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DYNAMIC ST ABILITY OF AN ANNULAR SECTOR PLATE 

SUBJECTED TO IN-PLANE DYNAMIC MOMENTS 

By K，αzuo TAKAHASHJ*， Yoshihiro NATSUAKI**， Yasunori KONISHI*** 

αnd Michiaki HIRAKA WA**** 

Dynamic stability problem of an annular sector plate subjected to in-plane dynamic 

moments at the radial edges is examined. The basic equation is reduced to a set of ordinary 
differential equations by applying a Galerkin method， and transformed into an eigen-value 
problem by using the harmonic balance method. The stability of the system can be directly 

determined from the sign of the real parts of the eigen-values. 
The dynamic unstable regions composed of both simple parametric and combination 
resonances， which contain the secondary as well as the primary unstable regions， are 
obtained for the annular sector plates with various boundary conditions and geometrical 
parameters. The effect of a static moment on the unstable regions is also examined. 
Key甜ords:dyna叩icstlαbility， an飽ulαrsector plate， plate vibration 

1. INTRODUCTION 

93 

Out-of-plane vibrations of a thin plate may by observed under in-plane periodic forces by reason of 

parametric excitation. Since the parametric resonance may induce fatigue cracks or acoustic radiations， it 

is important to clarify the conditions under which the unstable motions occur. 

The dynamic stability problem of plates has been studied by a number of researchers. Bolotin1l， Hutt et 

al. 2) and Yamaki et al. 3) investigated the dynamic stability of a rectangular plate subjected to in-plane 

uniformly distributed periodic forces. Duffield et al. 4) treated stiffened rectangular plates. Takahashi et 

al. 5) analyzed the rectangular plate under linearly distributed dynamic loads such as the in-plane moments 

and the triangularly distributed load. 

From these results， the dynamic instability of a rectangular plate subjected to various in-plane periodic 

forces is essentially understood. 1n practical structures， however， various shaped plates have been 

incorporated as structural members. For instance， such curved plates as web plates of the arch rib or 

corner members of the rigid-frame may be regarded as annnlar sector plates subjected primarily to in-plane 

moments. 1t seems that no investigation of the dynamic stability of those plates has ever been initiated. 

1n this paper， the dynamic stability problem of an annular sector plate simply supported along radial 

edges is analyzed. The equation of motion with respect to out-of-plane vibrations of a plate subjected to 

in-plane dynamic moments is reduced to a set of ordinary differential equations by applying a Galerkin 
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procedure， and transformed into an eigen-value problem by using the harmonic balance method described 

first by Bolotinl) and lately extended by the first author6). Then the stability of the system can be directly 

determined from the sign of the real parts of the eigen-values. 

As numerical examples， unstable regions of an annular sector plate subjected to in-plane dynamic 

moments at the radial edges are obtained under various boundary conditions along the circumferential 

edges， geometrical parameters and the static moment. Their influences on the unstable regions are also 

examined. 

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

Fig. 1 shows an annular sector plate with the opening 

(subtended) angle α， outer radius a and inner radius b. 

The polar co-ordinates ( r， f)) are taken in the neutral 
surface of the plate. 

Equal and opposite moments M， which consist of the 

static moment Mo and periodic dynamic moment Mt COS 

Qt， act at the radial edges. In-plane forces Nr. N，θ 

and Nγθare given by7) 

4M (α2b2 α r . "， b¥ 
lVF-7(7lnE+α21勺 +b

2l吋(1)

Nn4M/α2  b2 α~+b2ln ~+a2-b2) F つァ(一一 -ln了 +a2lnで +b2lnて +α2ーゲ)
H¥T・ u u， 

. (2) 

Fig. 1 Geometry and co-ordinates 

Nrθ=0………...・H ・-………………...・H ・-……………………………………………………………・(3 ) 
where N=(α2ーが)2-4α2b2!ln(α/ bW and M=Mo+ Mtcos Qt. In-plane forces Nr and Nθare functions 
of the independent variable r. The basic equation for linear free vibrations of a plate subjected to these 

in-plane forces then， can be written by adding an inertia force term to the governing equation of the 

corresponding buckling problem8) as follows : 

