1	Acetaldehyde at low concentration synergistically exacerbates allergic airway
2	inflammation as an endocrine disrupting chemical and as a volatile organic compound
3	
4	Tetsuya Kawano, Hiroto Matsuse, Susumu Fukahori, Tomoko Tsuchida,
5	Tomoya Nishino, Chizu Fukushima, and Shigeru Kohno
6	
7	Second Department of Internal Medicine, Nagasaki University School of Medicine,
8	1-7-1 Sakamoto, Nagasaki 852-8501, Japan
9	
10	Correspondence and reprints should be addressed to:
11	Hiroto Matsuse, MD
12	Second Department of Internal Medicine, Nagasaki University School of Medicine,
13	1-7-1 Sakamoto, Nagasaki 852-8501, Japan
14	E-mail: hmatsuse@nagasaki-u.ac.jp
15	Phone: +81-95-819-7273
16	Fax: +81-95-849-7285
17	
18	Running head: Effect of low acetaldehyde concentration on allergic airway inflammation
19	Key words: bronchial asthma, acetaldehyde, allergic airway inflammation, endocrine
20	disrupting chemical(s), volatile organic compound(s)

23	Background: Acetaldehyde is an endocrine-disrupting chemical (EDC) and volatile organic
24	compound (VOC). It is also a carcinogen and teratogen that causes bronchoconstriction in a
25	subset of asthmatics. However, the mechanism through which acetaldehyde acts as an
26	EDC/VOC in causing allergic airway inflammation remains unknown.
27	Objectives: The present study determines the effects of a low concentration of acetaldehyde,
28	which itself did not trigger airway inflammation, on extant allergic airway inflammation in a
29	murine model of allergic asthma.
30	Methods: Four groups of BALB/c mice [control(Cont), Dermatophagoides farinae (Df)
31	allergen sensitized (AS), intranasally acetaldehyde injected (ALD), and allergen sensitized
32	and acetaldehyde injected (AS-ALD)] were prepared. We compared airway
33	hyperresponsiveness (AHR) lung pathology, serum IgE, and airway concentration of
34	cytokines among these groups.
35	Results: Physiological and histological differences were not evident between ALD and Cont
36	mice. The AS mice developed AHR allergic airway inflammation characterized by goblet cell
37	hyperplasia and eosinophilic infiltration. AHR and airway eosinophilia were significantly
38	enhanced in AS-ALD, compared with AS mice. Serum total and Df-specific IgE were

39	significantly increased in both AS and AS-ALD mice compared with Cont and ALD mice,
40	but comparable between AS and AS-ALD mice. Mite allergen sensitization significantly
41	increased IL-5 and GM-CSF and decreased IFN- γ in the airways, and injecting ALD into the
42	airway significantly increased IL-5, GM-CSF, and IFN- γ in the airways of AS mice.
43	<i>Conclusions:</i> Exposure to acetaldehyde can enhance allergic airway inflammation in asthma.

45 Introduction

46	It is generally accepted that endocrine-disrupting chemicals (EDCs) confer health
47	risks such as toxicity, carcinogenicity, mutagenicity, immunotoxicity, and neurotoxicity in
48	humans [1-5]. A relationship between EDCs and allergic diseases has been described [6-10],
49	but the exact mechanism underlying this relationship remains obscure. Some EDCs are
50	volatile, and these are generally refered to as volatile organic compounds (VOCs). Exposure
51	to VOCs such as formaldehyde or acetaldehyde can cause sick building syndrome (SBS) or
52	bronchial asthma [6-10].
53	Bronchial asthma is characterized by chronic airway inflammation and airway
54	hypersensitivity [11-15]. Among the various inflammatory cells, type 2 T helper lymphocytes
55	(Th2), which produce Th2 cytokines that regulate allergic airway inflammation, are typically
56	located in the airways of asthma patients [12]. In particular, the Th2 cytokine IL-5 promotes
57	the maturation and activation of eosinophils [11-15]. Interferon (IFN)- γ , a Th1 cytokine,
58	inhibits the biological effects of Th2 cytokines. Th2 immunity is dominant over Th1
59	immunity in asthma [11, 12]. For both children and adults, the most common trigger of acute
60	exacerbation of asthma is viral respiratory tract infection [16]. Although the precise

