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[Research Note]

Lagrangians of Painlevé equations

Yoshihiro Murata*

Abstract

In this article, we investigate Lagrangians of Painlevé equations. As
is well known, Painlevé equations can be rewritten into Painlevé sys-
tems which are Hamiltonian systems. So we have a simple question that
Painlevé equations have Euler-Lagrange equation forms or not. The an-
swer is Yes. Painlevé equations are themselves Euler-Lagrange equations.
We prove this fact and give Lagrangians of Painlevé equations.
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1 Introduction

Painlevé equations are the following six ordinary differential equations defined on
complex regions Dy(J =1,--- ,VI):
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where a, 83,7, are complex constants, and

*Faculty of Economics, Nagasaki University



126

Dy =Dyp=Dp = C,Dmf =Dy =C",Dy=C~— {0,1},

The third Painlevé equation is usually expressed by the equation

d’y 1 {dy S | dy 1 2 3 0O
=== (=] ===+ =(a* +B) +vy* + -.
M- dz? y \dx  dx x(u ’5) W Y
But, K.Okamoto [6] pointed out that Py is better than P when we treat the trans-
formation group of solutions. P;» and Py are transformed to each other by the change
of variables:
t= .'.':2, q = zy.
It is well known that Painlevé equation P; is equivalent to the Hamiltonian system
Sy with polynomial Hamiltonian Hy ([4] [5]):

, S48 _ 4q
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We call this Hamiltonian system S; the Painlevé system.

Painlevé equations were originally found through the exploration of new transcen-
dental functions. In 19th century, elliptic functions and Abel functions were deeply
studied as transcendental functions. From the end of 19th century to the beginning
of 20th century, in order to find new transcendental functions, Painlevé studied ra-
tional type ordinary differential equation d%y/da? = P(x,y, dy/dx)/Q(z,y, dy/dz) of
complex variables whose solutions have no movable singularities, and by classification
of them, he found three types of Painlevé equations. After that, in 1910, Gambier
added rest three types of Painlevé equations. Thus, six Painlevé equations have been
expected to have new transcendental functions as their solutions.

From 1980s, reseachers began to notice that Painlevé equations have relations
with soliton equations and other physical equations. Especially, Painlevé equations
are equivalent to Matrix Painlevé Systems which are group symmetric Anti-Self-Dual
Yang-Mills equations, that is, Painlevé equations are connected to gauge field theory
in physics ([1],[2]). In this way, recently, further relations of Painlevé equations and
quantum field theory of particle physics are studied.

By the way, in physics, motions of mechanical systems are expressed by Euler-
Lagrange equations or Hamiltonian systems. Not only in classical physics, but also in
quantum physics, these expressions are essential.

So we have a simple question that Painlevé equations do have Euler-Lagrange
equation forms or not.

2 Painlevé Systems

On Painlevé system
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dg _ 8H, d
SJ:{ &”_f@ (p:AJ (t’q}d_‘:))?
dt dq i

Hy’s and A;’s are given as follows:

_ e e _ .. dg
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where = — A0, B=4dmo(fo + 1), v = 4(nc)?, & = —4(mo)*.
Hnm = - [Q2P" — {202Q* + (200 + 1)Q — 270z } P + Moo (0 + 90)-'6@]
(P = Am = 5 [r%% + {202 Q® + (200 + 1)Q — 2nox}D ;
where a=—Anbs, B =400+ 1), v = 4(”'30)2:' 0= —4(7?0)2-
Hyv = 2qp° — (q2+2tq+290)p+9mq (PII\N = é {%‘-ﬁ- (q2+‘2tq+290)}) ,
where a =20 —600+1, B=—-2(6)>.
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k= 2{(01 +00)* - (6)%}.
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To express the parameters explicitly, we often write Py, S; as follows:

Py, 51

Pu(a), Sti(fa)

P[uf ((1_.,8, ¥, 5)| SIII’ (90017."001'903 1’(])
Prv(a, 8), Sty (0, o)

Pv(a,8,7,8),  Sv(01,m.0x.00)
Pvi(a, 8,7,68),  Svi(01,0,00,0¢),

where the parameters of S;’s are intentionally ordered to harmonize with Young dia-

grams ([2]).

3 Main result

Theorem.

(1) Painlevé equation P; is itself the Fuler-Lagrange equation of La-

grangian Lg(J =1,--- ,VI):

d Ly, _ OLy
9q " dq

(2} Lagrangian L;’s are given as in the following Table.

