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Abstract—In this paper, deep pipelined FPGA implementa-
tion of a real-time image-based human detection algorithm is
presented. By using binary patterned HOG features, AdaBoost
classifiers generated by offline training, and some approximation
arithmetic strategies, our architecture can be efficiently fitted on a
low-end FPGA without any external memory modules. Empirical
evaluation reveals that our system achieves 62.5 fps of the
detection throughput, showing 96.6% and 20.7% of the detection
rate and the false positive rate, respectively. Moreover, if a high-
speed camera device is available, the maximum throughput of
112 fps is expected to be accomplished, which is 7.5 times faster
than software implementation.

I. Introduction

Real-time image-based human detection plays a key role
in a wide range of application domains including robotics,
security, surveillance, nursing, and entertainment. Also, the
importance of compact and power-efficient implementation of
the algorithm with embedded hardware is rising along with this
expansion of application domains. FPGA implementation of
such advanced video processing is a promising approach, but
external memory is often required to store a video frame and
data commutation between the external memory and the FPGA
tends to harm the performance as well as energy-efficiency.

In this paper, we present external memory-free FPGA imple-
mentation of a real-time image-based human detection system.
A process flow of image-based human detection generally
consists of two stages; calculation of feature amount of given
images and pattern classification based on a machine learning
technology. In this implementation, histograms of oriented
gradients (HOG)[1] is used as feature amount of images while
AdaBoost classifiers[2] are employed for pattern recognition.
Making the best use of deep pipelined arithmetic structure con-
figured on an FPGA and a high bandwidth provided by on-chip
RAMs, our streamed processing approach achieves real-time
human detection for input video frames without any external
memory modules. This external memory-free architecture is
also suitable for implementation with a reconfigurable fabric
on an SoC.

So far, hardware implementation of HOG-based object
detection has been actively investigated. In order to reduce the
HOG feature amount and hardware size, an effective binariza-
tion scheme of HOG feature was proposed [3]. In [4], efficient

FPGA implementation of real-time HOG feature extraction
was presented and application for a stop sign detection system
was shown in [5]. Our contribution is to present a unified
pipelined architecture of not only the HOG feature extraction
but also AdaBoost for real-time human detection on a single
FPGA without external memory.

The rest of this paper is organized as follows. Section
II explains fundamentals of the HOG feature extraction and
Section III shows reduction techniques of the calculation
amount for efficient implementation of human detection on
an FPGA. Then, Section IV explains FPGA implementation
technique with on-chip Block RAMs and shift registers. After
evaluation of the proposed architecture is presented in Section
V, finally the paper is summarized in Section VI.

II. HOG feature

The histograms of oriented gradients (HOG) uses local
histograms of oriented gradients of pixel luminance to char-
acterize a given image. HOG description of a local region of
the image roughly expresses object shape, thus the method is
widely used for various object recognition such as pedestrian
detection and car detection [1], [6], [7], [8]. The process of
HOG feature extraction consists of three stages:

1) Luminance is calculated from given color signals, and
the gradient strengths and the gradient directions are
calculated from the luminance map. (Section II-A)

2) Histograms of oriented gradients are calculated by sum-
marizing the gradient strength and direction for each
group of pixels called a cell. (Section II-B)

3) The histograms are normalized for each group of cells
called a block. (Section II-C)

In the followings, details of each process stage are explained.

A. Calculation of luminance gradients

The luminance value L for each pixel is calculated from the
corresponding RGB values according to Eq. (1).

MAX = max(R,G, B)
MIN = min(R,G, B)

L =
(MAX +MIN)

2
(1)

where R, G, B, and L take the value from 0 to 255.
Let L(x, y) be the luminance of the pixel at the coordinate
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Fig. 1 Quantization of
gradient direction θ

Fig. 2 Quantization of
divided angles

∆Lx(x, y) and ∆Ly(x, y) are defined as shown in Eq. (2). Us-
ing these values, the gradient strength m(x, y) and gradient
direction θ(x, y) are calculated according to Eq. (3) and Eq. (4),
respectively.{

∆Lx(x, y) = L(x + 1, y) − L(x − 1, y)
∆Ly(x, y) = L(x, y + 1) − L(x, y − 1) (2)

m(x, y) =
√
∆Lx(x, y)2 + ∆Ly(x, y)2 (3)

θ(x, y) = tan−1 ∆Ly(x, y)
∆Lx(x, y)

(4)

B. Histogram generation

A histogram of the gradient orientations is generated for
each cell, which consists of 5×5 luminance values, using
the corresponding gradient strengths m and directions θ. The
gradient directions are quantized to make histograms as shown
in Figure 1.

