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Abstract – Anodic reactions are desirable methods from the viewpoint of Green 

Chemistry, since no toxic oxidants are necessary for the oxidation of organic 

molecules. This review introduces usefulness of anodic oxidation and successive 

reaction for selective functionalization of cyclic amine derivatives.
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1. INTRODUCTION  

It is well-known that anodic oxidation is useful for selective functionalization of N-protected cyclic amine 

derivatives.1-3 Especially, Shono and Matsumura’s pioneer works enabled Lewis acid mediated 

Mannich-type reaction between N,O-acetals B prepared by anodic oxidation of amine derivatives A and 

carbon nucleophiles (Nu−) is one of the powerful methods for synthesis of α-substituted amine derivatives 

C (Scheme 1).4 In these reactions, N-acyliminium ions D are key intermediates.5 Recently, excellent 



 

methods for oxidation and/or amidoalkylation of carbamates, such as the “cation pool method”,6 the 

“cation flow method”,7 “recyclable solid supported bases”,8 and “parallel electrosynthesis”9 were 

developed. 
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Scheme 1. Anodic α-functionalization of cyclic amine derivatives 

 

As shown in Scheme 2, removal of alcohols from N,O-acetals B generated enamine derivatives E which 

reacted with electrophiles to afford β-substituted enamines F.10 Anodic oxidation of E in acetic acid gave 

α,β-diacetoxylated amines G which were directly obtained from amines A by anodic oxidation in acetic 

acid. Lewis acid promoted nucleohilic substitution gave β-acetoxy-α-substituted amines H.11 
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Scheme 2. Anodic β-functionalization of cyclic amine derivatives  

 

Anodic oxidation of A or E in the presence of halogen ion (X−) afforded β-halogeno-α-methoxylated 

amines I.12 Dehydrohalogenation of I effectively afforded α-methoxy-β,γ-unsaturated amines J which 

were not only synthetic precursors for 1,2-dihydropyridines K13 but also γ-substituted enamines L.14 Also, 

Lewis acid promoted nucleophlic substitution of I afforded β-halogeno-α-substituted amines M. When 

Nu was the active methylene groups, base catalyzed migration of the methylene groups occurred to give 

β-substituted enamines N (Nu=active methylene).15 Similarly, aryl groups of β-halogeno-α-arylated 



 

amines M (Nu=Ar) were easily shifted to the β-position by Ag+ (Scheme 3).16 

 

This review majorly introduces recent progress on anodic method for selective functionalization of cyclic 

amine derivatives developed by our group.  
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Scheme 3. Further functionalization of β-halogeno-α-methoxylated amines I  

 
2. ANODIC OXIDATION OF CYCLIC AMINE DERIVATIVES 

2-1. Regioselectivity 

Usually, direct electrochemical oxidation of N-acylated cyclic amine derivatives A as shown in Scheme 1 

occurred at the less substituted carbon because of steric factor between substrate and anode, while some 

methods for electrochemical oxidation at the more substituted carbon were developed. Namely, 

electrochemical oxidation of bicyclic amine prepared from (S)-prolinol and trifluoroacetaldehyde 

proceeded to afford enantiomerically pure methoxylated compound in excellent regioselectivity. This 

product was easily transformed into (S)-α-allylprolinol (Scheme 4).17 Also, N-cyano cyclic amines were 

regioselectively methoxylated at the more substituted carbon by electrochemical oxidation (Scheme 5).18 

Such unusual selectivity might be explained by stability of the corresponding intermediary iminium ions.  
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Scheme 4. Anodic synthesis of (S)-α-allylprolinol 
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Scheme 5. Anodic oxidation of N-cyano cyclic amines 

 

On the other hand, Dhimane reported that anodic oxidation of bicyclic carbamate afforded a mixture of 

regio isomers (Eq. 1).19 
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2-2. Diastereoselectivity 

A highly efficient direct cyanation of N-protected cyclic amines by anodic oxidation was developed.20 

The regioselectivity was similar to the anodic methoxylation of N-protected cyclic amines. This 

anodic cyanation of L-proline derivative proceeded to afford 5-cis substituted product in excellent 

diastereoselectivity (Scheme 6).  
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Also, under acidic conditions, electrochemical α-cyanation of cyclic amines proceeded selectively (Eq. 

