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Abstract 
The aim of this study was to examine the effect of chewing efforts on sensory 
and pain thresholds of the orofacial skin of symptom-free subjects.  
Fourteen healthy volunteers were recruited. Using a stair-case method, the 
tactile detection threshold (TDT) and the filament-prick pain detection threshold 
(FPT) on the cheek skin (CS) and the skin overlying the palm side of the thenar 
skin (TS) were measured before and after chewing gum for 5 min (Time 1: T1) 
and keeping the jaw relaxed for 5 min (Time 2: T2) as a control.  
Both for the test and control situation, the TDT was higher in all measurement 
sites after 5 min. As for the FPT, the reactions between T1 and T2 were quite 
opposite: The FPT increased and/or remained stable in T1, while, it decreased 
at all sites in T2. There were significant session effects (T1-T2) on the FPT at the 
left CS (P < 0.01), right CS (P < 0.05) and TS (P < 0.05). 
The increase of TDT after chewing/no chewing could be due to habituation, 
while the decrease of FPT observed in the control situation might be due to 
sensitization, respectively. This potential sensitization, however, was not 
observed after chewing efforts. Further studies are needed to clarify the 
modulating effect of masticatory function on the trigeminal sensory system. 
 
Key words: chewing, quantitative sensory testing, habituation, sensitization, 
descending control system 
 
1. Introduction 
 
Mastication is one of the most common rhythmical behaviors in mammals along 
with respiration and locomotion. It is now generally accepted that the motor 
command for the basic pattern of rhythmical alternation of jaw-closing and 
jaw-opening movements is generated by a neuronal population in the brainstem 
(the so-called central pattern generator, CPG).1,2 Although the basic motor timing 
could be programmed in a CPG, sensory inputs arising from the movements 
modify the rhythmic movements reflexly to adapt to environmental demands.3-5 

As the integration of influences from sensory inputs is necessary to control or 
fine-tune rhythmic movements, movements of mastication excite several classes 
of mechanoreceptors; not only muscle spindle (primary and secondary) and 
periodontal afferents but also skin and mucosal afferents.6-8 

Mastication could modulate pain processing with respect to sensory-motor 



integration via cortical mechanisms and mastication might drive an opioid 
descending system through the trigeminal sensory pathway and somatosensory 
cortex resulting in an antinociceptive effect on chronic pain.9  

Farella et al.10 examined the effects of gum chewing on the pressure pain 
threshold (PPT) and indicated that no significant changes were found for PPT 
between before and after chewing tasks. However, the effects of chewing on 
sensory and pain perception of the facial skin have not been investigated up to 
now. 
  Consequently, the aim of this study was to examine the effect of chewing 
efforts on the tactile and tactile pain thresholds in the orofacial skin of 
symptom-free subjects. 
 
2. Materials and methods 

 
2.1. Subjects 
 
Fourteen healthy volunteers (seven men, seven women, age range 27 to 40 
years) were recruited from Nagasaki University staff. All were asymptomatic for 
pain in the head and neck. As a previous study indicated that pain thresholds 
were lower in the menstrual phase, women were not tested during their 
menstrual phase and smokers were excluded.11,12 Informed consent was 
obtained from all participants. The institutional ethics committee of Nagasaki 
University Graduate School of Biomedical Sciences approved the study (No. 
1181). 
 
2.2. Measurement sessions 
 
Each subject undertook two sessions with 1 week intervals. The order of the 
sessions was randomized. The subjects were seated comfortably upright in a 
dental chair. The tactile detection threshold (TDT) and the filament-prick pain 
detection threshold (FPT) were measured before and after gum chewing for 5 
min (Time 1: T1) and keeping the jaw relaxed for 5 min (Time 2: T2) as a control. 
Chewing was performed unilaterally on the right side.  

TDT and FPT were measured 1) on the cheek skin (CS) overlying the central 
part of the left and right masseter muscles midway between the upper and lower 
borders and 1 cm posterior to the anterior border, and 2) on the skin overlying 



the palm side of the thenar muscle on the point connecting the longitudinal axis 
of the thumb and index finger (thenar skin: TS). The sequence of the 
measurement sites was randomized. Semmes-Weinstein monofilaments with 20 
different diameters were used (Premier Products, USA). The numbers of the 
filaments (1.65 to 6.65) correspond to the forces and/or the pressures.13,14 As 
reported previously,13,14 the pressures (g/mm2) were used in the measurement of 
the TDT and FPT in this study. 