Here, the gradient directions are labeled by eight quan-
tized orientations according to the threshold angles illustrated
in Figure 2. For example, when θ is within the range of
Q2 ≤ θ < Q3, the corresponding orientation label becomes
2. Note that we only take account of the range from − π2 to
π
2 for θ, since the HOG method does not focus on gradient
directions but orientations; the opposite direction means the
same orientation. The threshold values Q0,Q1, . . .Q9 are given
by Eq. (5).

Qd = tan−1((7 − 2d) × π
16

) (d = 0, 1, ..., 9) (5)

Then the gradient strengths m are voted according to the
corresponding quantized orientation label for every luminance
value in a cell to make the histograms, as shown in Figure 3.
Since we quantize the gradient orientation into eight labels,
8-dimension feature vectors are eventually generated. For a
(w × h) input image, a total of w

5 ×
h
5 histograms are obtained

since each cell consists of 5×5 luminance values.

C. Block normalization

The histogram of the gradient orientations obtained from
cells are normalized in terms of a block, which consists of
3×3 cells. Let:

Fi, j = [ f 0
i, j, f 1

i, j, f 2
i, j, f 3

i, j, f 4
i, j, f 5

i, j, f 6
i, j, f 7

i, j] (6)

be the feature vector for the cell located at the i-th row and
j-th column.

Fig. 3 The example of histogram generation

Since one block contains feature vectors for nine cells, the
feature vector of the block whose upper-left corner cell is at
the i-th row and j-th column can be expressed as:

Vi, j = [Fi, j, Fi+1, j, Fi+2, j, Fi, j+1, Fi+1, j+1, Fi+2, j+1, Fi, j+2

, Fi+1, j+2, Fi+2, j+2] (7)

which has 8 × 9 = 72 dimensions.
Let f m

k,l denote a one-dimension feature amount in Vi, j

where i ≤ k ≤ i + 2 and j ≤ l ≤ j + 2. Then, the normalized
feature amount vm

k,l is calculated by Eq. (8).

vm
k,l =

f m
k,l√

||Vi, j||2 + ε2
(ε = 1) (8)

||Vi, j|| = ||Fi, j|| + ||Fi+1, j|| + · · · + ||Fi+2, j+2||
||Fi, j|| = | f 0

i, j| + | f 1
i, j| + · · · + | f 7

i, j|

When the HOG features are extracted from an image of
w × h luminance values, we have a total of w

5 ×
h
5 cells as

described in the previous subsection. A block consists of 3×3
cells and scans the entire image area in a cell-by-cell manner,
so that we have a total of ( w

5 −2)×( h
5 −2) blocks. This means a

feature vector with ( w
5 −2)×( h

5 −2)×72 dimensions is obtained
from a single image data.

D. Binarization of features

If we express the HOG feature with the 8-byte double-
precision floating point format for each dimension, approx-
imately ( w

5 − 2) × ( h
5 − 2) × 72 × 8-byte memory capacity will

be required to store the whole HOG features for a (w × h)
single image, making compact implementation with embedded
hardware difficult. To reduce the size of the features, we
employed a binarized HOG scheme proposed in [3].

In this scheme, each one-dimension feature amount is bina-
rized using a threshold value so that each gradient orientation
can be expressed in a single bit. Since the gradient directions
are quantized into eight orientations, a feature amount obtained
from a cell can be described with eight bits, that is, 0 to 255
in decimal.

Figure 4 depicts an example of the HOG feature binariza-
tion. In this case, the feature amounts for three of the eight
orientations exceed the threshold value, generating the 8-bit
binary pattern of 00111000 (56 in decimal) as the feature
vector for the cell. With this reduction scheme, the memory
capacity required to store the HOG features for an image of
w×h is reduced to ( w

5 −2)× ( h
5 −2)×72-bits. Compared to the



Fig. 4 The example of binarization

original size of ( w
5 − 2)× ( h

5 − 2)× 72×8-bytes, 1
64 of reduction

is achieved.

III. Simplification of the calculation process for hardware
implementation

The calculation process of the HOG features described
in the previous section is still too complicated to directly
implement as a simple FPGA circuit. Thus, we have further
modified the process to reduce the calculation complexity.