2).21 
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Recently, Pilli and Santos published their work22 on electrochemical cyanation using two methods. In 

the case of the “cation pool” method23 using a combination of TMSCN and TMSOTf, they achieved 



 

high yield and enantioselectivity, on the other hand use of the “non-cation pool” electrochemical 

method using TMSCN gave very low yield and required low temperatures (−78 oC). In addition 

Tajima has published their work on electrochemical cyanation based on the concept of site isolation.24  

 

Since N-protected enamines are representative electron-rich olefins, they are relatively oxidizable. Direct 

electrochemical oxidation of 6-acetoxymethyl-2,3-didehydropiperidine derivative afforded 3,6-trans 

isomer, while indirect one gave 3,6-cis isomer in high diastereoselectivity. On the other hand, indirect 

method using I− as a mediator proceeded via inversion of the stereochemistry (Scheme 7).25  
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Scheme 7. Direct and indirect electrochemical oxidation of enamine derivatives 

 

Although iodohydroxylation afforded 3-trans-iodinated intermediate, successive epoxidation by 

electrogenerated base (EGB) occurred with the inversion of the stereochemistry at the 3-position (Scheme 

8). 

On the other hand, α,β-dihydroxylated cyclic amine derivatives were somewhat unstable to be easily 

transformed into ring opened hydroxyketones which were changed to imines by acid in the presence of 

MgSO4. These imines were precursors for α,α-disubstituted cyclic amines (Scheme 9).26 
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Scheme 8. Stereochemical course for indirect electrochemical oxidation of enamine 
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Scheme 9. Ring contraction of α,β-unsaturated cyclic amine derivatives 

 
The direct oxidation in acetic acid was applicable to α-methoxy-β,γ-didehydropiperidine derivatives to 

afford optically active imino-sugar precursors. In these reactions, γ-acetoxy-α,β-didehydropiperidine 

derivatives generated by acetic acid were anodically oxidized (Scheme 10).27 
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Scheme 10. Diastereoselective preparation of imino-sugar precursors 

 

2-3. Enantioselectivity 

A decaroboxilative methoxylation of an N-acylated amino acid (non-Kolbe reaction) leads to 

N-acyl-iminium ion intermediate.28 Although transformation of optically active α-amino acid into active 

intermediates without any loss of optical purity is useful for synthesis of optically active 

nitrogen-containing compounds, intermediary iminium ion which is a typical sp2 cation, might lose the 

original chirality to afford racemic product (Scheme 11). 
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Scheme 11. Usual anodic decarboxylative substitution of N-acyl α-amino acids 



 

However, when N-o-phenylbenzoylated oxazoline and thiazoline derivatives were electrochemically 

oxidized, the memory of chirality via carbenium ion chemistry occurred to afford optically active 

products (80% and 91% enantiomeric excess (ee), respectively) in Eq. 3.29,30 
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Scheme 12 shows plausible stereochemical course for the memory of chirality.31 The initial step involves 

the oxidative decarboxylation of amino acid to form the iminium ion, which can be attacked by 

nucleophiles (MeO−) from the syn or the anti side. The observed 85% ee could be attributed to the 

presence of the bulky o-phenyl group beneath the carboxylic group and the fixation of the conformation 

of amino acid and of iminium ion intermediate at low temperature. The restricted rotation could have 

favored the formation of a chiral iminium ion with the conformation of an o-phenyl group similar to that 

of the amino acid. The bulky o-phenyl group could have precluded an effective approach from the anti 

side, and hence the nucleophilic attack was predominantly from the less hindered syn side resulting in 

4R-isomer. 

