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Abstract

Introduction: Class I HLA’s polymorphism has hampered CTL epitope mapping with laborious experiments. Objectives are
1) to evaluate the novel in silico model in predicting previously reported epitopes in comparison with existing program, and
2) to apply the model to predict optimal epitopes with HLA using experimental results.

Materials and Methods: We have developed a novel in silico epitope prediction method, based on HLA crystal structure and
a peptide docking simulation model, calculating the peptide-HLA binding affinity at four amino acid residues in each
terminal. It was applied to predict 52 HIV best–defined CTL epitopes from 15-mer overlapping peptides, and its predictive
ability was compared with the HLA binding motif-based program of HLArestrictor. It was then used to predict HIV-1 Gag
optimal epitopes from previous ELISpot results.

Results: 43/52 (82.7%) epitopes were detected by the novel model, whereas 37 (71.2%) by HLArestrictor. We also found a
significant reduction in epitope detection rates for longer epitopes in HLArestrictor (p = 0.027), but not in the novel model.
Improved epitope prediction was also found by introducing both models, especially in specificity (p,0.001). Eight peptides
were predicted as novel, immunodominant epitopes in both models.

Discussion: This novel model can predict optimal CTL epitopes, which were not detected by an existing program. This
model is potentially useful not only for narrowing down optimal epitopes, but predicting rare HLA alleles with less
information. By introducing different principal models, epitope prediction will be more precise.
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Introduction

Cytotoxic T lymphocytes (CTLs) play a crucial role in HIV

replication control by eliminating virus-infected cells by recogniz-

ing class I Human Leukocyte Antigen (HLA) molecule-viral

peptides ( = epitope) complex. This response is thought to be a

major determinant of the viral set point, and consequent disease

progression [1]. However the efficacy of the CTL response is

affected by the extent of polymorphisms in HLA loci and viral

sequences. The HLA region is found on chromosome 6 and is the

most polymorphic loci in the human genome [2]; each individual

expresses up to six different class I alleles out of a vast pool of

allelic variants, the reported number of which reaches 5,399 for

class I HLA molecules (1,757 of HLA-A, 2,338 of HLA-B, and

1,304 of HLA-C alleles) [3]. In addition, the extensive diversity of

HIV-1 owing to its extreme capacity to mutate has led to a

reported 13 prototype clades and 43 circulating recombinant

forms (CRFs) [4]. Despite such HLA polymorphism and HIV viral

diversity environment, recent genome wide association study

(GWAS) reported the best contribution of class I HLA for viral

control, suggesting the importance of CTL epitope mapping with

responsible HLA information [5]. Several major HIV-1 epitopes

and their restricting HLA alleles have been defined through fine

epitope mapping; 1,344 epitopes and their restricting HLA alleles

have been reported as of February 2012 (CTL Epitopes. Los

Alamos National Lab. http://www.hiv.lanl.gov/). The limitation

of the dataset currently available however, is that the majority of

these epitope/HLA combinations are derived from subtype B-

infected Caucasians or C-infected Africans, and epitope informa-

tion from other subtypes or ethnicities is rare.

The traditional, in vitro method of epitope detection involves

using a matrix of overlapping peptides (OLPs) encoding viral

proteins in Enzyme-Linked Immunospot (ELISpot) assays to
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identify a single candidate peptide, from which the 8-11mer

epitope is mapped down. This is typically followed by the

confirmation of the restricting HLA alleles using tetramers or in

a 51Cr release assay using peptide-specific lines [6,7]. It is a

difficult and labor-intensive process, particularly time-consuming

in the case of epitopes restricted by rare HLA alleles because of the

limited number of samples available.

Recently, alternative, in silico models for epitope prediction have

been developed [8]. These can broadly be divided into two

models; the first is an algorithm based on the peptide-binding

motif, and the second is a structural algorithm model based on the

crystal structure of HLA molecules. The former is characterized by

the use of motif matrices deduced from refined motifs based on the

pool sequence, enlisting optimal amino acid sequences at anchor

positions in specific HLA alleles. An example of such an algorithm

is the SYFPEITHI [9] database, which predicts the HLA-binding

affinities of peptides by ranking them according to the presence of

primary and secondary anchor amino acids. However these

models are based on reported epitopes and their restricting HLA

alleles, so their predictions are powerful in the context of well-

published HLA alleles but not suitable against rare or novel alleles

with little previous information. Another model of epitope

prediction is the binding affinity model, which calculates the

peptides’ binding affinity and scores it using quantitative matrices

(QMs), a well-known example being the NetMHC [10,11] or the

HLArestrictor [12]. This model scores binding strength as binding

affinity with thresholds to differentiate strong binding peptides and

weak ones in each calculation.