A. Calculation of luminance gradient

The calculation of a luminance value L is executed with
integer arithmetic by rounding a result value of Eq. (1). For
this calculation step, a gradient strength m and a gradient
orientation θ are obtained after calculating pixel luminance.
Thus, L, ∆Lx(x, y) and ∆Ly(x, y) are expressed as 8-bit integer
values.

In Eq. (3), in which the gradient strength m is obtained,
both the values of ∆Lx(x, y) and ∆Ly(x, y) are squared and thus
unsigned arithmetic can be carried out. By rounding down the
fraction part of the result, m takes a value in the range of 0
to 361 and can be expressed as 9-bit integer value.

Since the values of ∆Lx(x, y) and ∆Ly(x, y) have already
been calculated in the previous steps, the value of tan θ can be
obtained by Eq. (9). On the other hand, the tangent values of
the quantization threshold angles Qd(d = 1, 2, . . . , 8), which
are described in Section II (Figure 2), can be precomputed
since they are constant values. Therefore, we get a quantized
gradient orientation by the conditional expression with tan Qd

and tan Qd+1 as shown in Eq. (10).

tan θ =
∆Ly(x, y)
∆Lx(x, y)

(9)

tan Qd+1 ≤ tan θ < tan Qd (d = 1, 2, . . . , 8) (10)

Here, by substituting Eq. (9) into Eq. (10), we we obtain
Eq. (11), and additional expansion of the equation produces
Eq. (12).

tan Qd+1 ≤
∆Ly(x, y)
∆Lx(x, y)

< tan Qd (11)

∆Lx(x, y) × tan Qd+1 ≤∆Ly(x, y) < ∆Lx(x, y) × tan Qd (12)

In order to simplify the implementation, we employed fixed-
point arithmetic with a 10-bit fraction part. This arithmetic
system is equivalent to integer arithmetic in which all the

Fig. 5 bayer-pattern Fig. 6 Orientations and
sings of ∆Lx(x, y)
and ∆Ly(x, y)

values are multiplied by 1,024 (left-shifted by 10 bits). For
example, in the case of d = 3 (tan Q3 = 0.6681 and
tan Q4 = 0.1989), the condition of Eq. (12) is implemented
as Eq. (13).

∆Lx(x, y) × 204 ≤ ∆Ly(x, y) × 1024 < ∆Lx(x, y) × 684 (13)

Here, we can observe the relationship between the gradient
orientation and the signs of ∆Lx(x, y) and ∆Ly(x, y) as illus-
trated in Figure 6. When ∆Lx(x, y) and ∆Ly(x, y) have the same
sign, the quantized gradient orientation fits in the range of 0 to
4. Otherwise, the quantized gradient orientation task the value
of 4 to 7, and 0.

Based on this observation of Figure 6, we have derived
the conditional expression described in Figure 7. Using this
conditional expression, a quantized gradient orientation θd can
be obtained from ∆Lx(x, y) and ∆Ly(x, y) without calculating
arc tangent. Since a quantized gradient orientation is labeled
by a value from 0 to 7, the orientation θd can be eventually
coded in 3-bit data.

B. Histogram generation for cells

Since quantization has been made in the calculation step of
a gradient orientation θd as mentioned above, any additional
quantization process is not required when histograms are
made.

We have 320×240 values of luminance gradient, which
gives us a cell array with the width of 320

5 = 64 cells and
the height of 240

5 = 48 cells. Since the maximum value of
the gradient strength Fi, j is 361×25 = 9,025 for a histogram
of a single cell, data size for one cell becomes 14 bits ×8.
Therefore, total histograms of luminance gradient for the entire
single image are expressed with (14×8)×(64×48) = 344,064
bits.

C. Normalization in a block

The normalization process described in Eq. (8) needs calcu-
lation of a square root and division, making compact FPGA
implantation difficult. Therefore, we take an approximation
approach which expands the method proposed in [4].

