{Pr} ; 7,12$, and $17: R=$ 'Bu; 8, 13, and 18: $\mathrm{R}=\mathrm{PhCH}_{2}$.

The separated (S)- and (R)-Cbz- $\alpha \mathrm{CF}_{3} \mathrm{dAA}(R)$-BINOL esters were hydrolyzed under alkaline conditions into (S)- and (R)-Cbz- $\alpha \mathrm{CF}_{3} \mathrm{dAA}$ acids, respectively. The Cbz-protecting group in Cbz-9-13 was removed by hydrogenolysis using $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C}$, and $\alpha \mathrm{CF}_{3} \mathrm{dAA} \cdot \mathrm{HCl}$ salt was obtained by treatment with methanolic HCl . Comparing these specific rotation signs with the reported values, the absolute configurations were determined. ${ }^{[6]}$ Figure 1 shows structures of optically active $(S)-\alpha \mathrm{CF}_{3} \mathrm{dAAs}$. The (R) BINOL esters of $(S)-\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ were less polar than those of (R) ones, except for the (R)-BINOL ester of (S)- α trifluoromethylleucine ($\alpha \mathrm{CF}_{3} \mathrm{Leu}$), which was more polar.

Figure 1. Structures of synthesized chiral $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$.

L-Leu-based peptide sequence could provide useful information regarding the effect of CF_{3} moiety by comparing with Aib-containing L-Leu peptides, which were previously synthesized. ${ }^{[9]}$ L-Leu-based pentapeptides 20 with (R)- or (S)$\alpha \mathrm{CF}_{3}$ Ala were prepared by the solution-phase method, as follows: The Cbz-\{(R)- $\left.\alpha \mathrm{CF}_{3} \mathrm{Ala}\right\} 9$ was coupled with a dipeptide amine H -(L-Leu-L-Leu)-OMe using EDCI and 1-hydroxybenzotriazole (HOBt) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the tripeptide 19a in 94% isolated yield. Deprotection of the Cbz-protecting group in 19a by $\mathrm{H}_{2} / 10 \% \mathrm{Pd}-\mathrm{C}$ and subsequent coupling with Cbz-(L-Leu-L-Leu)-OH using isobutyl chloroformate (IBCF) and N -methylmorpholine (NMM) gave the pentapeptide 20a with $(R)-\alpha \mathrm{CF}_{3}$ Ala in 46% isolated yield (Scheme 3). The pentapeptide 20b with (S)- $\alpha \mathrm{CF}_{3} \mathrm{Ala}$ was similarly prepared.

Scheme 3. Synthesis of L-Leu-based pentapeptide 20a with $(R)-\alpha \mathrm{CF}_{3} \mathrm{Ala}$.

The preferred conformations of L-Leu-based peptides 20a and 20b were studied in solution and in the crystalline state. The nuclear Overhauser effect spectroscopy (NOESY) NMR spectrum of $\mathbf{2 0 a}$ in CDCl_{3} solution only showed the d_{NN} correlations between $\mathrm{N}(i)-\mathrm{H}$ and $\mathrm{N}(i+1)-\mathrm{H}(i=1,2)$, together with the $d_{\alpha 1 \mathrm{~N} 3}$ correlation. On the other hand, that of $\mathbf{2 0 b}$ showed the complete series of sequential d_{NN} correlations between $\mathrm{N}(i)-\mathrm{H}$ and $\mathrm{N}(i+1)-\mathrm{H}(i=1 \sim 4)$, accompanied by the $d_{\alpha 1 N 3}$ correlation. These correlations suggested the helical structure of 20b with $(S)-\alpha \mathrm{CF}_{3} \mathrm{Ala}$ (Figure 2).

(b)

Figure 3. The FT-IR absorption spectra of peptides 20a (blue) and 20b (orange) in CDCl_{3} (Peptide concentration: 5 mM).