61	underlying mechanism of virus-induced asthma exacerbation remains unknown, viral
62	infection probably exacerbates Th2-dominant allergic airway inflammation [11, 16].
63	A number of other factors can exacerbate asthma. We have previously reported that
64	alcohol consumption exacerbates asthma in about half of Japanese patients with asthma
65	[17-19]. Acetaldehyde, a metabolite of alcohol, plays a critical role in this alcohol-induced
66	bronchoconstriction via stimulation of mast cells/basophils to produce histamine [20].
67	Acetaldehyde is not only a metabolite of alcohol but it is also a VOC that is linked to SBS
68	and asthma [6-10], and it might have various adverse effects in humans [1-5]. In fact,
69	acetaldehyde in cigarette smoke inhibits ciliary motility via a phophokinase C
70	(PKC)-dependent mechanisms [21]. Taken together, these findings indicate that acetaldehyde
71	affects airway inflammation as a VOC. Nonetheless, little is known about interactions
72	between acetaldehyde and allergic airway inflammation. The present study investigates the
73	effects of acetaldehyde as an EDC/VOC on extant allergic airway inflammation induced by
74	mite allergens in a novel murine model of asthma.

76 Material and methods

77 Acetaldehyde concentration

The concentration of acetaldehyde used in the present study was determined by preliminary experiments based on the findings of published reports [22, 23]. Several concentrations of acetaldehyde were injected intranasally in mice once a day for a week according to the protocol described below. And then, lung specimens were histologically evaluated. We concluded that 50 µg of acetaldehyde does not directly injure the murine airway since this dose did not cause either tissue damage or inflammatory change in this model. This concentration was lower than that used in a previous study of humans [23].

85

86 Animals and immunization protocol

An animal model of mite allergen-sensitized asthma was prepared as described [24, 25]. Four groups (n=8 per group) of female BALB/c mice (Charles River Japan, Inc., Yokohama, Japan), 4-6 weeks of age, were housed at the Laboratory Animal Center for Biochemical Research, Nagasaki University School of Medicine. All mice were immunized twice intraperitoneally on days 1 and 14 with 0.5 mg/mouse of *Dermatophagoides farinae (Df,* American house dust mite) (LG-5339, Cosmo Bio, Tokyo, Japan) precipitated in aluminum

93	hydroxide. These mice were then challenged intranasally with 50 μ l of phosphate-buffered
94	saline (PBS) (control group, Cont; acetaldehyde inoculated group, ALD) or with 50µg/50µl
95	of Df allergen (allergen-sensitized group, AS; allergen sensitized and acetaldehyde inoculated
96	group, AS-ALD) on days 14, 16, and 18 as previously described [25]. The ALD and AS-ALD
97	groups were each intranasally injected with 50 μ g of acetaldehyde (Sigma, St. Louis, MO,
98	USA) from days 14 to 20. AHR was determined on day 20 in unrestrained mice using
99	whole-body plethysmography. All mice were sacrificed by dislocation of the cervical
100	vertebrae on day 21, and peripheral blood was collected from each group. Bronchoalveolar
101	lavage fluid (BALF) was obtained from half of the mice in each group using 0.5 ml of
102	ice-cold PBS. Lung tissues were obtained from the other half of each group of mice for
103	pathological evaluation. The procedures were reviewed and approved by Nagasaki University
104	School of Medicine Committee on Animal Research. All experiments were repeated at least
105	three times.

107 Determination of AHR

108 We measured AHR in unrestrained mice using whole body plethysmography (PULMOS-I,
109 M.I.P.S., Osaka, Japan) as we previously reported [25]. AHR is expressed as calculated

110	specific airway resistance (sRAW) which closely correlates with pulmonary resistance
111	measured using conventional, two-chamber plethysmography in ventilated animals. The four
112	groups of mice were exposed for 5 minutes to nebulize PBS and subsequently to increasing
113	concentrations (6, 12, 25, 50 mg/ml) of nebulized methacholine (MCh; Sigma) in PBS using
114	an ultrasonic nebulizer (NE-U17, Omron, Kyoto, Japan) and recordings were taken for 3
115	minutes after the delivery of each dose.
116	
117	Pathological evaluation of pulmonary inflammation
118	Lung sections from each group were stained with hematoxylin and eosin (H&E) evaluated
119	(magnification $\times 400$) at least three times by three different observers in a blinded fashion as
120	described [25]. The number of eosinophils and total number of nuclei in three randomly
121	selected airways was determined. The eosinophil count is expressed as a ratio (%) of the total
122	cells in the airway.
123	
124	Determination of serum IgE level