If the denominator of Eq. (8) (
√
||Vi, j||2 + ε2) is approxi-

mated by 2α as 2α−1 <
√
||Vi, j||2 + ε2 ≤ 2α, the division for the

normalization can be replaced by a shift operation. However,



if (∆Lx(x, y) and ∆Ly(x, y) have the same sign) then
if (5148 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)|) then
θd = 0

else if (1533 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 5148 ×
|∆Lx(x, y)|) then
θd = 1

else if (684 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 1533 ×
|∆Lx(x, y)|) then
θd = 2

else if (204 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 684 ×
|∆Lx(x, y)|) then
θd = 3

else if (0 ≤ 1024 × |∆Ly(x, y)| < 204 × |∆Lx(x, y)|) then
θd = 4

end if
else if (Signs of ∆Lx(x, y) and ∆Ly(x, y) are different) then

if (5148 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)|) then
θd = 0

else if (1533 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 5148 ×
|∆Lx(x, y)|) then
θd = 7

else if (684 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 1533 ×
|∆Lx(x, y)|) then
θd = 6

else if (204 × |∆Lx(x, y)| ≤ 1024 × |∆Ly(x, y)| < 684 ×
|∆Lx(x, y)|) then
θd = 5

else if (0 ≤ 1024 × |∆Ly(x, y)| < 204 × |∆Lx(x, y)|) then
θd = 4

end if
end if

Fig. 7 Conditional expression to obtain the value of quan-
tized θd

naive approximation to the nearest power-of-two value in-
creases the normalization error. To mitigate the approximation
error, we divided the interval between 2α−1 and 2α into four
sub-intervals.

The range of 2α−1 to 2α can be divided into four intervals;
(2α−1, 2α−1 + 2α−1

4 ], (2α−1 + 2α−1

4 , 2
α−1 + 2 × 2α−1

4 ], (2α−1 + 2 ×
2α−1

4 , 2
α−1 + 3 × 2α−1

4 ], and (2α−1 + 3 × 2α−1

4 , 2
α]. Here, ε = 1

and this is significantly smaller than ||Vi, j||2. Therefore, the
conditional statements in Figure 8 can be derived when we
think:

√
||Vi, j||2 + ε2 =

. . ||Vi, j||.
Figure 9 shows comparison results of approximation errors

for our quadrisection approach and the naive power-of-two
approach, in the case of f m

k,l = 361. The results show that the
normalization errors are effectively reduced with the relatively
simple calculation process.

Since the maximum value of ||Vi, j|| is 81,225, the maximum
number of shift operations for the division is 19. Thus, as a
fraction part, 19 bits of 0s are appended to the LSB side of
f m

k,l in advance of shifting, and obtained vm
k,l is also expressed

with a fixed point arithmetic number with 14 + 19 = 33 bits.

D. Binarization of features

We set the value of the binarization threshold as 0.08 based
on results of our preliminary experimentation. Since one block

if (2α−1 < ||Vi, j|| ≤ 2α−1 + 2α−1

4 ) then

v =
f

2α
+

f
2α+1 +

f
2α+2

else if (2α−1 + 2α−1

4 < ||Vi, j|| ≤ 2α−1 + 2 × 2α−1

4 ) then

v =
f

2α
+

f
2α+1

else if (2α−1 + 2 × 2α−1

4 < ||Vi, j|| ≤ 2α−1 + 3 × 2α−1

4 ) then

v =
f

2α
+

f
2α+2

else if (2α−1 + 3 × 2α−1

4 < ||Vi, j|| ≤ 2α) then

v =
f

2α
end if

Fig. 8 Normalization conditional statement to
range of 2α−1 < ||Vi, j|| ≤ 2α
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Fig. 9 Evaluation of the HOG normalization errors

consists of 9 cells, feature amount extracted from one block
has 8 × 9 = 72 dimensions and is expressed as 72-bit data
due to the binarization. As described in Section II-C, the
number of blocks are less by two than those of cells for
both the horizontal and vertical orientations. Therefore, the
total number of blocks to be processed for a single image is
62 × 46 = 2, 852.

IV. FPGA implementation of human detection
A. Input image

In this implementation, an OmniVision Technologies
OV9620 CMOS camera was used as an input device. Since
this device produces a raw Bayer pattern image consisting of
640×480 pixels as shown in Figure 5, a 2×2-pixel filter was
implemented to extract RGB values, resulting in gray scale
images of 320×240 luminance value. So, (w, h) is (320,240).

B. Calculation of luminance gradient

As described in Section IV-A, a luminance value L is
obtained from 2×2 raw pixel values in the Bayer pattern.
Therefore, we provide a 640-pixel line buffer with Block
RAM. While pixel values of even lines are stored in the line
buffer, L is calculated when pixels of odd lines are given.
As shown in Figure 10, L can be calculated from three pixel
values in one clock cycle.