The Fourier transform infrared (FT-IR) absorption spectra in the N-H stretching region of peptides 20a and 20b both showed weak bands in the $3440-3420 \mathrm{~cm}^{-1}$ region, which corresponded to hydrogen bond-free, solvated N-H groups. Furthermore, they showed strong bands in the $3350-3330 \mathrm{~cm}^{-1}$ region, which are assigned as hydrogen bonded N-H groups. These FT-IR absorption spectra are similar to those of helical peptides (Figure 3). ${ }^{[10]}$

The circular dichroism (CD) spectra of 20a and 20b were measured in 2,2,2-trifluoroethanol solution. However, the CD spectra did not give any characteristic maxima for secondary structures because the length of peptides may be too short to analyze the preferred conformation by CD spectra. ${ }^{[11]}$

Recrystallizations of peptides 20a from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, and 20b from CHCl_{3} / n-hexane gave crystals suitable for X-ray crystallographic analysis. Figure 4 shows superimposed structures of peptides 20a with $(R)-\alpha \mathrm{CF}_{3} \mathrm{Ala}$ and 20b with (S)$\alpha \mathrm{CF}_{3}$ Ala.

The structure of 20a with $(R)-\alpha \mathrm{CF}_{3}$ Ala was solved in a monoclinic $P 2_{1}$ space group to show a right-handed 3_{10}-helical structure in the asymmetric unit. The average ϕ and ψ torsion angles of residues $1-4$ were -63.9° and -28.5°, respectively, which agree with those of an ideal right-handed 3_{10}-helix (-60°; $\left.30^{\circ}\right),{ }^{[12]}$ although those of residue 5 were different, -128.0° and 116.4°, respectively. The intramolecular hydrogen bonds of $\mathrm{N}(i+3)-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}(i)(i=0 \sim 2)$ type ($3_{10}-$ helix $)$ and $\mathrm{N}(5)-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}(1)$ type (α-helix) were observed. Thus, $\mathrm{N}(5)$-H was bound by bifurcated hydrogen bonds to $\mathrm{O}(1)=\mathrm{C}(1)$ and $\mathrm{O}(2)=\mathrm{C}(2)$.

In the orthorhombic $P 2_{1} 2_{1} 2_{1}$ space group of peptide 20b, a right-handed 3_{10}-helical structure existed together with two chloroform molecules. The average ϕ and ψ torsion angles of residues $1-3$ were -50.9° and -33.6°, respectively, which are those of a right-handed helix. However, those of residue 4 (105.5° and $+6.4^{\circ}$), respectively and residue 5 (-112.7° and 82.5°), respectively were distorted. In the crystal, the intramolecular hydrogen bonds of $\mathrm{N}(i+3)-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}(i)(i=0 \sim 2)$ type (3_{10}-helix) were formed.

(a)

(b)

Figure 4. Superimposed structures of peptides 20a (blue) and 20b (orange). (a) side view; (b) top view.

The conformational analysis of L-Leu-based peptides 20a and 20b revealed that both peptides on the whole formed righthanded $(P) 3_{10}$-helical structures. These results may be attributed to the property of $\alpha \mathrm{CF}_{3}$ Ala is to form a helical structure, like Aib, and the property of L-Leu is to form right-handedness. Especially, the 3_{10}-helical conformations at the amino acid residues (1-3) well-matched; however, the conformations at the C-terminal residues (4 and 5) of 20a and 20b were different. ${ }^{[13]}$ The structure of chiral $\mathrm{ClCH}_{2} \mathrm{CO}-\left(\alpha \mathrm{CF}_{3} \mathrm{Ala}\right)$ based on X-ray crystallographic analysis has already been reported. ${ }^{[14]}$ However, here we demonstrated for the first time the structural differences of L-Leubased peptides incorporating (R)- or (S)- $\alpha \mathrm{CF}_{3}$ Ala by X-ray crystallographic analysis. The hydrophobicity and electronegativity of the CF_{3} group in (R)- and (S)- $\alpha \mathrm{CF}_{3}$ Ala residues (3) differently affected the C-terminal and penultimate residues (4 and 5) in 20a and 20b, and their structures may be different, although the effects of crystal packing and recrystallizing solvents cannot be excluded.