 
2.3. Tactile detection threshold 
 
At first, TDT was examined. The subjects were instructed to close their eyes 
during the whole test procedure and to raise their hand as soon as they felt the 
stimulus on the test site. The filament was applied vertically to the test site and 
slowly the pressure was increased until the filament bowed. The time needed to 
bow the filament was standardized to approximately 1.5 s. The stimulus was 
maintained for approximately 1.5 s and then removed in 1.5 s. Quick 
applications and bouncing of the filaments against the skin were avoided. At 
each site, the test started with the pressure of 68.0 g/mm2. If the subject raised 
his/her hand, this was considered a positive response, and the next filament 
applied was one step lower (47.3 g/mm2). This procedure was repeated with 
decreasing filament diameters until the subject no longer felt the pressure. This 
was considered a negative answer. Again, the filament with a higher pressure 
was applied. This procedure continued until five positive and five negative peaks 
were recorded and the threshold (TDT) was calculated as the average of these 
values (pressure). If the subject still had a positive response while applying the 
lowest pressure (1.45 g/mm2), this pressure was considered the threshold. Two 
“blank” (placebo) trials were performed after peaks 5 and 10. During these 
control trials, the filament did not make contact with the tissue. If the subject 
reported a positive answer, the test was discontinued and the subject was 
questioned about what kind of stimulus was perceived. The whole procedure 
was explained again to the subject and afterwards the test was restarted. 

 
2.4. Filament-prick pain detection threshold 
 
After the TDT measurements, the FPT was examined. The stimuli were applied 
in the same way as for the TDT, but the subjects were instructed to keep their 



eyes open and to raise their hand as soon as they felt not only pressure but also 
pain in the test area. If the subject had no positive response for the highest 
pressure (439 g/mm2), this value was recorded as the threshold. No placebo 
stimulus were applied. There was a time lag of 3 min between the 
measurements on a similar site in order to avoid sensitization. Furthermore, after 
the examination, the pain intensity experienced at the FPT was assessed on a 
numeric rating scale (NRS) where 0 cm indicates ‘no pain’ and 10 cm indicates 
‘worst pain imaginable’. 
 
2.5. Statistical analysis 
 
Data were not normally distributed, and subsequent analysis was performed with 
Wilcoxon matched pair test to test the effects of the session and condition. The 
significance was accepted at P < 0.05. 
 
3. Results 
 
Table 1 shows the mean and standard error of mean (S.E.M) of sensory and 
pain thresholds (TDT and FPT).  
  Both for the test and control situation, TDT increased in all measurements 
after 5 min. There were significant effects of experimental condition (before and 
after 5 min) except the right CS in T2. Significant session effects (T1 - T2) were 
found at the right CS (P < 0.05) (Fig. 1).  

For the FPT, it was striking that the reactions between T1 and T2 were quite 
opposite: in T2, the FPT at all sites significantly decreased after 5 min, while, in 
T1, the FPT at the right CS significantly increased (P < 0.01) and the FPT at the 
left CS and TS remained stable. There were significant session effects (T1 - T2) 
on the FPT at the left CS (P < 0.01), right CS (P < 0.05) and TS (P < 0.05) (Fig. 
1). 

  
4. Discussion 
 
In clinical practice, the use of sensory tests for both tactile and pain sensation 
could be helpful in the diagnosis and assessment of orofacial pain.15-18  

Farella et al.10 examined the effects of gum chewing on the pressure pain 
threshold (PPT) and indicated that no significant changes were found for PPT 



between before and after chewing tasks. Morimoto et al.19 examined the effect of 
chewing efforts on facial skin temperature. According to that study, a chewing 
task for 5 min produced a significant temperature increase of the facial skin and 
did not return to the initial state even after 30 min. However, the effects of 
chewing on sensory and pain perception of the facial skin have not been 
investigated up to now. There is evidence that somatic sensitivity in the orofacial 
area can be modulated by jaw movements.20,21 Kemppainen et al.20,21 indicated 
that opening and closing movements reduced perioral skin sensitivity and tooth 
pulp-evoked sensations (tooth pulpal detection and pain thresholds). 
Furthermore, the jaw movement-related attenuation of tooth pulp-evoked 
sensations was greater for perception thresholds than for pain thresholds.21 