The calculation of luminance gradient needs the luminance
values of adjacent four luminance values. Therefore, we use



Fig. 10 Calculation of pixel luminance L

Fig. 11 Streamed structure for the calculation of lumi-
nance gradient

three lines of 3-stage shift registers and two lines of Block
RAM buffers for 317 luminance values as illustrated in Figure
11.

Arithmetic units of the square and square root operations
required for gradient strength m were synthesized by Xilinx
CORE Generator so that the both units have the execution
latency of one clock cycle, respectively. For the square unit,
Block RAM was used for a look-up table. The gradient
orientation θd is also calculated in one clock cycle in the way
described in Section III-A.

C. Histogram generation for cells

We also take a stream processing approach for the histogram
generation as shown in Figure 12. A histogram for a cell is
obtained from a total of 25 (5×5) values of luminance gradient
(m and θd). Partial histogram of gradient orientations for five
consecutive luminance values is made every five luminance
values. Then the stream of the partial histograms goes through
Block RAM line buffers so that partial histograms for five lines
are eventually summed up to make the full histogram for the
cell.

Since the maximum value for the gradient strength is 361,
each orientation of a partial histogram of five luminance values
can be expressed with 11 bits. Thus, the required capacity of
the Block RAM buffers corresponds to 11 bits × 8 orientations
× 63 cells × 4 lines. Since the luminance values are streamed
in every two clock cycles when the Bayer filter is active, full
histograms are streamed out every 10 clock cycles.

D. Normalization in a block

The normalization process is carried out for a moving 3×3
window of cell histograms. Again, we can exploit streamed

Fig. 12 Streamed structure for the histogram generation

Fig. 13 Streamed structure for the histogram normaliza-
tion

structure as show in Figure 13. For this process, three lines
of 3-stage shift registers and 2 lines of 61-stage Block RAM
buffers to store cell histograms.

Every time a new cell histogram is streamed in, 72 di-
mensions of histogram elements in the 3×3-cell window are
summed up to obtain a value of ||Vi, j||. This addition is done in
two clock cycles to avoid degradation of the clock frequency.

In the next clock cycle, right-shift amounts for the normal-
ization are derived from the value of ||Vi, j||. As shown in Figure
8, up to three shift amounts are required for our quadrisection
approximation approach. These shift amounts (S 1, S 2, and S 3)
are easily obtained by the conditional statements described in
Figure 14.

Finally, the normalized HOG features are calculated by shift

if (2α−1 < ||Vi, j|| ≤ 2α−1 + 2α−1

4 ) then
S 1 = α + 1, S 2 = α + 2, S 3 = α + 3

else if (2α−1 + 2α−1

4 < ||Vi, j|| ≤ 2α−1 + 2 × 2α−1

4 ) then
S 1 = α + 1, S 2 = α + 2, S 3 = 0

else if (2α−1 + 2 × 2α−1

4 < ||Vi, j|| ≤ 2α−1 + 3 × 2α−1

4 ) then
S 1 = α + 1, S 2 = 0, S 3 = α + 3

else if (2α−1 + 3 × 2α−1

4 < ||Vi, j|| ≤ 2α) then
S 1 = α + 1, S 2 = 0, S 3 = 0

end if

Fig. 14 Conditional statements to obtain shift amounts



if ((S 1! = 0) && (S 2! = 0) && (S 3! = 0)) then
v = ( f >> S 1) + ( f >> S 2) + ( f >> S 3)

else if ((S 1! = 0) && (S 2! = 0) && (S 3 == 0)) then
v = ( f >> S 1) + ( f >> S 2)

else if ((S 1! = 0) && (S 2 == 0) && (S 3! = 0)) then
v = ( f >> S 1) + ( f >> S 3)

else if ((S 1! = 0) && (S 2 == 0) && (S 3 == 0)) then
v = ( f >> S 1)

else
v = 0

end if

Fig. 15 Conditional shift statements for the HOG normal-
ization

operations as show in the Figure 15. Therefore, the normal-
ization of 9 cell histograms in the window is accomplished in
4 clock cycles.

E. Binarization of features

As described in Section III-D, the HOG binarization process
is relatively easy, and thus we implemented in a combinational
circuit.

F. Data stream of HOG feature extraction

As summarized in Figure 16, the whole process flow of
the HOG feature extraction is fully pipelined. All the HOG
features obtained in this process flow are serially stored in on-
chip Block RAM. The Block RAM can hold all the normalized
HOG histograms of 62×46 blocks, which are obtained from a
single frame image.