125 The serum concentrations of total IgE and *Df*-specific IgE were measured in duplicate using 126 enzyme-linked immunosorbent assays (ELISA). The total serum IgE concentration was 127 determined using a rat anti-mouse IgE antibody (Ab) (PharMingen, SanDiego, CA, USA) and

128	biotin-conjugated rat anti-mouse IgE mAb (PharMingen) as described [20]. Other 96-well
129	ELISA plates were prepared to measure Df-specific IgE. Plates were coated overnight at 4°C
130	with 5 μ g/ml of <i>Df</i> extract. Serum samples (1:10) were incubated for 2 hours at room
131	temperature in the Df-coated plates before incubation with biotin-conjugated rat anti-mouse
132	IgE mAb. The optical density (OD) at 405 nm was determined using an automatic ELISA
133	plate reader. The total serum IgE level was expressed as μ g/ml using a mouse IgE standard
134	(PharMingen). The <i>Df</i> -specific serum IgE levels are expressed as OD ₄₀₅ .
135	
136	Analysis of BALF
137	BALF samples were evaluated using a hemocytometer and light microscopy. Each BALF
120	
138	sample was centrifuged for 10 minutes at 400×g at 4°C, and cytokines were analysed in the
138	sample was centrifuged for 10 minutes at $400 \times g$ at 4°C, and cytokines were analysed in the supernatants. The cell pellets were resuspended in 1 ml of PBS. The total number of cells in
138 139 140	sample was centrifuged for 10 minutes at 400×g at 4°C, and cytokines were analysed in the supernatants. The cell pellets were resuspended in 1 ml of PBS. The total number of cells in the BALF was counted using a hemocytometer, and cells on cytospin slides were fixed and
139 140 141	sample was centrifuged for 10 minutes at 400×g at 4°C, and cytokines were analysed in the supernatants. The cell pellets were resuspended in 1 ml of PBS. The total number of cells in the BALF was counted using a hemocytometer, and cells on cytospin slides were fixed and visualized by May-Giemsa staining. Three observers performed differential counts of 200
 138 139 140 141 142 	sample was centrifuged for 10 minutes at 400×g at 4°C, and cytokines were analysed in the supernatants. The cell pellets were resuspended in 1 ml of PBS. The total number of cells in the BALF was counted using a hemocytometer, and cells on cytospin slides were fixed and visualized by May-Giemsa staining. Three observers performed differential counts of 200 cells. Absolute cell numbers were calculated as the product of the total and differential cell

144 of IFN-7, IL-5, and granulocyte macrophage colony-stimulating factor (GM-CSF) in the

- 145 BALF supernatants were determined by ELISA (Quantikine, R&D Systems Inc., Minneapolis,
- 146 MN, USA), as described by the manufacturer.
- 147

148 **Statistical analysis**

- 149 Results are expressed as mean ± standard error of mean (SEM). Data were evaluated using
- 150 repeated-measures ANOVA with a Bonferroni multiple comparison test. A p value of < 0.05
- 151 was considered significant.

Results

153	Low acetaldehyde concentration enhanced AHR in a murine model of asthma
154	We measured AHR to inhaled Mch (Figure 1). The sRAW did not significantly increase in
155	response to PBS inhalation in any group, but significantly increased in the AS and AS-ALD
156	groups compared with the Cont group after inhaling 25 and 50 mg/ml of Mch, and in the
157	AS-ALD group after inhaling 50 mg/ml Mch compared with AS group.
158	
159	Low acetaldehyde concentration synergistically worsened airway inflammation
160	Figure 2A shows representative pathological features of the four groups of mice. Airway
161	inflammation was not significantly increased in ALD, compared with Cont mice. Goblet cell
162	metaplasia and cellular infiltrate with eosinophils were identified in AS mice. The mean
163	number of infiltrating eosinophils per 10 perivascular areas was significantly increased in
164	AS-ALD compared with AS mice (mean \pm standard error; 38.7 \pm 12.1 vs. 22.1 \pm 9.7, p<0.05).
165	Analysis of the cellular components of BALF revealed significantly more airway
166	lymphocytes and eosinophils in AS, than in Cont mice, and airway eosinophilia was more
167	significantly increase in AS-ALD, than in AS mice (Figure 2B).