On the other hand, the structural algorithm model does not

require binding motif information, which is advantageous for the

definition of epitopes restricted by HLA alleles with less published

epitope information. Recently, a docking simulation model (DSM)

which takes into consideration binding energy such as electrostatic

interactions and van der Waals (vdw) interactions, together with

the crystal structure of HLA alleles, has been developed [13–17].

Our objectives here are 1) to evaluate the novel in silico DSM in

predicting previously reported best-defined epitopes in comparison

with existing binding motif-based program, and 2) to apply the

model to predict optimal size of the epitopes and restricting HLA

alleles using results obtained from our previous study in a HIV-1

CRF01_AE-infected Thai cohort.

Materials and Methods

Ethic Statement
This study was approved by Thai Ministry of Public Health

Ethics Committee. Written informed consent was obtained from

all patients after explaining the purpose and expected conse-

quences of the study.

Computational program and calculation
We used the commercial softwares Molecular Operating

EnvironmentH (MOE) (CCG Inc., Montreal, Canada) and

MOE-ASEDockH (Ryoka System Inc., Tokyo, Japan) for the

molecular binding affinity calculation [18]. HLA’s 3D models

were obtained from the X-ray crystallography database in MOE’s

library (1OGA for HLA-A*02:01, IQ94 for HLA-A*11:01, 2BCK

for HLA-A*24:02, 1XR9 for HLA-B*15:01, 1JGE for HLA-

B*27:05, 2CIK for HLA-B*35:01, 1E27 for HLA-B*52:01, 2RFX

for HLA-B*57:01, and 1EFX for HLA-C*03:04). In cases where

the original X-ray crystallography information was unavailable,

we generated a 3D structural model using highly homologous

HLA alleles as template, using rotamer explorer or homology

modeling to reconstruct their structures by changing sequential

difference sites, a method originally used in the point mutation

program attached in MOE AMBER99 [19] for force field,

calculations. For solvent effect energy calculation, a generalized

Born model [20], were introduced. As an indicator of the affinity

between epitope candidate peptides and the class I HLA allele, we

measured the U_dock score [U_ele (electric energy)+U_vdw (van

der Waals energy)+U_solv (Solvation energy)+U_strain (Strain

energy)] (kcal/mol) [18]. We calculated the U_dock score of four

residues at each N- and C-terminal, spanning the anchor position

at each of the terminals, and scored the sum of them as binding

affinity. A lower score indicates a higher affinity between the HLA

molecule and peptides.

Evaluation of the novel DSM through an analysis of best-
defined HIV CTL epitopes and their restricting HLA alleles

For the quality evaluation of this novel program, we first

calculated the U_dock score for 52 best-defined HIV epitopes

restricted by the alleles HLA-A*02:01, HLA-A*11:01, HLA-

A*24:02, HLA-B*15:01, HLA-B*27:05, HLA-B*35:01 and HLA-

B*57:01 as enlisted in Los Alamos database (CTL Epitopes. Los

Alamos National Lab. http://www.hiv.lanl.gov/). We calculated

the U_dock score between the restricting HLA alleles and the 8 to

11-mer peptides within 15-mer peptides of the viral strain HXB2,

in which best-defined epitopes were included. 26 variants of 8 to

11-mer peptides were calculated in one HLA and 15-mer peptide

combination, then the lowest U_dock score was ranked as the 1st

and the highest score as the 26th in each calculation (Figure 1).

Combinations that ranked within the top five were regarded as

positive. In parallel with our DSM, we also performed epitope

prediction using the latest artificial neural network (ANN) model,

the HLArestrictor [12], using the affinity thresholds of Strong

Binder (SB), Weak Binder (WB), Combined Binder (CB) and Non-

binder (NB), according to their definitions.