G. Human detection using AdaBoost classifiers

The HOG features of a frame stored in the Block RAM
are examined for human detection by AdaBoost classifiers
which are generated by an offline learning in advance. The
detection process is repeatedly executed moving a detection
window on a given frame image. This means the detection
process does not need every HOG features in the frame at the
same time. Thus, the process can start the execution once the
HOG features in the detection window are stored in the Block
RAM. Since dual-port Block RAMs are provided in Xilinx
FPGAs, the two processes for the HOG feature extraction and
the detection can be partially overlapped.

In the followings, the AdaBoost method, generation of
classifiers and the detection scheme are explained.

1) AdaBoost: AdaBoost is a machine learning method
that combines multiple weak classifieds, each of which only
returns a true or false, so that an effective strong classifier is
constructed [2]. In the training phase, positive sample images
and negative sample images are repeatedly used by changing
their weights, to select weak classifiers.

2) Classifier generation: Since generation of classifiers
using sample images is an offline process, we implemented
with software. In this implementation, HOG features that
frequently appear in human sample images (positive samples),

Fig. 17 Strong classifier generated by three times training

while are rarely observed in other images (negative samples)
were employed for weak classifiers. In addition, the block
coordinates of such HOG features exist were also utilized.
In AdaBoost method, one training phase generates one weak
classifier. Let HN and PN denote the HOG feature amount
and its block coordinate obtained in the N-th training phase,
respectively. Then, the strong classifier constructed through X
times of the training can be expressed as:
S C{WC(H1, P1),WC(H2, P2),WC(H3, P3), · · · ,WC(HX , PX)}.

An example of a strong classifier constructed with three
training phases is shown in Figure 17.

The HOG features and their block coordinates selected
by the offline AdaBoost training are stored in two ROMs
called ROM HOG and ROM POSI, respectively, while these
ROMs are actually implemented with Block RAMs. What the
circuit for strong classifier needs to do is simply to compare
the contents of the ROMs with HOG features extracted from
input images.

In this implementation, we set the size of the detection
window to 50×105 luminance values (8×19 blocks), which is
the same as that of training samples. Both the HOG features
and block coordinates are coded in 8-bit data. While we exe-
cuted 500 times training trials to construct a strong classifier,
a total of 84 weak classifiers were eventually generated since
we obtained a lot of duplications.

3) Human detection with classifiers: Using the strong clas-
sifier constructed in the way shown in Section IV-G2, image-
based human detection is carried out.

The detection flow is summarized in Figure 18. In con-
trast to the streamed approach exploited in the HOG feature
extraction, a random access approach is needed since every
weak classifier corresponds to a different block coordinate.

Figure 19 shows an example of the human detection process.

The detection window moves the entire image from the
upper left corner in a cell-by-cell raster scan manner. Since
the detection window of 8×19 blocks is used, the required



Fig. 16 Pipelined structure for HOG feature extraction

1) The block coordinate for the first weak classifier is
obtained by accessing the head of ROM POSI.

2) The block coordinate is translated to an memory address
of the HOG Block RAM and the corresponding HOG
feature is read out. The access to the HOG Block RAM
is a kind of random access, but the accessed address never
go out of the current detection window.

3) The feature read out from the HOG Block RAM is
compared with that of ROM HOG. If they are matched,
the weak classifier returns a true. This process is executed
in one clock cycle.

4) The address for ROM HOG and ROM POSI is incre-
mented and the steps of (2), (3), and (4) are repeated.

5) When all the data stored in ROM HOG and ROM POSI
are examined, the detection window is moved by one cell
and the steps of (1), (2), (3), and (4) are repeated again.

6) When the detection window finishes scanning the entire
image, the window location, where the largest number of
weak classifiers returned a true and the number exceeds
a threshold value, is detected as a human image region.

Fig. 18 Process flow of human detection

Fig. 19 An example of human detection process

number of widow scans for a single image is (62 − 8 +
1) × (46 − 19 + 1) = 1, 540. Therefore, the total number
of matching processes required for the 84 weak classifiers
requires is 1540 × 84 = 129, 360.