δ2ω1δ/θω¥Nθδ2ω 
D¥14W+ρd at"";一子百¥rNr万 )--;; af)""; =0 ・…・ ・・・・・・・・・・・ー・・ ・…・ ・・ (4) 
where ωdenotes the plate deflection，ρis the mass density， t is the time， D=Ed3/12 (1-)12) is the 
flexural rigidity， E is Young's modulus，νis Poisson's ratio， d is the plate thickness and ¥12= 
(δ2 . 1 a . 1δ~) 一一一+一一一+一一←一一 isa Laplacian operator in the polar co-ordinates. ar2 . r ar . r2 a2f) J 
Considering the web plate divided by adjacent radial stiffeners of a vertically curved I-girder to be an 

annular sector plate， the boundary condition for radial edges of the plate can be assumed to be simply 

supported. The following three boundary conditions along the circumferential edges are considered in the 

present analysis， case 1 : simply supported， case n : clamped and case皿:free 

3. METHOD OF SOLUTION 

Taking the boundary conditions for radial edges into account， the defelection along the angular direction 

is given by the sine wave. The solution of Eq. (4) then can be assumed to be of the form 

ω=~ Tsn(tHV;四 (r，θ)…・…..・…・…….....・H ・-……………・・ ・………………ー………………….(5) 
S 

in which T sn is an unknown function of the time variable， n is an arbitrary integer which denotes the 
half-wave number in the θdirection， and Wsn is an eigen-function associated with the free vibration of the 

corresponding annular sector plate loading with no in-plane forces and satisfying geometrical boundary 

conditions of the plate， defined as9) 

W四 (r，f))=Rsn( r) sin (向。)……・ ……………………… ………………...・H ・..……・・ ……………・ (6 ) 
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where Rsn=AsnJ.αn(ksn~)十 BsnYan(k四~)十 CsnLαη(k四~l+ DsnKαn(ksn~) ， in which Asn， Bsn， Csn and Dsn 
are constants of integration dependent on each boundary condition， J.αn and y，αn are Bessel functions of 

order απ， Ian and K.αn are modified Bessel functions of order日n，ksn is the eigen-value of free vibrations， 

an=n7r/α， and ~=r /α. 
Substituting Eq. (5) into Eq. (4) and applying a Galerkin method， one has 

[I] IT n!+[AJ ITn!十(Mo+MtCOS石，)[BJITn!=IO!…… H ・H ・-一……・……一……………………….(7) 

in which [IJ is the unit matrix， [AJ and [BJ are coefficient matrices (see Appendix)， and I Tn! is a column 

vector consisting of the dependent variable T四・ The following non-dimensional qualities have been 
introduced in the above equation : 

冠。=fF，Et=ど，石=JL andτ寸:t 
4収J.cr J..r.J.cr ~Ql 

Here Q;= kil J(百万da4)is the lowest natural circular frequency9)， Mげ =AcrDis the buckling moment due 
to static in-plane moment8) and入cris the eigen-value of buckling. 

The solution of Eq. (7) is now sought in the form6) 

I Tn!= ê' {t bo+号(amsinm石r十九ω 凶 τ)}....................................... ..... .............. (8) 
where bo，αm and bm are vectors that are independent of time. 

Substituting Eq. (8) into Eq. (7) and applying the harmonic balance method yield a set of homogeneous 

algebraic equations as 

([MoJ-，¥[M1J-A
2[M2J) IX!=IO!..…・…...・H ・...・H ・.....・H ・-…...・H ・.....……・…-…...・H ・.....…… (9) 

in which [Mol [M1J and [M2J are the coefficient matrices of the zeroth (constant)， first and second powers 

ofλ， respectively， and IX! is the column vector consisting of bo， bm and αm・

The eigen-valueλcan be obtained by solving a double sized matrix as an eigen-value problem in the form6) 

[[0] 日 llxl .Ixl 
11 :'， f =λl ト...........................................・・・・・・・・・・ ・… …・ (10) 

[M2J-l [MoJ 一[M2J-l[M1J J I Y 1 .'1 Y 1 
where IY!=λIxL Then， the stability of the system can be directly determined from the sign of the real 

parts of the eigen-values. 

The convergency and accuracy of the space and time functions assumed in the Galerkin and harmonic 

balance methods， respectively， have been confirmed in the previous papers10)-lZ). 

The geometrical parameters in the present analysis are the opening angle a and the radius ratio s 
(= b/α). For the comparison with the correspondi時 rectangularplate， the aspect ratio of an annular 
sector plate may be defined by the rectangular plate analogy asμ= l/ c， in which l=(α+b)α/2 is the mean 

arc length and c is the radial edge length. 