Conclusions

We synthesized varying optically active $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ by optical resolution using (R)-BINOL esters, and incorporated (R)- and (S)$\alpha \mathrm{CF}_{3}$ Ala into the L-Leu-based peptides Cbz-[L-Leu-L-Leu-\{ (R) - or (S)- $\alpha \mathrm{CF}_{3}$ Ala\}-L-Leu-L-Leu]-OMe. X-ray crystallographic analysis revealed that the pentapeptides with (R) - or (S)- $\alpha \mathrm{CF}_{3} \mathrm{Ala}$ both formed similar right-handed 3_{10}-helical conformations, but with different structures at the C-terminal and penultimate residues (4 and 5) in the crystalline state. The CF_{3} substituent has a hydrophobic property and an electron-withdrawing effect, and is often shown in drug structures. Thus, the $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ and their conformational property of peptides may be invaluable to design peptide-based drug candidates. ${ }^{[15]}$ Further studies on peptides possessing other $\alpha \mathrm{CF}_{3} \mathrm{dAAs}$ are in progress.

Deposition Numbers CCDC 2016233 (for 20a), and 2016232 (for 20b) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and

Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.

Supporting Information Summary

Supporting information includes the experimental section, X-ray crystallographic data, $C D$ spectra, calculation, and the spectroscopic data of compounds.

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number JP17K19495 (for M. T.). We thank Junko Nagaoka for assistance in X-ray structural analysis.