169 Acetaldehyde did not change serum IgE levels

170	Serum total IgE and Df-specific IgE levels are shown in Figure 3. Serum total IgE and
171	Df-specific IgE were significantly increasesd in AS and AS-ALD mice compared with Cont
172	and ALD mice. Total IgE or Df-specific IgE did not significantly differ between Cont and
173	ALD mice.
174	
175	Acetaldehyde increased IL-5 and GM-CSF concentrations in BALF
176	Figure 4 shows IL-5, IFN- γ , and GM-CSF concentrations in BALF. Like the pathological
177	lung profile, the cytokine profile was not significantly altered in ALD mice compared with
178	Cont mice, whereas IL-5 and GM-CSF were significantly increased and IFN- γ was
179	significantly decreased in AS, compared with Cont mice. Injection a low dose of
180	acetaldehyde in AS mice significantly increased levels of IFN- γ , IL-5 and GM-CSF.

182 **Discussion**

183	The major findings of the present study are as follows. Intranasal injection of a low
184	concentration of acetaldehyde, which itself did not trigger airway inflammation, worsened
185	AHR, significantly exacerbated extant allergic airway inflammation induced by mite
186	allergens and increased the production of Th1 and Th2 cytokines. Acetaldehyde is commonly
187	encountered in the environment. Cigarette smoke and vehicle exhaust emissions contain both
188	acetaldehyde and formaldehyde [2, 6-8, 21], and these chemicals are also found in paints,
189	plastic products, and adhesives, etc. [2, 7, 9]. In addition, some fruits naturally contain
190	acetaldehyde [2], and acetaldehyde is used as a food additive in some countries. Therefore,
191	continuous exposure to environmental acetaldehyde or formaldehyde might exacerbate
192	asthma. Many reports have described that formaldehyde act as an EDC/VOC and adversely
193	affects health [1-10]. Garrett et al. reported that inoculation with low levels of formaldehyde
194	increased the risk of bronchial asthma in children [7]. Exposure to low levels of
195	formaldehyde also increases IgE levels in humans [26] and mice [10]. Guinea pigs exposed to
196	formaldehyde showed enhancement of allergic sensitization to inhaled allergens [27].
197	However, the effects of low-level acetaldehyde (as an EDC/VOC) on allergic airway
198	inflammation has not been reported in detail.

199	Acetaldehyde can trigger acute exacerbations of asthma as it is also a metabolite of
200	alcohol [17-20, 28]. About half of Japanese patients with asthma have experienced
201	exacerbation after alcohol consumption. Many Japanese people have a raised concentration of
202	acetaldehyde in the peripheral blood after alcohol consumption because of having genetically
203	lower or absent activity of aldehyde dehydrogenase (ALDH) 2, which is a primary enzyme
204	involved in acetaldehyde metabolism [17-20]. We previously confirmed that such an increase
205	in the blood acetaldehyde concentration stimulates human mast cells in bronchial epithelial
206	cells to release histamine, causing bronchoconstriction [17-20]. The present findings suggests
207	that acetaldehyde has a proinflammatory effect in the pathophysiology of asthma in addition
208	to a bronchoconstrictive effect.
209	The immunological effects of alcohol have attracted focus from the viewpoint of
210	infectious diseases [29]. In fact, alcoholism is considered a risk factor for infections such as
211	pneumonia [30]. A growing body of evidence points to alcohol as an important modifier of
212	mucociliary clearance, which is the first line of defense for the lungs [28]. Acetaldehyde
213	activates PKC in airway cells and might be linked to the release of airway oxidants [21].
214	Aytacoglu et al. reported that alcohol could cause lung damage [31]. In contrast, little is
215	known about interactions between alcohol and allergic inflammation. One possible