The camera device we used generates one frame image data
in 400,000 clock cycles including synchronization intervals.
Our implementation requires 385,452 clock cycles to extract

TABLE I The results of FPGA mapping

Used Available %
Number of Slice Registers 2,181 28,800 7.6

Number of Slice LUTs 17,383 28,800 60.4
Number of fully used LUT-FF pairs 2,070 23,109 9.0

Number of Block RAM/FIFO 36 48 75.0
MAX Frequency(MHz) 44.85

whole HOG features from one frame data, while the AdaBoost
detection process takes 129,360. If we just executed these two
processes sequentially, it would require 514,812 clock cycles
and would not fit in the frame time. However, the dual-port
HOG Block RAM allows us to execute these processes in a
partially overlapped manner as described above. In our design,
the whole process for one frame finishes in 383,840 clock
cycles including the HOG feature extraction and AdaBoost
detection, enabling in-frame real-time processing.

V. Implementation results and evaluation

The human detection processing described in Section IV
was implemented on a Xilinx ML501 board equipped with a
Virtex-5 VLX-50 FPGA with Verilog-HDL. The circuit was
synthesized and mapped on the FPGA using Xilinx ISE 12.1
tool-set.

The implementation results of the circuit are summarized in
Table I. The resource usage of this rather small FPGA supports
the effectiveness of our compact implementation approach.

While the maximum operating frequency of the circuits
achieved 44.85 MHz, the camera device used in our experi-
mentation system restrict the system clock to 25MHz. In spite
of the restricted frequency, our system achieved the throughput
of 62.5 fps for VGA frames and execution latency was also
fitted in a single frame time, that is, the real-time performance
was accomplished. Furthermore, if a high-speed camera device
were used and the FPGA circuits operated with the maximum
operation frequency of 44.85 MHz, the execution throughput
would be improved up to 112 fps. Figure 20 illustrates some
of our experimentation results of the human detection system.

Next, in order to evaluate the impact on the quality of results
of simplification of implementation described in Section IV
such as the use of fixed-point arithmetic, we compared the
simplified implementation (HOG HARD) to the original one
(HOG SOFT). We implemented two software simulators in



Fig. 20 Examples of human detection process
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Fig. 21 ROC curves for the NICTA Pedestrian database

C language for both of the implementation and evaluated
accuracy of human detection.

In this evaluation, NICTA Pedestrian database [9] was used
for benchmarking. From the database, 2,000 images were used
for offline machine learning, while 1,000 images were used
as the evaluation data. The size of each image is 64×80
pixels. AdaBoost classifiers were generated after 500 times
of training. The threshold value for the HOG binarization was
set to 0.08.

The comparison results are summarized as a receiver op-
erator characteristics (ROC) curve and shown in Figure 21.
This chart shows the relationship between the false positive
rate (x-axis) and the detection rate (y-axis) of the system. The
closer to the upper left area of the chart an ROC curve goes,
the better quality of results the system shows. The plots were
made by changing the threshold number of weak classifiers
for detection from 0 to 30.

As a result, the algorithm simplified for hardware im-
plementation (HOG HARD) shows 96.6% of the detection
rate with 20.7% of the false positive rate, while the original
one (HOG SOFT) shows 80.9% of the detection rate with
20.8% of the false positive rate. As far as this evaluation
results are concerned, the simplified implementation showed
rather better detection results. Although the detection results
for HOG SOFT might be improved by tuning parameters
such as the threshold value, the evaluation results suggest
the negative impact of algorithm simplification for hardware
implementation is limited.

Finally, we compared the throughput of the FPGA impel-
metation to software implementation compiled by gcc version
4.3.1. We used a PC with 2.67-GHz Intel Core i7 920 and

6-GB DDR3 operated by openSUSE 11.2. As a result, the
software system achieved about 15 fps. This means the FPGA
implementation is 4.2 times faster than the software imple-
mentation. Moreover, 7.5 times faster throughput is expected
if the camera device operates at the maximum frequency.

VI. Conclusion

In this paper, compact FPGA implementation of real-time
human detection using the HOG feature extraction and Ad-
aBoost has been presented. As a result of empirical evaluation
with an experimental setup equipped with an FPGA and cam-
era device, the throughput of 62.5 fps was achieved without
using any external memory modules. If a high-speed camera
device was available, the maximum throughput of 112 fps was
expected to be accomplished. While some simplification was
made to alleviate hardware complexity, the evaluation with
ROC curves showed that the simplification did not harm the
quality of detection severely.

Our future work includes to introduce more advanced
techniques such as Joint-HOG [10] which takes account of
association between features and EHOG [11] in which feature
amounts are further reduced. Detailed analysis of the detection
quality and implementation alternatives is also important.
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