We evaluated the sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) for each best-defined

epitope prediction using the DSM, HLArestrictor, as well as those

defined as dual positive by both models.

Analysis of in vitro HIV-1 CRF01_AE Gag epitope
candidates by using both in silico epitope prediction
models

We then applied both the DSM and the HLArestrictor to

predict the optimal size of epitopes, based on results obtained from

our previous study [21], in which 31 candidate epitopes were

detected by ELISpot assays using Gag 15-mer OLPs and their

HLA associations detected by Fisher’s exact test in a cohort of 137

(107 female and 30 male) HIV-1 CRF01_AE-infected Thais. All

were chronically infected and treatment naı̈ve, with median 461/

ul CD4+T cell count (range 204–1,191) and 4.2 log copies/ml

viral load (2.6–5.9).

Epitope prediction for the immunogenic Gag OLP
p24276–285 MYSPVSILDI using a 51Cr release assay and
both in silico models

In our previous study [21], the 15-mer peptides Gag p24271–285

NKIVRMYSPVSILDI (NI15) and p24276–290 MYSPVSIL-

DIRQGPK (MK15) induced the largest responses in terms of

both breadth and magnitude, and were statistically associated with

the alleles HLA-A*02:07, HLA-B*46:01, and HLA-C*01:02,

which were under linkage disequilibrium (LD) association [21].

Presuming that the optimal epitope resides in the overlapping

amino acid sequence between NI15 and MK15, that is, p24276–285

A Novel in silico CTL Epitope Prediction Program
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MYSPVSILDI (MI10), we conducted a 51Cr release assay as

previously described [22].

Results

Prediction of best-defined epitopes by the DSM and the
peptide binding motif model

We have evaluated the predictive power of our DSM by testing

its ability to predict epitopes within 52 15-mer peptides spanning

the epitopes for seven HLA alleles enlisted in the Los Alamos

database as best-defined epitopes. Overall, DSM ranked 43/52

(82.7%) of the best-defined epitopes correctly within the top five

candidates, within which 14 epitopes ranked as the 1st, 11 as the

2nd, 7 as the 3rd, 3 as the 4th, then 8 as the 5th (Table S1). This

was comparable to the HLArestrictor, where 37/52 (71.2%, 43/

52 vs 37/52, p = 0.24 by Fisher’s exact test) best-defined epitopes

scored within the threshold of binding affinity without having 4 or

more other candidate epitopes: 20 as SB, 10 as WB and 7 as CB.

Table 1 summarizes the performance on epitope prediction by

each model and dual positives by both models, according to their

sensitivity, specificity, PPV and NPV. The performance of the

DSM is similar to that of HLArestrictor. Interestingly, by

introducing both models, specificity increased with significance

(p,0.001), and an additive effect was seen in the PPV. We believe

this is the first study to report a structure-based epitope prediction

model with comparable or greater predictive power than a

peptide-binding motif based model.

32/52 (61.5%) epitopes were detected as a significant epitope

candidate by both models. 11/52 (21.2%) epitopes were detected

only by the DSM, while 5/52 (9.6%) were detected only by

HLArestrictor. 4/52 (7.7%) epitopes were not detected by either

methods. Within the 14 epitopes not correctly predicted by

HLArestrictor, incorrect epitopes were predicted in 7 epitopes. It

is noteworthy that two epitopes, Nef75–82 PLRPMTYK (PK8)

restricted by HLA-A*11:01 and Nef117–127 TQGYFPDWQNY

(TY11) restricted by HLA-B*15:01 were detected as a NB by

HLArestrictor, whereas they were ranked as the 2nd in PK8 and

the 1st in TY11 in the DSM. Integrase179–188 AVFIHNFKRK

(AK10) restricted by HLA-A*11:01 was predicted as a SB, but

because there were 5 other SB candidates, 3 WB candidates and 1

CB candidate, this prediction was regarded as failure.

A striking feature of the DSM was that it had a high detection

rate of best-defined epitopes independent of the peptide’s length.