216	mechanisms through which acetaldehyde might enhance allergic airway inflammation is that
217	inhaled acetaldehyde physically injures the airway epithelium, which enhances the
218	penetration of mite allergen into the airway, resulting in an increased IgE response. However,
219	this was not so in the present study. Clarisse et al. measured the indoor air concentrations of
220	aldehydes [32]. The combustion of cigarettes remarkably increases the airborne aldehyde
221	concentration [33]. Thus, smoking tobacco increases the amount of exposure to acetaldehyde
222	compared with the low level generated in the present study, in which levels of mite
223	allergen-specific IgE antibody were comparable between AS and AS-ALD mice. We
224	previously showed that acetaldehyde, but not alcohol, stimulates GM-CSF production from
225	the airway epithelium <i>in vitro</i> through the activation of nuclear factor κ -B (NF- κ B) in lung
226	tissue from patients with lung cancer [34]. The present study also demonstrated that a low
227	concentration of acetaldehyde significantly increased airway production of GM-CSF induced
228	by mite allergen in vivo. Since, GM-CSF is a growth factor for dendritic cells that serve as
229	the primary antigen-presenting cells in the airway, the present findings suggest that the
230	maturation of dendritic cells by acetaldehyde-induced GM-CSF production enhances
231	adaptive immunity and thus exacerbates allergic airway inflammation. Although how
232	acetaldehyde increases GM-CSF production remains uncertain, the present study indicates at

233	least	one	mechanism	through	which	allergic	airway	inflammation	is	exacerbated	by
234	acetal	ldehy	de acting as a	an EDC.							

235	In conclusion, acetaldehyde might be involved in the pathogenesis of asthma via two
236	pathways. One is that blood levels of acetaldehyde increased as a result of the genetically
237	reduced ALDH2 activity in some Asian populations stimulate mast cells to release histamine
238	after oral alcohol intake, and this causes bronchoconstriction. The other is that inhaled
239	acetaldehyde acting as an EDC enhances allergic airway inflammation.

241 **References**

242 I I ang M, Faik MS, Lee RS. Endocrine disrupting chemicals. numan exposure and h	242	1	Yang M.	Park MS.	Lee HS.	Endocrine	disrupting	chemicals:	human ex	posure ar	nd he	alth
--	-----	---	---------	----------	---------	-----------	------------	------------	----------	-----------	-------	------

- risks. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2006; 24: 183-224.
- 244 2 Whaley DA, Keyes D, Khorrami B. Incorporation of endocrine disruption into chemical
- hazard scoring for pollution prevention and current list of endocrine disrupting chemicals.
- 246 Drug Chem Toxicol 2001; 24: 359-420.
- 247 3 Fox JE. Chemical communication threatened by endocrine-disrupting chemicals. Environ
- 248 Health Perspect 2004; 112: 648-53.
- 249 4 Choi SM, Yoo SD, Lee BM. Toxicological characteristics of endocrine-disrupting
- 250 chemicals: developmental toxicity, carcinogenicity, and mutagenecity. J Toxicol Environ
- 251 Health B Crit Rev 2004; 7: 1-24.
- Safe S. Clinical correlates of environmental endocrine disruptors. Trends Endocrinol
 Metab 2005; 16: 139-44.
- Arif AA, Shah SM. Association between personal exposure to volatile organic
 compounds and asthma among US adult population. Int Arch Occup Environ Health
 2007; 80: 711-19.

257	7	Garrett MH, Hooper MA, Hooper BM, Rayment PR, Abramson MJ. Increased risk of
258		allergy in children due to formaldehyde exposure in homes. Allergy 1999; 54: 330-37.
259	8	Pappas GP, Herbert RJ, Henderson W, Koenig J, Stover B, Barnhart S. The respiratory
260		effects of volatile organic compounds. Int J Occup Environ Health 2000; 6:1-8.
261	9	Kim WJ, Terada N, Nomura T, Takahashi R, Lee SD, Park JH, Konno A. Effect of
262		formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial
263		cells: the role of formaldehyde in the pathogenesis of sick building syndrome. Clin Exp
264		Allergy 2002; 32: 287-95.
265	10	Tarkowski M, Gorski P. Increased IgE antiovalbumin level in mice exposed to
266		formaldehyde. Int Arch Allergy Immunol 1995; 106: 422-24.
267	11	Busse WW, Lemanske RF. Asthma (Review). N Engl J Med 2001; 344: 350-362.
268	12	Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76: 241.
269	13	Pelikan Z. Delayed asthmatic response to bronchial challenge with allergen-mediators,
270		eicosanoids, eosinophils and neutrophil constituents in the blood and urine. Respiration
271		2011; 82: 225-36.