4. NUMERICAL RESULTS 

Based upon the vibration analysis9) and the preceding theoretical analysis， numerical solutions have been 

obtained for an annular sector plate under various boundary conditions along the surcumferential edges， 

geometrical parameters and the static moment. First， the natural frequencies are presented. Then， the 

dynamic unstable regions are determined and compared with those of a rectangular plate. 

( 1) The propeはyof natural frequencies 

The natural frequencies of an annular sector plate are examined under various geometrical parameters in 

order to estimate the effects of the opening angle a and the radius ratio βon natural frequencies. Figs.2 

and 3 show the variation of natural frequencies with the opening angle αand the radius ratio s， 
respectively. The frequency curves are obtained by calculating with parameters at suitable intervals. In 

these figures， the ordinate x~ ( =ん/π2=Q~α2JpdlD /π2) denotes the non-dimensional natural 

frequency and the notation (n， S) represents the half-wave number of the vibration mode in the e and r 
directions， respectively. The natural frequencies rapidly increase with a decrease of the opening angle α 
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and with an increase of the radius ratio s. Since the natural frequencies are strongly influenced by the 
opening angle αand the radius ratio s， it follows that the dynamic unstable regions are also influenced by 

these parameters. 

( 2) Effect of static moment Mo on natural frequencies 

The natural frequencies of an annular sector plate subjected to a static moment M 0 can be obtained by 

solving Eq. (7) at M ，=0.0 as an eigen-value problem， in which the eigen-function Wsn is taken up to s= 
10. The moment M 0 vs. the natural frequency n for case 1，α=600 and μ=1. 0 is shown in Fig. 4. In this 
figure， the ordinate M 0= Mo/ Mcr shows the static moment Mo normalized to the buckling moment Mcr， 

while the abscissa 死二Q~/Q: denotes the natural circular frequency Q~ normalized to the lowest relevant 

natural circular frequency Q:. 
The frequencies change with an increase of the static moment M o. Natural frequencies decrease with an 

increase of the static moment except for the modes (2， 1)， (3， 1) and (4， 1)， in which the frequencies 

remarkably increase. The effect of the static moment M 0 on natural frequencies of an annular sector plate 

is different from that of the uniformly distributed in-plane force on natural frequencies of a rectangular 

plate， which never increase with an increase of the in-plane force). Moreover， in the case of a square plate 

subjected to an in-plane moment， natural frequencies corresponding to the mode (m， 1) decrease and the 

other modes' frequencies are almost constant or slightly increase with an increase of the static moment 

Mλ 
Next， the effect of the static moment M 0 on the modes of vibration can be examined. The changes in the 

first modal shape (1， 1) with moments are illustrated in Fig. 5. The maximum amplitude moves towards the 

compressive force side. When the normalized static moment M 0 is equal to unity， the mode of vibration 

corresponds to that of buckling. Since the buckling mode (M 0=1. 0) is different from the free vibration 

mode (M 0=0. 0)， the out-of-plane responses of an annular sector plate subjected to in-plane moments 

should be composed of several free vibration modes without an in-plane moment. Therefore， it is 

predictable that the combination resonances will appear in the dynamic instability of the present problem. 

( 3) Dynamic unstable regions for various boundary conditions 

The kinds and widths of the unstable regions depend on the contents of the coefficient matrix [B] in Eq. 

(7). S 
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Fig.2 The variation of natural frequency with the opening 

angle α: case 1 and β=0.5. 

Fig.3 The variation of natural frequency with the radius 

ratio β: case 1 and α=60". 
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Fig.4 Moment M 0 vs. the natural frequency百:case 1.α=600 and 
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Fig.5 Effect of static moment M 0 on the 

mode (1， 1). 

case of a rectangular plate subjected to in-plane moments， in which parametric resonances occur only 

through the coupling terms because the diagonal elements of the parametric coefficient matrix are zer05). 

The dynamic unstable regions of the annular sector plate for different boundary conditions with no static 

moment (M 0=0.0) are shown in Fig.6 through Fig. 8. The unstable regions for case II are so numerous 

that they are shown in two figures as Figs. 7 (a) (for n=l and 2) and 7 (b) (for n=3， 4 and 5). In these 

figures， the ordinate M ，= M，/ Mcr denotes the amplitude M， of the periodic moment normalized to the 
corresponding buckling moment Mcγ， while the abscissa w=.Q /.Q: is the exciting frequency .Q normalized 
to the lowest natural circular frequency .Q:. Further， the cross-hatched portions represent the regions of 

various types of instability such as both simple parametric resonances (2ωIf / k) and combination 

resonances of the sum type ((ωI~+ωm/ k)， which contain the secondary unstable region (k孟2)as well as 

the primary unstable region (k=l). The narrower unstable regions of石 lessthan O. 1 at M ，=0.5 are 
omitted in the figures. 