Anodic oxidation of N-acyl-β-amino alcohols smoothly cleaves the carbon-carbon bond to afford 

N,O-acetals.32 The memory of chirality was observed in the anodic substitution of optically active 

β-amino alcohol derivatives (Eq. 4).33 
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Scheme 12. Plausible stereochemical course for the memory of chirality 
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On the other hand, indirect electrochemical oxidation in the presence of chiral copper catalyst 

transformed racemic N-protected aminoalcohols into optically active amino esters in kinetic resolution 

manner (Scheme 13).34 Similar kinetic resolution of racemic N-protected aminoalcohols proceeded to 

afford optically active amino esters. In this reaction, chelation of amino alcohol or amino aldehyde with 

Lewis acid activate their hydroxyl or formyl group to form alkoxide ion which is easily oxidizable 

compared with the original amino alcohol or aldehyde (Scheme 14).35 
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Scheme 13. Enantioselective oxidation of amino alcohol derivatives 

 

 
Scheme 14. Reaction mechanism for enantioselective oxidation of amino alcohol or aldehyde 



 

2-4. Anodic cyclization for preparation of cyclic amine derivatives 

Shono and Matsumura reported that indirect electrochemical intramolecular carbon-nitrogen bond 

forming reaction of N-tosylaminoalkylmalonates smoothly proceeded to afford cyclic amine derivatives 

(Scheme 15).36  
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Also, Moeller reported that electro-generated radical cations from electron-rich alkenes were 

intramolecularly trapped with nitrogen to afford cyclic amine derivatives (Scheme 16).37  

−e, RVC anode
LiOMe, Et4NOTs

up to 91% yield

NH
Ts

N
Ts

( )n

n=2-4

( )n

MeOH-THF

EDG

OMe

EDG

N
Ts

( )n
EDG

N
Ts

( )n
EDG

EDG=electron donating group  
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On the other hand, important intermediate for preparation of carbapenam antibiotics was synthesized by 

electrochemical intramolecular carbon-carbon bond forming reaction (Scheme 17).38 In this cyclization, 

(R)-phenylethyl group works as a good chiral auxiliary. 
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Scheme 17. Electrochemical carbon-carbon forming reaction 



 

3. SYNTHETIC APPLICATION OF ANODIC PRODUCT 

3-1. Nucleophilic substitution 

Lewis acid mediated nucleophilic substitution of N,O-acetals was accomplished under solvent-free 

condition to afford the substituted products in high yields similar to the yields in dichloromethylene (Eq. 

5).39 Also, indium-mediated benzylation and allylation of α-methoxy-β,γ-unsaturated amines were 

accelerated in water compared with in tetrahydrofuran (Eq. 6).40 Nucleophilic substitution of N,O-acetals 

with unmodified ketones was promoted by a combination of TiCl4 and PhSiCl3 (Eq. 7).41 These reactions 

might be desirable from the viewpoint of Green Chemistry. 
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3-2. Diastereoselective nucleophilic substitution 

Since nucleophilic substituition of α,β-diacetate G majorly afforded trans-β-acetoxy-α-substituted cyclic 

amines H in Scheme 2, it was somewhat difficult to obtain cis-β-hydroxy-α-substituted one in high 

diastereoselectivity.11,42 Recently, a highly cis-selective synthesis of α,β-disubstituted piperidines has 

been accomplished through nucleophilic additions to N-acyliminium ions with aryl- and alkenyl boronic 

acids (Eq. 8).43 
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Diastereoselective nucleophilic substitution of pipecolinate derivative at the 6-position smoothly 

proceeded to afford cis-isomer, while control of diastereoselectivity in case of prolinate derivative was 

difficult.44 Recently, we found that the N-protecting group affected the diastereoselectivity.45 That is, 

N-methoxycarbonylated prolinnate mainly gave cis-allylated prolinate (cis/trans = 73/27), while 