The prediction rate of shorter epitopes (8 and 9-mer) was 27/31

(87.1%) while the rate for longer epitopes (10 and 11-mer) was 16/

21 (76.2%), between which we found no significant difference by

Fisher’s exact test (p = 0.46). In contrast, the ability of HLAr-

estrictor to accurately predict best-defined epitopes was highly

dependent on epitope length, as the prediction rate of longer

Figure 1. Example of epitope prediction using the novel in silico docking simulation model. U_dock scores of the N-terminal (Row N1–N8)
and C-terminal (Column C1–C8) was calculated and their sum was scored as the U_dock score (kcal/mol) of each 8 to 11-mer peptide’s. The lower
score indicated stronger binding between the peptide and HLA. In this example, Gag p24263–272 KRWIILGLNK (KK10), well-known as one of the best-
defined epitopes, scored 2137.11 kcal/mol against HLA-B*27:05 and was the lowest (ranked as the 1st) among 26 variants in 15-mer peptide of Gag
p24258–272 VGEIYKRWIILGLNK.
doi:10.1371/journal.pone.0041703.g001

Table 1. Evaluation of best-defined epitope prediction
among docking simulation model, HLArestrictor, and
positives in dual models.

DSM HLArestrictor Dual positives

p (mxn
Fisher’s exact
test)

Sensitivity 0.83 0.71 0.62 0.056

Specificity 0.83 0.94 0.97 ,0.001

PPV 0.17 0.31 0.43 0.095

NPV 0.99 0.99 0.98 0.46

Evaluation of best-defined epitope prediction among each model and positives
in dual models were statistically evaluated, according to their sensitivity,
specificity, positive prediction value (PPV) and negative prediction value (NPV)
by maximum Fisher’s exact test. DSM: Docking simulation model.
doi:10.1371/journal.pone.0041703.t001
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epitopes (11/21, 52.3%) was significantly lower than that of

shorter ones (26/31, 83.9%) (p = 0.027).

Successful prediction with the DSM was dependent on the HLA

allele and its peptides: in HLA-B*15:01, HLA-B*27:05 and HLA-

B*35:01, all of the best-defined epitopes were ranked within the

top 5th. However, four best-defined epitopes restricted by HLA-

B*57:01 and HLA-A*02:01 scored within the worst 5th candi-

dates: Nef120–128 YFPDWQNYT, p15433–442 FLGKIWPSYK,

RT33–41 ALVEICTEM, and p24161–172 KAFSPEVIPMF.

Optimal epitope prediction to analyze HIV-1 CRF01_AE
Gag ELISpot assay data using two in silico models

We next applied the model to predict optimal epitopes against

HIV-1 CRF01_AE Gag based on our previously obtained results

in a Thai HIV cohort study [21]. In total, 31 peptide-HLA

associations were analyzed: 5 in HLA-A, 13 in HLA-B, and 13 in

HLA-C (Table S2). Among these, 10 overlapping peptides

spanned previously reported epitopes (6 were best-defined epitopes

and 4 were published but not enlisted as best-defined epitopes). In

the DSM, 9/10 (90%) reported epitopes were successfully ranked

within the 5th as significant epitope candidates, and all of the six

best-defined epitopes ranked either the 1st or 2nd. In HLAr-

estrictor, 8/10 (80%) epitopes were predicted as significant

binders; 3 as SB, 4 as WB, and 1 as CB, but 2 epitopes (best-

defined epitopes HLA-A*02:07-restircted YL9, and HLA-B15-

restricted KL9) were not predicted as significant binders.

HLArestrictor also predicted another 16 sequences as potential

epitope candidates: 1 as SB, 12 as WB, and 2 as CB. Intriguingly

only one WB candidate was ranked within the top five by the

DSM, reflecting a considerable degree of discrepancy between the

two prediction methods.

8 previously unreported peptides were predicted by both

models: HLA-B*38:02-restricted p24198–205 MQMLKETI (rank

1st in DSM and WB in HLArestrictor), HLA-B*40:01-restricted

p24311–321 QEVKNWMTETL (2nd and SB), HLA-B*46:01-

restricted p24275–283 RMYSPVVSIL (5th and SB), HLA-

B*58:01-restircted p1779–86 YNTVVTLW (1st and WB), HLA-

B*58:01-restricted p1777–86 SLYNTVVTLW (4th and WB), HLA-

C*01:02-restricted p24277–285 YSPVSILDI (2nd and WB in

p24271–285 and 3rd and WB in p24276–290), HLA-C*01:02-

restricted p24276–285 MYSPVSILDI (4th and WB both in

p24271–285 and p24276–290), and HLA-C*01:02-restricted

p24296–304 YVDRFYKTL (1st and WB).