Non-dimensional natural frequencies ωI~ (= .Q~/.Q:)， the lowest eigerトvalueof vibration kll and the 

eigen-value of buckling Acr of annular sector plates with α=60
0 
and μ=1. 0 are shown in Table 1 for three 

boundary conditions. 

The widths of primary unstable regions of the simple resonance are broader than those of the combination 

resonance. This property of unstable regions of an annular sector plate is quite different from that of a 

rectangular plate， for which the combination resonances are predominant5). As for the combination 

resonances in the present problem， the unstable regions which have adjacent half-wave numbers in the 

radial direction and the same half-wave number in the angular direction， such as ω?十 ωI~+l ， are 

predominant. For an annular sector plate subjected to in-plane dynamic moments， the number of unstable 

regions is much affected by the boundary conditions， from comparisons of Figs. 6， 7 and 8. Since natural 

frequencies corresponding to unstable motions are close to each other in case n and apart from each other 
in case m as shown in Table 1， case n has more unstable regions than case皿.
( 4) Effects of opening angle αand radius ratio βon unstable regions 

The opening angle αand the radius ratio βinfluence the vibration property (see Figs.2 and 3) and the 

buckling pr 
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Fig.6 Unstable regions for an annular sector plate subjected to moment M， : case 1， 
α=60" and μ=1.0 
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Fig. 7 (a) Unstable regions for an annular sector plate subjected to moment M， : case II. 
α=60" and μ=1. 0 (for n=l and 2) 
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Fig. 7 (b) Unstable regions for an annular sector plate subjected to moment M， : case II， 
α=60" and μ=1. 0 (for n=3， 4 and 5). 

so close to each other (see Figs. 2 and 3) that the unstable regions corresponding to them are crowded as 

shown in Figs. 9 and 10. The widths of primary unstable regions of the simple resonances widen slightly 

with an increase of the opening angle α， while the others remain almost unchanged as shown in Fig. 9. On 

the other hand， the radius ratio βinfluences the widths of unstable regions， which are generally narrower 

with an increase of radius ratio βas shown in Fig. 10. 
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Fig.8 Unstable regions for an annular sector plate subjected to moment M， : case皿，
α=60. and μ=1.0 

Tablelω，~， kll and Acr for different boundary conditions :μ=1. 0 and α=60。

case E E 

決 2 3 4 1 2 3 4 5 E l 2 3 

1 I 1. 000 2.320 4.201 6.579 1.000 1.877 3.242 4.959 7.009 9.387 1.000 3.871 8.344 

w' 2 I 2.610 4.397 7.017 10.207 2.429 3.494 5.296 7.571 10.210 13.197 4.147 9.993 17.577 

3 5.122 7.099 10.255 14.178 4.510 5.648 7.682 10.412 13.586 17.127 8.557 17.065 24.431 

4 8.598 10.630 14.058 18.583 7.259 8.435 10.553 13.579 17.230 21.298 15.170 25.224 38.625 

k" 6.5019 7 .8300 3.4982 

λe， -28.1428 -44.7665 2.4200 
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Fig.9 The variations of unstable regions with 

the opening angle α: case 1， β=0.5， 

n=l and M，=0.5. 

Fig. 10 The variations of unstable regions with 

the radius ratio β: case 1， α=60.， 

n=l and M，=0.5. 

( 5) Effect of static moment M 0 on unstable regions 

Fig. 11 shows the variations of unstable regions with the static moment M o. In this figure， the unstable 

regions were obtained for case 1 with α=600 and μ=1. 0 at M ，=0.5. The narrower unstable regions of石
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Fig. 12 Comparison of case 1 with a square plate : 

μ=1.0， n=l and M，=0.5. 

less than O. 1 at M 0=0. 0 are omitted in the figure. The widths of unstable regions become slightly broader 

with an increase of the static moment， but the static moment has little affect on the unstable regions as 

shown in Fig. 11. The effects of the static moment on unstable regions for an annular sector plate are quite 

different from the case of a rectangular plate， in which the widths of simple resonances remarkably widen 

under the influence of static moments5). 