In this study, an increase of TDT was found regardless of chewing task. On the 
other hand, an increase and decrease of FPT were found in T1 (gum chewing) 
and T2 (control), respectively. The increase of TDT/FPT in the test (T1) and 
control situation (T2) could be habituation, and the decrease of FPT in the 
control situation (T2) could be sensitization, respectively. Habituation is a 
decrease or loss of response following repetitive stimulation, while sensitization 
illustrates the increased excitability of a reaction produced by trauma and 
inflammation of peripheral tissues, which can occur peripherally or centrally or 
both.22 In the present findings, sensitization that is the decrease of FPT following 
repetitive stimulation in T2 was not found after chewing efforts (T1). In fact, the 
FPT at the right CS in T1 significantly increased, which might have something to 
do with the effect of unilateral chewing on right side. That is, amount of sensory 
inputs arising from right side chewing might cause habituation that is the 
significant increase of FPT at the right CS. 
  Chewing is not only an oral function but also influences some brain and 
whole-body functions e.g., cerebral blood flow, body temperature and arousal. 
For example, the reticular formation in the brainstem and the neural pathways 
underlying the cortical arousal response known as the ascending reticular 
activating system (ARAS)23 is easily affected by mastication, because sensory 
inputs arising from masticatory jaw movements might be important input to the 
ARAS. In fact, Sakamoto et al.24,25 provided evidence concerning the effect of 
mastication on the human brain using fMRI.  

As for the interaction between mastication and pain, animal studies showed 
that the masticatory behavior could modulate pain processing with respect to 
sensory-motor integration via cortical mechanisms and that mastication might 



drive an opioid descending system through the trigeminal sensory pathway and 
somatosensory cortex resulting in an antinociceptive effect on chronic pain.9 A 
neuronal network extending from the frontal cortex and the hypothalamus 
through the periaqueductal gray matter (PAG) to the rostal ventromedial medulla 
(RVM) into the medullary and spinal dorsal horn is probably the most powerful 
descending inhibitory system.26-29 Electrical stimulation of PAG or RVM has been 
shown to reduce the activity of nociresponsive neurons in the spinal trigeminal 
nucleus.30-35 The PAG receives projections form parts of the forebrain such as 
insular cortex and the amygdala and from specific projection areas. Chiang et 
al.36 have shown that the jaw-opening reflex induced by orofacial noxious input 
can be inhibited by stimulation of the orofacial region in the somatosensory 
cortex. This powerful endogenous pain-inhibitory system may be a target for 
pain therapy strategies.37,38 Opioids are known to activate inhibitory interneurons 
in the PAG-RVM system, e.g., enkephalinergic interneurons that are located pre- 
and postsynaptically to primary afferents. Besides, specific 5-HT receptor 
agonists and antagonists could thus activate inhibitory interneurons or inhibit 
excitatory interneurons that are under control of these serotonergic descending 
neurons.39,40 In fact, Mohri et al.41 revealed that activation of 5-HT neurons by 
rhythmic behavior of chewing might enhance the 5-HT descending inhibitory 
pathway and suppress nociceptive responses in humans.  

To clarify the involvement of the descending modulatory system and its related 
neurotransmitters in the masticatory jaw movement, we need further studies 
from the view points of both clinical and basic research. Animal models of cats, 
30,32-35,42 rats31,36,39,40,43,44 and mice3,4,45 could help in this respect. 
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Figure legends 
 
Fig. 1 - Upper and lower figures show the mean of tactile detection threshold 
(TDT) and filament-prick pain detection threshold (FPT), respectively.  
Black circles and squares demonstrate gum chewing (Time 1: T1) and control 
(Time 2: T2), respectively. TDT and FPT were measured before (pre) and after 
(post) gum chewing for 5 min (T1) and keeping the jaw relaxed for 5 min (T2) as 
a control. 
**, p < 0.01; *, p < 0.05, showing a significant difference between pre and post. 
##, p < 0.01; #, p < 0.05, showing a significant difference between T1 and T2. 
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Table 1 - Sensory and pain thresholds.  

Cheek skin (Left) 
 

TDT 
 

Cheek skin (Right) 
 

Thenar skin 
 

FPT 
 

6.29 (3.47) 
 

9.28 (5.39) 254 (96.7) 
 

238 (103) 
 

Gum chewing (T1) 
 

Control (T2) 
 

pre 
 

post 
 

pre 
 

post 
 

6.18 (4.32) 
 

12.3 (11.8) 
 

214 (125) 
 

259 (139) 
 

272 (103) 
 

286 (117) 
 

5.44 (3.71) 
 

8.63 (5.15) 
 

188 (69.2) 
 

111 (45.5) 
 

5.37 (3.10) 
 

6.84 (2.86) 
 

199 (131) 
 

179 (121) 
 

9.13 (3.13) 
 

14.9 (9.30) 
 

240 (93.8) 
 

203 (104) 
 

Data are expressed as mean (standard error of mean: S.E.M) of the pressure (g/mm2). 
 

TDT = tactile detection threshold, FPT = filament-prick pain detection threshold. 
 

8.54 (3.27) 
 

15.9 (11.4) 
 

TDT and FPT were measured before (pre) and after (post) gum chewing for 5 min (Time 1: T1) and keeping the jaw  
relaxed for 5 min (Time 2: T2) as a control. 
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