Keywords: amino acid • conformation • helix • peptide • trifluoromethyl

Reference

[1] a) F. Ehrlich, A. Wendel, Biochem. Z. 1908, 8, 438-466; b) K. Pfister 3rd., W. J. Leanza, J. P. Conbere, H. J. Becker, A. R. Matzuk, E. F. Rogers, J. Am. Chem. Soc. 1955, 77, 697-700; c) G. W. Kenner, R. C. Sheppard Nature 1958, 181, 48-48; d) M. T. Leplawy, D. S. Jones, G. W. Kenner, R. C. Sheppard, Tetrahedron 1960, 11, 39-51; e) H. Heimgartner, Angew Chem., Int. Ed. 1991, 30, 238-264; f) C. Cativiela, M. D. Díaz-de-Villegas, Tetrahedron: Asymmetry 1998, 9, 3517-3599; g) C. Cativiela, M Ordóñez, Tetrahedron: Asymmetry 2009, 20, 1-63; h) C. Cativiela, M Ordóñez, J. L. Viveros-Ceballos, Tetrahedron 2020, 76, 130875.
[2] a) E. Benedetti, V. Barone, A. Bavoso, B. Di Blasio, F. Lelj, V. Pavone, C. Pedone, G. M. Bonora, C. Toniolo, M. T. Leplawy, K. Kaczmarek, A. Redlinski, Biopolymers 1988, 27, 357-371; b) C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, V. Barone, F. Lelj, M. T. Leplawy, K. Kaczmarek, A. Redlinski, Biopolymers 1988, 27, 373-379; c) I. L. Karle, P. Balaram, Biochemistry 1990, 29, $6747-$ 6756; d) E. Benedetti, Biopolymers (Pept. Sci.) 1996, 40, 3-44; e) M Tanaka, N. Imawaka, M. Kurihara, H. Suemune, Helv. Chim. Acta 1999 82, 494-510; f) R. Gessmann, H. Brückner, K. Petratos, J. Pept. Sci. 2003, 9, 753-762; g) M. Tanaka, Chem. Pharm. Bull. 2007, 55, 349-358; h) C. Peggion, M. Crisma, C. Toniolo, F. Formaggio, Tetrahedron $\mathbf{2 0 1 2}$ 68, 4429-4433; i) F. Formaggio, M. Crisma, G. Ballano, C. Peggion, M Venanzi, C. Toniolo, Org. Biomol. Chem. 2012, 10, 2413-2421.
[3] a) B. Jaun, M. Tanaka, P. Seiler, F. N. M. Kühnle, C. Braun, D. Seebach, Liebigs Ann./Recueil 1997, 1697-1710; b) N. Imawaka, M. Tanaka, H. Suemune, Helv. Chim. Acta 2000, 83, 2823-2835; c) M. Tanaka, S Nishimura, M. Oba, Y. Demizu, M. Kurihara, H. Suemune, Chem. Eur. J. 2003, 9, 3082-3090; d) M. Tanaka, Y. Demizu, M. Doi, M. Kurihara, H. Suemune, Angew. Chem. Int. Ed., 2004, 43, 5360-5363; e) M. Tanaka, K. Anan, Y. Demizu, M. Kurihara, M. Doi, H. Suemune, J. Am. Chem. Soc. 2005, 127, 11570-11571; f) M. Nagano, M. Doi, M. Kurihara, H Suemune, M. Tanaka, Org. Lett. 2010, 12, 3564-3566; g) R. Eto, M. Oba
A. Ueda, T. Uku, M. Doi, Y. Matsuo, T. Tanaka, Y. Demizu, M. Kurihara, M. Tanaka, Chem. Eur. J. 2017, 23, 18120-18124; h) Y. Koba, A. Ueda, M. Oba, M. Doi, Y. Demizu, M. Kurihara, M. Tanaka, ChemistrySelect 2017, 2, 8108-8114; i) Y. Koba, A. Ueda, M. Oba, M. Doi, T. Kato, Y. Demizu, M. Tanaka, Org. Lett. 2018, 20, 7830-7834.
[4] a) M. Crisma, A. Moretto, C. Peggion L. Panella, B. Kaptein, Q. B. Broxterman, F. Formaggio, C. Toniolo, Amino Acids 2011, 41, 629-641; b) M. Crisma, M. De Zotti, F. Formaggio, C. Peggion, A. Moretto, C. Toniolo, J. Pept. Sci. 2015, 21, 148-177; c) M. Crisma, C. Toniolo, Biopolymers (Pept. Sci.) 2015, 104, 46-64.
[5] C. Jäckel, B. Koksch, Eur. J. Org. Chem. 2005, 4483-4503.
[6] a) P. Bravo, S. Capelli, S. V. Meille, F. Viani, M. Zanda, Tetrahedron: Asymmetry 1994, 5, 2009-2018; b) A. Asensio, P. Bravo, M. Crucianelli, A. Farina, S. Fustero, J. G. Soler, S. V. Meille, W. Panzeri, F. Viani, A. Volonterio, M. Zanda, Eur. J. Org. Chem. 2001, 1449-1458; c) F. Huguenot, T. Brigaud, J. Org. Chem. 2006, 71, 7075-7078; d) J. Yang, Q.-Q. Min, Y. He, X. Zhang, Tetrahedron Lett. 2011, 52, 4675-4677; e) E. Devillers, J. Pytkowicz, E. Chelain, T. Brigaud, Amino Acids 2016, 48, 1457-1468.
[7] a) K. Burger, E. Hoess, K. Gaa, Chem. Ztg. 1989, 113, 243-247; b) K. Burger, C. Schierlinger, W. Hollweck, K. Mütze, Liebigs Ann. Chem. 1994, 399-406; c) N. Sewald, W. Hollweck, K. Mütze, C. Schierlinger, L. C. Seymour, K. Gaa, K. Burger, B. Koksch, H. D. Jakubke, Amino Acids 1995, 8, 187-194; d) S. N. Osipov, A. S. Golubev, N. Sewald, T. Michel, A. F. Kolomiets, A. V. Fokin, K. Burger, J. Org. Chem. 1996, 61, 75217528.
[8] M. Oba, A. Shimabukuro, M. Ono, M. Doi, M. Tanaka, Tetrahedron: Asymmetry 2013, 24, 464-467.
[9] Y. Demizu, M. Tanaka, M. Nagano, M. Kurihara, M. Doi, T. Maruyama, Y. Suemune, Chem. Pharm. Bull. 2007, 55, 840-842.
$[10]$ a) C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, P. Grimaldi, F. Lelj, V. Pavone, C. Pedone, Macromolecules 1985, 18, 895-902; b) Y. Demizu, M. Doi, M. Kurihara, H. Okuda, M. Nagano, H. Suemune, M. Tanaka, Org. Biomol. Chem. 2011, 9, 3303-3312.
[11] See supporting information for CD spectra.
[12] a) C. Toniolo, E. Benedetti, Trends Biochem. Sci. 1991, 16, 350-353. b) R. M. J. Liskamp, Recl. Trav. Chim. Pays-Bas. 1994, 113, 1-19. c) L. Pal, G. Basu, P. Chakrabarti, Proteins: Struct. Funct. Genet. 2002, 48, 571-579. d) C. Toniolo, M. Crisma, F. Formaggio, C. Peggion, Q. B. Broxterman, B. Kaptein, Biopolymers (Pept. Sci.) 2004, 76, 162-176.
[13] We calculated the conformation of peptides Cbz-[L-Leu-L-Leu-\{(R)- \& (S)- $\alpha \mathrm{CF}_{3}$ Ala\}-L-Leu-L-Leu]-OMe 20a and 20b by MacroModel 10.0 (OPLS2005, $\mathrm{H}_{2} \mathrm{O}, 20,000$ calculation), starting from the X-ray crystallographic structures. By restricted calculation, a right-handed (P) 3_{10}-helix of Cbz-[L-Leu-L-Leu-(S)- α CF 3 Ala-L-Leu-L-Leu]-OMe 20b was more stable than that of Cbz-[L-Leu-L-Leu- $(R)-\alpha \mathrm{CF}_{3}$ Ala-L-Leu-L-Leu]OMe 20a by ca. $2.5 \mathrm{kcal} / \mathrm{mol}$.
[14] J. W. Keller, C. S. Day, Acta Cryst. 1984, C40, 1224-1226.
$[15]$ a) D. Maisch, P. Wadhwani, S. Afonin, C. Böttcher, B. Koksch, A. S. Ulrich, J. Am. Chem. Soc. 2009, 131, 15596-15597; b) A. Botz, V. Gasparik, E. Devilers, A. R. F. Hoffmann, L. Caillon, E. Chelain, O. Lequin, T. Brigaud, L. Khemtemourian, Biopolymers 2015, 104, 601610; c) C. Gadais, E. Devillers, V. Gasparik, E. Chelain, J. Pytkowicz, T. Brigaud, ChemBioChem 2018, 19, 1026-1030.