N-benzoylated prolinate preferentially changed into trans-allylated prolinate (cis/trans = 13/87) (Eq. 9). 
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Arylation of 5-methoxylated L-prolinates showed similar tendency to their allylation (Eq. 10).  
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This diastereoselective arylation was applicable to preparation of cis-5-arylated N-formyl-L-proline46 or 

C2-symmetrical pyrrolidine derivative45 which worked well as an organic activator in the enantioselective 

reduction of ketones or imines with Cl3SiH47 in high enantioselectivities (Eqs. 11 and 12).  
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Similar effect of N-ptotecting group on the diastereoselectivity was observed in the Arbusov reaction of 

5-methoxylated L-prolinates with phosphites in the presence of BF3·OEt2 (Eq. 13).48  
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Electrochemical oxidation of N-acyl-α-allyl or benzyl amines smoothly cleaved the carbon-carbon bond 

to afford N,O-acetals. The allyl groups worked as chiral auxiliary to afford optically active quaternary 

cyclic amino acids (Scheme 18).49 
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Methylphenidate has four stereoisomers since it possesses two asymmetric carbons. Among them, the 

threo-methylphenidate hydrochloride salt (Ritalin®) has been used mainly for the treatment of attention 

deficit hyperactivity disorder (ADHD) in children in the USA. Although threo-methylphenidate was 

administered to patients as the racemic form, the most active enantiomer is the d-threo-isomer. TiCl4 



 

mediated nucleophilic substitution of N,O-acetal with Evans imide proceeded to afford a precursor for 

d-thereo-methylphenidate in highly diastereoselective manner (Eq. 14).50 
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3-3. Enantioselective nucleophilic substitution 

Enantioselective introduction of carbon nucleophiles (Nu−) onto cyclic N-acyliminium ions has attracted 

much interest because it provides an efficient route for elaboration of optically active piperidine and 

pyrrolidine derivatives. The reaction of α-methoxypyrrolidine with silyl enol ether in the presence of a 

chiral titanium catalyst to afford substituted product as a mixture of diastereomers in 68% de with 53% ee 

for major diastereomer (Eq. 15).51 
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Cl

 
 

A facile method for a copper ion-catalyzed asymmetric introduction of malonate group into the 2-position 

of 3,4-didehydro-2-methoxypiperidines with excellent enantioselectivity is shown in Eq. 16,52 while 

introduction of acetoacetate group proceeded in low diastereoselectivity with high enantioselectivity (Eq. 

17).53  
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N
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O

OMe
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57% yield
97% ee

(16)
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N

OO
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O
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58% yield, 34% de
80% ee (major), 80% ee (minor)

(17)

 
 

On the other hand, chiral copper ion-catalyzed coupling reaction of α-methoxylated 

β-ethyl-β,γ-didehydropiperidines with acetoacetate proceeded to afford γ-substituted piperidines as a 

mixture of diastereomers in a ratio of 56/44, each of which had moderate optical purity (43-44% ee) (Eq. 

18).54  
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3-4. Electrophilic substitution 

Regioselective introduction of various electrophiles (aldehydes, ketones, and imines) into piperidine 

derivatives at the 4-position was accomplished.55 Scheme 19 shows the strategy for generation of 

nucleophilic species from anodically prepared N-protected 2,3-didehydro-4-acetoxypiperidine P, 

followed by generation of π-allyl palladium Q from P by Pd(OAc)2/PPh3 and then, successive umpolung 

of Q mediated by Et2Zn.56 
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Scheme 19. Introduction of electrophile to the γ-position of piperidine skeleton 

 

The reaction of pipecolinate derivative with acetone proceeded regio- and stereo-selectively to afford 

cis-2,4-disubstituted product in high yield (Eq. 19).  