272	14	Zietkowski	Ζ,	Skiepko	R,	Tomasiak-Lozowska	MM,	Bodzenta-Lukasz	yk /	4. <i>P</i>	nti-Is	gЕ
				1					~			_

- therapy with omalizumab decreases endothelin-1 in exhaled breath condensate of patients
- with severe persistent allergic asthma. Respiration 2010; 80: 534-42.
- 275 15 Tomari S, Matsuse H, Hirose H, Tsuchida T, Fukahori S, Fukushima C, Kawano T,
- 276 Matsuo N, Kohno S. Observational study of the additive effects of pranlukast on
- 277 inflammatory markers of clinically stable asthma with inhaled corticosteroids and
- long-acting beta 2 agonists. Respiration 2008; 76: 398-402.
- 16 Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and
 asthma exacerbations. Lancet 2010; 376: 826-34.
- 281 17 Shimoda T, Kohno S, Takao A, Fujiwara C, Matsuse H, Sakai H, Watanabe T, Hara K,
- Asai S. Investigation of the mechanism of alcohol-induced bronchial asthma. J Allergy
- 283 Clin Immunol 1996; 97: 74-84.
- 284 18 Takao A, Shimoda T, Matsuse H, Mitsuta K, Obase Y, Asai S, Kohno S. Inhibitory
- 285 effects of azelastine hydrochloride in alcohol-induced asthma. Ann Allergy Asthma
 286 Immunol 1999; 82: 390-94.
- 287 19 Matsuse H, Shimoda T, Fukushima C, Mitsuta K, Kawano T, Tomari S, Saeki S, Kondoh
- 288 Y, Machida I, Obase Y, Asai S, Kohno S. Screening for acetaldehyde dehydrogenase 2

289	genotype in alcohol-induced asthma by using the ethanol patch test. J Allergy Clin
290	Immunol 2001; 108: 715-19.
291	20 Kawano T, Matsuse H, Kondo Y, Machida I, Saeki S, Tomari S, Mitsuta K, Obase Y,
292	Fukushima C, Shimoda T, Kohno S. Acetaldehyde induces histamine release from human
293	airway mast cells to cause bronchoconstriction. Int Arch Allergy Immunol 2004; 134:
294	233-39.
295	21 Elliott MK, Sisson JH, Wyatt TA. Effects of cigarette smoke and alcohol on ciliated
296	tracheal epithelium and inflammatory cell recruitment. Am J Respir Cell Mol Biol 2007;
297	36: 452-59.
298	22 Myou S, Fujimura M, Kita T, Katayama N, Abo M, Yoshimi Y, Nishituji M, Nomura S,
299	Nakao S. Sensory neuropeptides are not involved in acetaldehyde-induced
300	bronchoconstriction in guinea-pigs. J Auton Pharmacol 2001; 21: 139-43.
301	23 Prieto L, Sanchez-Toril F, Gutierrez V, Marin MJ. Airway responsiveness to inhaled
302	acetaldehyde in subjects with allergic rhinitis: relationship to methacholine
303	responsiveness. Respiration 2002; 69: 129-35.