Application of the in silico DSM to define the restricting
HLA molecule

We conducted a 51Cr release assay with a truncated peptide

titration spanning the overlapping region between Gag p24271–285

NKIVRMYSPVSILDI (NI15) and p24276–290 MYSPVSIL-

DIRQGPK (MK15). These induced the largest responses both

in breadth and magnitude in our previous study, and were

statistically associated with HLA-A*02:07, HLA-B*46:01, and

HLA-C*01:02, which we calculated to be under LD association

[21]. We found strong killing against HLA-B*46:01 and HLA-

C*01:02-matched p24276–285 MYSPVSILDI (MI10)- and

p24277–285 YSPVSILDI (YI9)-pulsed target cells but not in any

other condition (Figure S1). However, we could not further specify

the restricting HLA molecule because a single HLA-matched

target cell was not available due to the strong LD between them.

Therefore, we conducted in silico analysis in order to identify the

responsible HLA. Table 2 shows the results of the DSM between

these two peptides (MI10 and YI9) and three candidate HLA

alleles (HLA-A*02:07, HLA-B*46:01 and HLA-C*01:02). Firstly,

with the DSM, none of these two peptides were predicted within

the top five candidate epitopes when binding to HLA-A*02:07 or

HLA-B*46:01, and neither scored significant binding using the

HLArestrictor, eliminating these as the restricting HLA molecules.

However in the model with HLA-C*01:02, both two peptides

ranked within the 5th; MI10 ranked as the 3rd in NI15 and the

4th in MK15, while YI9 was ranked as the 2nd in NI15 and the

3rd in MK15. Significant binding affinity of MI10 and YI9 to

HLA-C*01:02 was also predicted by HLArestrictor. Secondly, in

the binding motif of HLA-C*01:02 (x[AL][P]xxxxx[L]), both

MI10 and YI9 encoded compatible or similar hydrophobic amino

acids with the binding motif x[Y]xxxxxxx[I] in MI10 and

xx[P]xxxxx[I] in YI9. Together, these results indicate that the

optimal epitopes MI10 and YI9 are equally likely candidates

recognized by HLA-C*01:02, with YI9 ranking slightly higher in

the DSM.

Discussion

In this study, we demonstrated that the structure-based DSM

can predict the peptide binding affinity with various HLA

molecules, independently of peptide binding motif information.

To our knowledge, this novel DSM is the first model of its kind

that succeeded in predicting HIV-1 CTL best-defined epitopes,

with better or at least equivalent accuracy to the latest binding

motif-based program. We also found a high detection rate of best-

defined epitopes independent of peptide size in the DSM, while

the detection rate significantly decreased with longer epitopes in

the other model.

Historically, comparisons of epitope prediction methods has

generally shown that peptide-binding motif based methods

outperform structure-based methods [23]. However, the increased

availability of crystal structures of MHC-peptide complexes is

enabling the development of prediction methods using such

structural models and the calculation of free energy of binding

[23,24]. In the review by Liao et al [23], their comprehensive

comparison of structure-based models and peptide-binding motif

models in epitope prediction showed that the structure-based

model was able to outperform all other methods except the ANN

model, which performed equally well. In our novel program, we

use a measure of the binding affinity between the HLA molecule

and the peptides at four residues spanning the N- and C-terminal.

Table 2. Prediction of the HLA restriction of Gag p24276–285

MYSPVSILDI (MI10) and p24277–285 YSPVSILDI (YI9) using in
silico methods.