 

Using chiral phosphine ligand afforded optically active product as a diastereomer mixture in moderate 

diastereoselectivity and enantioselectivities (Eq. 20). 
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3-5. Preparation of azabicyclic compounds 

Optically active 2,3-methanopipecolinic acid was prepared by procedures shown in Scheme 20 from 

anodically prepared cis-6-methoxypipecolinate (94% de).57 Firstly, cis-6-methoxypipecolinate was 

phenylthiolated at the 2-position by the treatment with potassium bis(trimethylsilyl)amide (KHMDS) and 

diphenyldisulfide, successively, and the resulting product was oxidized with m-CPBA to give 

2,3-didehydropipecolinate. The treatment of 2,3-didehydropipecolinate with dimethylsulfoxonium 

methylide in DMSO gave 2,3-methano-6-methoxypipecolinate in high deiastereoselectivity. The 

subsequent reductive elimination of its 6-methoxy group was nicely done by adding NaBH4 to afford 

2,3-methanopipecolinate in 85% ee. Finally, its hydrolysis by trimethylsilyl iodide afforded (2S,3R)- 

methanopipecolinic acid. 
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Scheme 20. Preparation of optically active 2,3-metanopipecolinic acid 



 

Although anodically prepared optically active 1,2-bis(methoxycarbonyl)-1,2-dihydropyridine was 

converted to the corresponding 1,2-dihydropyridine, the optical purity was partially lost (77% ee) (Eq. 

21).58 
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N
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(21)

 
On the other hand, the corresponding acetoxymethylated compound was obtained in >99.9% ee (Eq. 

22).59 
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The enantiomerically pure dihydropyridine reacted with N-acryloyloxazolidinone in the presence of AlCl3 

to afford anti-endo isoquinuclidine derivative in high diastereoselectivity (96.8% de) (Eq. 23).  
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A versatile organocatalyst 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) has been utilized in chemical60 

and electrochemical oxidation61 of alcohols as a mediator. TEMPO is a stable but sterically hindered 

radical because of the four methyl groups adjacent to the nitroxyl group. Therefore TEMPO is not 

suitable for the oxidation of sterically hindered alcohols. In 2006, Iwabuchi reported an excellent 

oxidation of sterically hindered alcohols using 1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO), 

which is one of the sterically less hindered class of nitroxyl radicals (Fig. 1).62 On the other hand, the 

ability of azabicyclo-N-oxyls for the oxidation was unknown. 
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N
O
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N
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m n

 
Figure 1. Structures of some N-oxyls. 

 

Shono and Matsumura developed preparation method for N-methoxycarbonyl-8-azabicyclo[3.2.1]octane 



 

and N-methoxycarbonyl-9-azabicyclo[3.3.1]nonane (Eq. 24).63 These compounds were transformed into 

the corresponding N-oxyls and/ or N-hydroxyls (Eq. 25).64 
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These N-oxyls and/ or N-hydroxyls were applicable to chemical and electrochemical oxidation of 

sterically hindered alcohols as mediators (Scheme 21). 
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Scheme 21. N-Oxyl mediated oxidation of menthol 

 

Similarly, chitral azabicyclo-N-oxyls were prepared by utilizing anodic oxidation starting from 

L-hydroxyproline65 and D-pipecolinic acid66 as shown in Schemes 22 and 23.  
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Scheme 22. Preparation of chiral N-oxyls from L-hydroxyproline 

These chiral N-oxyls mediated kinetic resolutions of secondary racemic alcohols in moderate s-values (Eq. 

26). 
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Scheme 23. Preparation of chiral N-oxyl from D-pipecolinic acid 
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Some chiral N-oxyls shown in Figure 2 mediated oxidative kinetic resolution of racemic amines and/or 

alcohols.67-69 
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Figure 2. Representative chiral N-oxyls and N-hydroxyl 

 

4. CONCLUSION 

This review focused on some subjects on electro-organic synthesis, such as control of chemoselectivity, 

regioselectivity, diastereoselectivity, enantioselectivity, and their important synthetic applications. These 

developments for the subjects outlined above, may increase the potential of anodic synthesis. Since 

anodic reaction usually occurs on surface of electrode, in future, the synthesis in heterogeneous medium 

might afford different progress from chemical synthesis which is usually in homogeneous medium. 
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