304	24 Matsuse H, Behera AK, Kumar M, Rabb H, Lockey RF, Mohapatra SS. Recurrent
305	respiratory syncytial virus infections in allergen-sensitized mice lead to persistent airway
306	inflammation and hyperresponsiveness. J Immunol 2000; 164: 6583-92.
307	25 Kawano T, Matsuse H, Kondo Y, Machida I, Saeki S, Tomari S, Mitsuta K, Obase Y,
308	Fukushima C, Shimoda T, Kohno S. Cysteinyl leukotrienes induce nuclear factor kappa b
309	activation and RANTES production in a murine model of asthma. J Allergy Clir
310	Immunol 2003; 112: 369-74.
311	26 Wantke F, Demmer CM, Tappler P, Gotz M, Jarish R. Exposure to gaseous formaldehyde
312	induces IgE-mediated sensitization to formaldehyde in school-children. Clin Exp Allergy
313	1996; 26: 276-80.
314	27 Riedel F, Hasenauer E, Barth PJ, Koziorowski A, Rieger CH. Formaldehyde exposure
315	enhances inhalative allergic sensitization in the guinea pig. Allergy 1996; 51: 94-99.
316	28 Sisson JH. Alcohol and airways function in health and disease. Alcohol 2007; 41
317	293-307.
318	29 Diaz LE, Montero A, Gonzalez-Gross M, Vallejo AI, Romeo J, Marcos A. Influence of
319	alcohol consumption on immunological status: a review. Eur J Clin Nutr 2002; 56: S50-3.

320	30 Zhang P, Bagby GJ, Happel KI, Raasch CE, Nelson S. Alcohol abuse,
321	immunosuppression, and pulmonary infection. Curr Drug Abuse Rev 2008; 1: 56-67.
322	31 Aytacoglu BN, Calikoglu M, Tamer L, Coskun B, Sucu N, Kose N, Aktas S, Dikmengli
323	M. Alcohol-induced lung damage and increased oxidative stress. Environ Int 2011; 37:
324	743-65.
325	32 Clarisse B, Laurent AM, Seta N, Le Moullec Y, EI Hasnaoui A, Momas I. Inddor
326	aldehydes: measurement of contamination levels and identification of their determinants
327	in Paris dwellings. Environ Res 2003; 92: 245-53.
328	33 Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A. Exposure to major
329	volatile organic compounds and carbonyls in European indoor environments and
330	associated health risk. Environ Int 2011; 37: 743-65.
331	34 Machida I, Matsuse H, Kondo Y, Kawano T, Saeki S, Tomari S, Fukushima C, Shimoda
332	T, Kohno S. Acetaldehyde induces granulocyte macrophage colony-stimulating factor
333	production in human bronchi through activation of nuclear factor-kappa B. Allergy
334	Asthma Proc 2003; 24: 367-71.
335	

Figure legends

- **Figure 1.** Acetaldehyde emphasized AHR in AS and AS-ALD group mice.
- 338 Data are shown as means \pm SEM of sRAW (n=8 per group). *p < 0.01 vs. Cont, $^{\dagger}p < 0.05$ vs.

339 AS.

340

341 Figure 2. Representative photomicrographs (400×) of lung tissue samples of four groups of
342 mice (A), and BALF cell count (B).

(a), Control; (b), allergen-sensitized group (AS); (c), acetaldehyde-injected group (ALD); (d), allergen-sensitized and acetaldehyde-injected group (AS-ALD). Eosinophilic airway inflammation and acetaldehyde further exacerbated allergic airway inflammation in AS mice (d). Acetaldehyde alone did not cause histological changes in the murine lung at this concentration (c). Lymphocyte and eosinophil numbers are significantly increased in BALF from AS and AS-ALD groups compared with Cont group. Eosinophil count significantly increased in AS-ALD, compared with the AS group (B). **p* < 0.01 vs. Cont, [†]*p* < 0.01 vs. AS.

351 **Figure 3.** Serum levels of total IgE and *Df*-specific IgE

- 352 Levels of both are significantly increased in AS and AS-ALD, compared with Cont group.
- 353 Acetaldehyde did not additively affect serum IgE. *p < 0.01 vs. Cont.

- 355 **Figure 4.** Cytokine concentrations in the BALF
- 356 Levels of IL-5 and GM-CSF are significantly increased in AS and AS-ALD, compared with
- 357 Cont group, and are significantly higher in the AS-ALD, than in AS group. Acetaldehyde
- 358 accordingly exerted synergistic effect with antigen sensitization on BALF IL-5 and GM-CSF
- 359 concentration. Level of IFN- γ is significantly decreased in the AS, compared with all other
- 360 groups. *p < 0.01 vs. Cont, $^{\dagger}p < 0.05$ vs. Cont, $^{\ddagger}p < 0.05$ vs. AS.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