U_dock rank

HLA Binding motif Peptide NI15 MK15 HLArestrictor

A*02:07 x[L][D]xxxxx[L] MI10 13 13

YI9 14 16

B*46:01 x[M(I)]xxxxxx[YF] MI10 15 20

YI9 19 21

C*01:02 x[AL][P]xxxxxx[L] MI10 3 4 WB

YI9 2 3 SB

HLA restriction prediction against two reactive Gag peptides, Gag p24276–285

MYSPVSILDI (MI10) and p24277–285 YSPVSILDI (YI9) was performed by the
docking simulation model, and the binding motif HLArestrictor 1.2. The U_dock
rank by the docking simulation model against MI10 and YI9 was analyzed in the
original 15-mer peptides of Gag p24271–285 NKIVRMYSPVSILDI (NI15) and
p24276–290 MYSPVSILDIRQGPK (MK15). SB: Strong Binder, WB: Weak Binder.
doi:10.1371/journal.pone.0041703.t002
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This covers not only the anchor position sites but also their

flanking sites, which have a considerable effect on peptide-HLA

binding; this may also have led to the high detection rate of best-

defined epitopes independent of epitope size. Together with

precise HLA crystal structure information, we have also incorpo-

rated a fine calculation model for binding affinity [18], giving the

DSM a high detection rate of best-defined epitopes equivalent to

that of the latest binding motif-based program.

Intriguingly there was a considerable degree of discrepancy

between the two methods: 21.2% of the 52 best-defined epitopes

were detected as significant epitope candidates only by the DSM,

while 9.6% was detected only by the HLArestrictor. Furthermore,

two epitopes which ranked within the bottom five by DSM were

successfully predicted as a single candidate by HLArestrictor,

whereas five epitopes which were not detected by HLArestrictor,

were successfully predicted as the best candidates by the DSM.

This result highlights the importance of combining programs with

different approaches, for example those based on peptide binding

motif information and those that do not require peptide binding

motif information, consistent with previous report in class II HLA

peptide binding prediction model [25].

We therefore applied both models to predict optimal epitopes in

HIV-1 CRF01_AE Gag and found 8 previously unreported

optimal epitopes supported by both models. These potential

epitopes need to be further confirmed ex vivo that they are true

epitopes capable of stimulating T cell responses with either a 51Cr

release assay or tetramer assay. However, since the DSM alone

predicted 11 other candidates that were not predicted by the

HLArestrictor, combining both models would be important to

reduce the cost of such experiments. Furthermore a substantial

number of OLPs were recognized using an ELISpot assay but

within the peptides that induced a response, no epitope was

predicted by the HLArestrictor. This DSM would save the cost of

experiments by reducing 26 potential candidate peptides to five.

The ability of the DSM model to accurately predict peptides

was dependent on the HLA molecule in question, and our results

suggest that this is due to variations in the C-terminal binding

groove. Four best-defined epitopes restricted by the alleles HLA-

A*02:01 and HLA-B*57:01 ranked among the worst from the

22nd up to the 26th in our program. In HLA-A*02:01, both FK10

and AM9 coded Leucine (L) at the 2nd position of sequence,

compatible with the HLA-A*02:01 binding motif at the B pocket

and scored a low and therefore strongly binding U_dock score at

the N-terminal site [247.8 kcal/mol in FK10 (5th in N1-N8

terminal) and 254.4 kcal/mol in AM9 (2nd)]. However, the

sequences did not match with the HLA-A*02:01 binding motif at

the C-terminal which contains a Valine (V) at the F pocket, and

they scored the worst U_dock scores [214.1 kcal/mol in KF10

(8th) and 248.5 kcal/mol in AM9 (8th)]. A similarly low score at

the C-terminal was also found in HLA-B*57:01-restricted KF11

[224.5 kcal/mol (8th)] and YT9 [223.8 kcal/mol (8th)]. The

importance of the C-terminal for peptide-binding stability has

been previously reported [26], and with respect to structural

differences between the B and F pockets, it is generally known that

the B pocket has a rather round shape while the F pocket has a

deep cleft-like shape, suggesting stricter peptide binding restriction

at the F pocket compared to the B pocket among HLA-A*02:01

and HLA-B*57:01. In contrast, HLA-B*27:05 and HLA-B*35:01

had none or only one variant of their binding motif at C-terminal:

x[R(K)]xxxxxxx or x[R]xxxxxx[LFYRHK(MI)] in HLA-B*27:05

and x[P(AV)]xxxxxxx or x[P(AVYRD)]xxxxxx[YFMLI] in HLA-

B*35:01. In these two alleles, all of the best-defined epitopes

ranked within the 5th. These results strongly suggest that the

diversity of peptide binding at the F pocket defines the accuracy or

difficulty of epitope prediction by DSM.