Layout 1:

FULL PAPER

Various α-trifluoromethyl α, α -

 disubstituted α-amino acids were synthesized by the reaction of methyl 3,3,3-trifluoropyruvate imines with Grignard reagents, and the optical resolution of racemates using $(R)-1,1^{\prime}$ -bi-2-naphthol $\{(R)$-BINOL $\}$ esters. Xray crystallographic analysis revealed that L-Leu-based pentapeptides with (R) - or (S)- α-trifluoromethylalanine $\left(\alpha \mathrm{CF}_{3} \mathrm{Ala}\right)$ both formed similar righthanded 3_{10}-helical structures at the N terminal residues 1-3, but with different ϕ and ψ torsion angles of residues 4 and 5.

Helical structures*

A. Ueda, M. Ikeda, T. Kasae, M. Doi, Y. Demizu, M. Oba, and M. Tanaka*

Page No. - Page No.
Synthesis of Chiral α-Trifluoromethyl α, α-Disubstituted α-Amino Acids and Conformational Analysis of L-LeuBased Peptides with (R)- or (S)- α Trifluoromethylalanine
*one or two words that highlight the emphasis of the paper or the field of the study

[^0]: [a] Dr. A. Ueda, M. Ikeda, T. Kasae, Prof. M. Tanaka* Graduate School of Biomedical Sciences
 Nagasaki University
 Nagasaki 852-8521 (Japan)
 E-mail: matanaka@nagasaki-u.ac.jp
 [b] Prof. M. Doi
 Osaka University of Pharmaceutical Sciences, Osaka 569-1094 (Japan)
 [c] Dr. Y. Demizu
 Division of Organic Chemistry, National Institute of Health Sciences, Kawasaki 210-9501 (Japan)
 [d] Prof. M.Oba
 Kyoto Prefectural University of Medicine, Kyoto 606-0823 (Japan)