( 6) Comparison 01 case I with a square plate 

The kind of unstable regions which appear on the annular sector plate with α=60
0 
and μ=1. 0 is quite 

different from that of a rectangular plate as mentioned above. That is， the simple resonances predominate 

over the combination resonances， in contrast to a rectangular plate. 1n order to compare the dynamic 

stability of an annular sector plate to that of a square plate， the unstable regions of an annular sector plate 

can be examined by keeping the aspect ratio μat unity. 

Fig. 12 shows the variation of the unstable regions with the radius ratio βfor case 1，μ=1. 0， n=l and 
M ，=0. 5. When βapproaches 1. 0， the annular sector plate withμ=1. 0 resembles a square plate in shape. 
1n this figure， the unstable regions of a square plate are also shown on the right side ordinate. For an 

annular sector plate with μ=1. 0， the widths of unstable regions of the simple resonances become narrower 

and those of the combination resonances become wider， resembling a square plate in distribution of 

1Iトplaneforces， as βapproaches 1. O. The combination resonances predominate over the simple resonances 

when the radius ratio βis larger than O. 8， in which the in-plane forces can be presumed to form a linear 

distribution8) 

1t is announced that the property of free vibrations of an annular sector plate for cases 1 and n can be 
estimated by the rectangular plate analogy9). On the other hand， the dynamic unstable regions of an annular 

sector plate are influenced by the distribution of in-plane forces like the buckling propertyB). Therefore， 

the dynamic stability of an annular sector plate with μ=1. 0 can not be estimated by that of a square plate 

when the in-plane forces of the annular sector plate are not so close to the linear distribution， that is， when 

the radius ratio βis less than O. 8. 
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5. CONCLUSIONS 

The dynamic stability of an annular sector plate subjected to in-plane time-varying moments has been 

investigated by using the linear theory. The conclusions are as follows : 

( 1) The natural frequencies of an annular sector plate subjected to in-plane moments change with an 

increase of the static in-plane moment. Some of them increase and others decrease. 

( 2 ) The dynamic unstable regions of the present problem consist of the simple parametric and sum 

type combination resonances. 

( 3 ) Simple resonances predominate over combination resonances for an annular sector plate with the 

large opening angle or the small radius ratio subjected to in-plane dynamic moments. This behavior is quite 

different from the case of a rectangular plate， in which the combination resonances predominate 

(4) The widths and numbers of unstable regions depend primarily on the boundary conditions. The 

unstable regions become more numerous with an increase in the degree of restraint along the 

circumferential edges. 

(5) The unstable regions are more influenced by the radius ratio than the opening angle， while the 

effect of static moments on unstable regions is not so remarkable. 

( 6 ) The dynamic stability of an annular sector plate under the influence of the nonlinearity of in-plane 

forces can not be estimated by that of a rectangular plate. 

ADDITIONAL REMARK 

It has been shown that the in-plane force distributions of an annular sector web plate are transfigured by 

the size of flange platesl4l. 15) Therefore， it is necessary to take the effect of flange plates into account for 

the determination of unstable regions of the web plate of a vertically curved 1 -girder. 

The motions on unstable regions grow indefinitely with time under the assumption of the small 

deflection. Although the linear theory is useful in determining the initial growth or decay， the amplitudes 

of motions are bounded by the stretching of a middle plane of the plate. It is necessary to take the 

nonlinearity into account for the determination of the amplitudes of unstable motionsI6). The effects of 

damping and initial deflection on the unstable motions also remain to be considered. 

The dynamic stability analysis considering these effects will be reported in the subsequent papers. 

In the present study， numerical examples are calculated by means of FACOM M-180 n AD of Information 
Processing Center， Nagasaki University. 

APPENDIX : Coefficient matrices [A] and [B] 

[A]=diag (α;J 

where α師二k;n/kiI. 

ibllη b21π …bNIn寸

I b'2n b22冗…b問nI 
[B]=I 山…山“|

I b，胸 b2伽…bNNnI 
('~. ~，~ T 4 Acr (' r ..，.， dR師 dRJn， a~ "' _， ~ _ 1 

where b'Jn=Iim/lin， Iiη=よR;n伏 ，Iiin=一言語~J{j tg，λw  -d'i' -dt' + ~~ f2(s)RtnRJnJds， 

万=(1一β2)2-4s2( ln ~ y，λ(f)ztlnl+lnt+β21n立¥βJ' JI\~' S2'''s 

fi(E)=-t lnl+ln t+β21n立+1-s2.eβ 
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