Table: Lagrangian of P;

L; %( )? +2q +tg

Ln 314 2)] G

Ly —:[ff1+ (M1o0q® + Boq — rmf)l — 370 (foc + 60)q

Lym = W;[:L'Q + {21007Q?% + (260 + 1)Q — 2n07}] — 2000 (0o + 60)Q

L 5ld + (a° +2tq +260) > — fcq

Ly = gg=eltd + {619(g — 1) — mtq + fo(g — 1)*}]* — 5;{(61 + 60)* — 63, }(q — 1)

L = W[f(t 1)¢ + {t‘?nq{q — 1)+ 60(g — 1)(g — t) + (6 — 1)g(g — 1)}]?
”“ 1){91+90+9,—1 6% g —1t)

4 Proof of Theorem

In this section, we give the proof of the Theorem.

Proof of the Theorem. We prove (1)(2) by direct calculation.
Painlevé system S; is a Hamiltonian system with the Hamiltonian H;y. Then, the
corresponding Lagrangian L is given by

Ly=pj—H,.
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So, starting from H;, we calculate L; = pg — H; and the Euler-Lagrange equation
d (3LJ) 0Ly
dt" ¢ dq ’
and then compare it with P;. If we get the same equation, Painlevé equation is itself
the Euler-Lagrange equation of the Lagrangian L.
We only prove the case Pyi(a, 3,7,4d). Other cases are proved in the same ways.

Painlevé system Swi(fh,0x.00,0,) is written as
( . _ 8H
§g=>42

= sy [2a(a — V(g — t)p — {61g(g — t) + Oo(q — 1)(g — t)

+(0¢ — Dgl(q — 1)}]

| p=-2n
= - {ala = 1) + (g = 1)(g - t) + (g — )g}p?
| —{01(2¢ —t) + 00(2g — t — 1) + (8, — 1)(2¢ — 1)}p + K],
where
Hvi = rigylale — 1)(g - H)p*
—{01q(q—t) +0o(g — 1)(g —t) + (6: — 1)q(q — 1) }p + k(g — 1)]
and

P = Avi = gor—iya=p [H(t — 1)d + {01g(q — ) + bo(g — 1)(g — 1)
+(0: — 1)alg — 1)} ],
k= %{(Gi + 60+ 0; — 1)% — (0)%}.
Here, we set Lyvi = pg — Hyz. Then,
Lvi = 7i59(a = V(g — t)p* — (g - 1)
Substituting p = Ay into Lyz, we obtain

Lvi =

1 2 k
4t{t—1}q(q—l}(q—!)A - .'.(t—li(q — 1),

where
A=t(t—1)¢+{01g(g—1t) +6o(g— 1)(g—t) + (6: — 1)g(q — 1)}.

So we have

ALy _ 1 ——l(q—lliq—niq(q—f}}q{q—l)JAz
Bq — at(t—1) g2 (g—1)7(g—1)%
+ s o= Al (2¢ — t) + 60(2g — t — 1) + (6: — 1)(2g — 1))
k
-1

agq' = 2q(q—11)(q~t) [t(t = 1)g+ {frg(qg —t) + Oo(qg — 1)(g —t) + (0 — 1)g(g — 1)}].
Euler-Lagrange equation of Lyg

d vy _ Ol
dt* 8¢ ' Oq




130

is a second order nonlinear complex ordinary differential equation of q. After a long
calculation, we can find that it is just the Painlevé sixth equation Pywi(a, 8,7,4d):

?q 1(1 1 1 dg\?> (1 1 1\ dg

E—i(aﬂ;_—ﬁﬁ)(a "\ttt &

ala—1)(g—1) tt=1  tt—1)
-0z |*HPE P a—r -

t2(t

+

where

= 307 8= —3(00, 7 = 502, 6= 50— (@)
O

Remark 1. For any G(g.t), L;=pi—Hj+ G(q t) and Ly = pg — Hy give the
same Painlevé equation Py, but Hy = H; — EC’( q,t) and H; give different Painlevé
systems Sy and Sy. For example, Ly = pG— Hp + ﬁ(—iqs + 1g) gives Okamoto and
Umemura type Hy = 102 — (¢° + £)p — 1(v1 — v2)q, where vi +v2 =0 ([7]).

Remark 2. For any nonzero constant C, Ly = C(pg— Hy) and L; = pg — H; give
the same Painlevé equation Py, but H;=CHy and Hj give different Pamieve systems
Sy and Sy. For example, Lyv = 2L gives Umemura type Hry = qp® — {g® +2tq +
2(ve — 1) }p 4+ 2(vs — v1)g, where vi +va +v3 =0 ([7]).

Remark 3. In the classical mechanics, L =1 — U, where T'= T(q,q) is the kinetic
energy, U = Ul(q,t) is the potential energy. Since Lj(J = I.IT) is expressed as Lj =
%(q + )% — (term of q), it looks like T' = %(q + ) and U = (term of q). For
example, on Ly = %(q)z —[~(2¢* +tq)], T = §¢2, U= —(2¢ 4+ tq).
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