Recent studies have highlighted the importance of HLA-C alleles

for HIV viral control, for instance in the population-based study from

Africa [27], existence of dominant HLA-C*04-restricted epitopes

[28], stimulation of NK cells through HLA-C and Killer-cell

Immunoglobulin-like receptors (KIRs) [29,30], and HLA-C expres-

sion control by 35 kb upstream genotype of HLA-C allele and HIV

viral control [31]. However, epitope mapping of HLA-C antigens has

been held back for several reasons. Firstly, in in vitro studies it has been

difficult to find target and effector cell combinations with singly

matched HLA alleles which are not under LD association, as we

found in our 51Cr release assay. In silico, in contrast to HLA-A or B

alleles, epitope prediction programs against HLA-C alleles have been

sparse [9–11]. This can be attributed to the lack of reported epitopes

information from HLA-C alleles, since binding motif-based models

were originally programmed based on such reported data. Further-

more, LD of HLA-C alleles, especially with HLA-B alleles, hinders

the confirmation of HLA-C alleles as the restricting alleles in statistical

analyses. In our previous study, among 13 HLA-C-associated epitope

candidates, nine were reported with HLA-A or B alleles which were

under LD association [21]. Novel DSM could contribute to epitope

detection by bypassing such obstacles to epitope prediction against

HLA-C alleles.

This study had several limitations. First, we could not define the

threshold of the U_dock score degree itself in novel program as

defined in HLArestrictor. Related with this limitation, considering

the HLA polymorphism, reported epitope number, and compar-

ison between alleles with/without original crystal structure

information, further calculations will be warranted for the quality

evaluation of DSM. Second, this is a computational epitope

prediction model whose algorithm is solely based on the binding

between the peptide and the HLA molecule. Although peptide-

HLA binding is the most selective event for epitope determination

[32], CTL activation is a multi-step process involving the

processing of viral peptides by proteasome [22,33,34] and the

recognition of the peptide-HLA complex by T cell receptors

(TCRs) [35], both of which are not accounted for in the model.

In conclusion, we have shown here a novel in silico DSM which

can be used for epitope mapping, and combined with a binding

motif-based model, this will significantly reduce the required

experimental burden for epitope identification in the development

of a CTL-based vaccine for HIV.

Supporting Information

Figure S1 Identification of HLA-B*46:01/C*01:02-re-
stricted Gag p24276–285 MI10 and p24277–285 YI9 by a
51Cr release assay. 51Cr release assays under HLA-B*46:01/

C*01:02-matched conditions were performed for each peptide.

Significant % lysis was found in target cells pulsed with Gag

p24276–285 MI10: MYSPVSILDI and p24277–285 YI9: YSPVSILDI.

(PPTX)

Table S1 Predicted best-defined epitopes using the
docking simulation model and a comparison with
HLArestrictor. The docking simulation model was applied to

predict epitopes within 15-mer peptides spanning best-defined

epitopes and compared with those predicted with the HLAr-

estrictor. The U_dock score and their rank were calculated for

each peptide in the docking simulation model, while with

HLArestrictor the affinity thresholds of SB: Strong Binder, WB:

Weak Binder, and CB: Combined Binder, and Non-binder were

given, according to their definitions.

(XLS)
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Table S2 Epitope prediction using the docking simulation
model and HLArestrictor against in vitro HLA-restricted
HIV-1 CRF01_AE Gag epitope candidates. Using previously

reported HIV-1 CRF01_AE Gag epitope candidates detected by

ELISpot assays and statistical analysis, epitope prediction was

performed by our novel docking simulation model and HLArestrictor.

Among 31 15-mer peptide and HLA associations, six best-defined

epitopes and four non-best defined epitopes were included. Bold,

underlined sequences indicate positive candidates in dual models. SB:

Strong Binder, WB: Weak Binder, and CB: Combined Binder.

(XLSX)
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